Not Applicable
Not Applicable
1. Field Of The Invention
The present invention relates generally to the field of electrocardiography, and more specifically to the processing of high definition skin-surface cardiac signals for the purpose of assessing cardiac wellness in a personal wearable device.
2. Description of the Related Art
Personal monitoring of physiologic parameters is becoming increasingly widespread as consumers assume a more active role in monitoring and managing their own health. Whether the goal is to improve fitness at a very high level (e.g. athletic training), to monitor physical improvement during rehabilitation (e.g. following a heart attack), or as a prophylactic measure to ward off chronic disease and improve general health, the frequent and timely feedback that wearable monitors can provide is essential for enabling users to assess how physical activity and lifestyle choices, such as rest and use of stimulants, can affect overall physical health and wellness.
Specifically in the case of cardiac assessment, testing and monitoring is typically administered by a clinician in a clinical setting. This approach is costly and generally not covered by health insurance unless symptoms indicative of cardiac disease are present. Clinical testing requires stressing a patient beyond normal levels of exertion, which may or may not yield useful data about their cardiac health, and may put them at risk for injury. The sporadic nature of testing under these conditions provides limited feedback to the patient regarding the positive or negative effects of their lifestyle habits and/or therapeutic interventions.
In addition, new schools of thought are emerging within the cardiology profession, which indicate that traditional measures of cardiac activity, as derived from a typical electrocardiogram (EKG), provide an incomplete view of cardiac wellness. (Cipra, B., A healthy heart is a fractal heart, SIAM News, Vol. 36, No. 7, 2003); (Schlegel, T., et al., Real-time 12-lead high frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. Mayo Clinic Proc., Vol. 79, pp. 339-350, 2004); (Tragardh, E. & Schlegel, T., High-frequency QRS electrocardiogram, Clinical Physiology and Functional Imaging, Vol. 27, pp. 197-204, 2007). The heart is part of a larger feedback system and the signals it generates are far more dynamic and complex than previously recognized. (Oida, E., et al., Tone entropy analysis on cardiac recovery after dynamic exercise, Journal of Applied Physiology, Vol. 82, No. 6, pp. 1794-1801, 1997).
Recent trends are directed away from managing disease and toward promoting healthier lifestyles, a paradigm which relies on accurate self-monitoring, direct feedback, and timely intervention. This is evidenced by the rapid growth of the personal monitoring device market, which includes e.g. blood pressure monitors, pulse oximeters, glucose monitors, heart rate meters, activity monitors and personal EKG devices. A key feature of all these devices is that they are small, easy to operate, and portable enough to be worn and used routinely by the average consumer. Many of these devices also take advantage of the ubiquitous nature of application-enabled personal mobile computing device (PMCD) platforms (such as smart phones or tablet computers) for user interface functions, analysis, display and communication with remote servers.
Although a number of wearable consumer EKG devices are currently available that utilize PMCD platforms to acquire and display information, many of them require an over-read center for clinical interpretation before providing feedback to the user. This results in significantly delayed feedback (up to 24 hours) and expensive over-read fees. These devices also offer no comparative information regarding changes in cardiac activity before and after exertion. In addition, these systems rely on traditional low resolution EKG acquisition technology, which greatly limits their ability to discriminate true EKG signatures from noise. This requires use of extensive filtering, which further reduces and distorts signal content, limiting potential for reliable signal characterization and signature analysis.
Traditional EKG systems monitor and/or record human cardiac conditions and activity by using a number of separately located individual electrodes attached to the skin surface to detect subcutaneous physio-electric signals. A composite of both subcutaneous physiological signals and environmental EMI are present on the human skin-surface. For medical monitoring, only the internal physiological signals are of interest; the external signals are classified as electromagnetic interference (EMI) and may significantly limit or reduce the ability to perform signature analysis.
External EMI on the human skin-surface originate from a variety of sources, including line source wiring, fluorescent lights, broadcasting services, appliances, medical instrumentation, computers, and electrical machinery. In the frequency band of interest (˜0.1 Hz thru ˜5 kHz) these signals can range beyond several millivolts/meter, whereas skin-surface physiological signal details are typically on the order of a few microvolts/meter. These numbers present potentially a very unfavorable Signal-to-Noise-Ratio (SNR), making it difficult to discern the smallest details in the internal physiological signals. This poor SNR limits the usefulness of current EKG sensing techniques.
In order to control noise in the signal, traditional EKG techniques typically employ multi-order low pass filtering, with a 40 Hz to 100 Hz upper frequency limit, while often requiring line frequency (50 Hz/60 Hz) notch filters. This limited bandwidth precludes analysis of the higher frequency EKG signal and limit temporal accuracy which are essential to the present invention.
Recent advancements in signal acquisition techniques have made it possible to sense physiological signals in their pristine form while avoiding error sources arising from electrical noise, signal amplitude variations, DC drift, and filtering (Ref. Denker, et al., U.S. Pat. No. 8,366,628). As they relate to this application, signals sampled using these techniques are hereinafter referred to as High Definition EKG and are defined as follows:
Spectral analysis is harmonic decomposition of a dynamic waveform into its component frequencies and their relative amplitudes. In the case of electrocardiographic signals, the low frequency (less than 30 Hz) signals occupy nearly all of the dynamic range of a typical amplifier. Therefore, the usefulness of spectral analysis is generally limited to the lower frequency bands making it less suitable for detecting subtle details associated with the QRS complex and many rhythm disturbances, which tend to carry signature elements above 30 Hz. In addition, the presence of EMI and/or muscle artifact within traditional EKG signals can easily result in unfavorable signal to noise ratios, masking signals of interest.
When high levels of EMI and line noise are present, time domain analysis is often employed to mitigate these sources of interference. For example, in order to filter out 50 Hz and 60 Hz line source noise, the upper frequency limit is usually less than 50 Hz, eliminating high frequency components. Even when notch filters are used, phase relationships will be affected. For example, introducing a notch filter to remove 45-65 Hz will introduce phase shifts over a range of at least 22 Hz to 130 Hz. Since signature information relevant to QRS waveforms and rhythm abnormality detection is contained in these bands, this type of filtering is not suitable for analyzing high definition EKG signals.
In view of the foregoing discussion, there is currently no method available that enables a consumer to accurately monitor and trend subtle changes in cardiac activity without involving a clinician. To be most beneficial, such a method would be provided in a wearable system and take advantage of the ubiquitous nature of PMCD platforms with or without remote server systems to acquire, analyze, display and store information. It would also be capable of providing direct feedback regarding positive or negative changes in cardiac activity that may result from therapeutic or behavioral interventions, such as medications, routine exercise or other lifestyle adjustments (e.g. smoking cessation, changing sleep habits or use of stimulants).
If implemented with the use of a remote server this can be used to facilitate global trending, however current smart phone and tablet platforms continue to increase in processing and storage capability, allowing for implementation with or without use of a remote server. The present invention provides such a method and introduces improvements over existing consumer EKG systems by utilizing high definition EKG signals to improve accuracy and enable direct user feedback regarding cardiac wellness.
A method for assessing cardiac wellness uses signature analysis of high definition skin-surface EKG signals to measure beat-to-beat variance and rate of recovery in sequential EKG data samples. A wearable device comprises electrodes and an acquisition module which can contain the necessary functional components and algorithms for signal acquisition, signal analysis, presentation, data storage and data retrieval. Other embodiments can utilize wireless communications with an application-enabled PMCD (e.g. smart phone or tablet computer) to house specific functional components of the system, such as analysis, storage, retrieval and data and result presentation. Yet another embodiment can utilize a remote server for analysis, storage and retrieval to enable comparative trending and analysis.
In a preferred embodiment of this invention, the algorithms and display functions reside within a personal mobile computing device, such as a smart phone or tablet computer, and data is stored on the device as well as stored on a remote server to enable trending in comparison with other users and or groups.
In another embodiment of this invention, the algorithms, display functions and data storage reside within the acquisition module.
In other embodiments of this invention, the algorithms, display functions and data storage reside on any one of a number of combinations of acquisition module, personal mobile computing device, and remote server.
In one embodiment of this invention, the electrodes are integrated into a fixed array.
In another embodiment of this invention, the electrodes are individually applied to the skin.
An analysis module 106 executes analysis algorithms that process the high definition EKG signals 105 to measure characteristic temporal and spatial features of the signal that are indicative of cardiac wellness. The results are displayed to the user. In this particular embodiment of the invention, the analysis module 106 and display device 107 reside on a personal mobile computing device 108 such as a smart phone or tablet computer, and data storage is done in a storage device 110 on a remote server 109 for later retrieval.
Another embodiment of the invention is shown in
Referring to
The rows may be arranged in a rectangular grid as in
Other electrode pattern layouts and positions can be used to optimize signal acquisition for specific cardiac conditions, such as the presence of suspected or known arrhythmias.
The foregoing description was primarily directed to preferred embodiments of the invention. Although some attention was given to alternatives within the scope of the invention, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from disclosure of the embodiments of the invention. Accordingly, the scope of the invention should be determined from the following claims and not limited by the above disclosure.