This disclosure generally relates to wearable devices and, in particular, to coupling a wearable device to a user and measuring and monitoring activity of the user.
A patient often requires physical therapy to recover from surgery, such as a knee replacement surgery. The physical therapy can include exercise to increase the patient’s strength, flexibility and stability. If a patient over-extends his or her muscles or joints, the muscles or joints, surrounding tissues or repaired tissues may become further injured. If a patient does not exercise his or her muscles or joints to gain the appropriate range of motion, the joint may become stiff and require additional surgery. Measuring and monitoring the range of motion during physical therapy can help prevent further injury to the patient and result in a faster recovery time.
A goniometer is an instrument that can be used to measure ranges of motion or joint angles of a patient’s body. A standard goniometer consists of a stationary arm that cannot move independently, a moving arm attached to a fulcrum in the center of a body, and the body being a protractor of which 0 to 180 or 360 degrees are drawn. The stationary arm is attached to one limb or part of the patient’s body (e.g., a thigh) and the moving arm is attached to another limb or part of the patient’s body (e.g., a lower leg). The fulcrum can be a rivet or screw-like device at the center of the body that allows the moving arm to move freely on the body of the device in order for a clinician to obtain a measurement of the angle of movement of the patient’s joint (e.g., a knee). The measurements can be used to track progress in a rehabilitation program. Each time a patient has a rehabilitation session, the clinician places and hold, or attaches the goniometer device onto the patient, for example, using straps. The patient may have different clinicians setting up the goniometer device and measuring the joint movement. Based on the experience of the clinician, or other person, the goniometer device may be attached onto different locations on the patient, which can affect the accuracy and reproducibility of the measurements. The accuracy of the repeated measurements may also be compromised due to issues with or the sensitivity of the device.
Exemplary implementations of a system for measuring an angle of a joint of a user are disclosed. The system can include a center hub, a first arm, a second arm, a magnet, and a sensor. The center hub includes a first hub and a second hub. The first arm is configured for attachments to a first limb portion of the user at a first outer end and to the first hub at a first inner end. The second arm is configured for attachments to a second limb portion of the user at a second outer end and to the second hub at a second inner end, wherein the first hub is pivotally coupled to the second hub. The magnet is coupled to the second hub. The sensor is disposed in the center hub and configured to detect a rotation of the magnet.
Other implementations of a system for measuring an angle of a joint of a user can include a center hub, first and second coupling apparatuses, and first and second arms. The center hub has a first hub and a second hub. The first arm is configured for attachment to a first limb portion of the user at a first outer end and to the first hub at a first inner end. The second arm is configured for attachment to a second limb portion of the user at a second outer end and to the second hub at a second inner end, wherein the first hub is pivotally coupled to the second hub and configured to rotate 360 degrees about an axis. The system further comprises a magnet, a printed circuit board (PCB), and a sensor. The magnet is coupled to the second hub. The PCB is removably disposed in the center hub. The sensor is coupled to the PCB and configured to detect a rotation of the magnet.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
For a detailed description of example embodiments, reference will now be made to the accompanying drawings in which:
Various terms are used to refer to particular system components. Different companies may refer to a component by different names - this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to....” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
The terminology used herein is for the purpose of describing particular example embodiments only, and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections; however, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms, when used herein, do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C. In another example, the phrase “one or more” when used with a list of items means there may be one item or any suitable number of items exceeding one.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” “top,” “bottom,” and the like, may be used herein. These spatially relative terms can be used for ease of description to describe one element’s or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms may also be intended to encompass different orientations of the device in use, or operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
In accordance with aspects of the present disclosure,
To position the wearable device 100 relative to the joint 107, a person, such as a clinician, may identify a joint center 108, where the joint center 108 may be used to align the wearable device 100 to the joint 107. The clinician may use an alignment device 300 to identify and mark the joint center 108. For example, the alignment device 300 may be used to mark the skin of the user 102 at the joint center 108 with a marker, pen, or any other desired tool. Further, the alignment device 300 may be used to identify and mark positions at opposing limb portions 104, 106 for the first and second attachments 118, 120 relative to the joint center.
With reference to
With reference to
In an exemplary embodiment, the center hub 116 comprises a first or upper hub 146 and a second or lower hub 148. The hubs 146, 148 are coaxially aligned with one another, and with axis A. Moreover, the hubs 146, 148 may be configured to rotate about the axis A for 360 degrees, and relative to one another. Further, each of the hubs 146, 148 may have a link arm 143 for coupling between the hubs 146, 148 and the respective arms 128, 130. For example, the first arm 128 may be coupled to the link arm 143 of the first hub 146, and the second arm 130 may be coupled to the link arm 143 of the second hub 148.
In operation, embodiments of the arms 128, 130 may rotate, pivot, flex or extend relative to the center hub 116. This design can account for the complex motion of a joint, slippage of the joint, and the broad range of shapes and sizes of the patient’s joint 107. In addition, this design can maintain the position of the center hub relative to the joint center 108. Embodiments of the device can enable freedom of motion in many planes but not in the rotational plane of the joint. This enables the device to fit many different people but still make accurate measurements.
More specifically, and as best illustrated in
The outer link 144 may couple to the inner link 142 and respective outer ends 136, 138. With reference to
The first and second outer ends 136, 138 may comprise first and second goniometer attachments 168, 170, which may be integral with, or coupled to the respective outer ends 136, 138. It is to be appreciated the goniometer attachments 168, 170 may couple, or be integral with, the arms 128, 130 at any desired location, or in any desired configuration. The first and second goniometer attachments 168, 170 may be configured to removably couple with the attachments 118, 120. Further, each goniometer attachment 168, 170 can comprise one or more bosses 200, and one or more magnets 158 positioned next to the bosses 200 to facilitate the coupling and alignment of the goniometer attachments 168, 170 and the attachments 118, 120. The bosses 200 and magnets 158 further facilitate the alignment of the goniometer 110 relative to the attachments 118, 120. The arms 128, 130 may also include one or more arm alignment holes 140 configured to align with the attachments 118, 120, or an alignment mark on a user 102. The arms 128, 130 may further have one or more wings 202 that extend from a side 126 of the goniometer 110, such as from the first or second goniometer attachments 168, 170. The wings 202 can be formed from or coupled to the first or second goniometer attachments 168, 170. The wings 202 can be a tab or have any other desired shape. The wings 202 may be configured to assist a user in moving the arms 128, 130 of the goniometer perpendicularly relative to the attachments to facilitate uncoupling the goniometer 110 from the attachments 118, 120 without uncoupling the attachments 118, 120 from the user 102.
With reference to
The first layer 172 may have a top 182 and a bottom 184, and may be formed from a pad, coated paper, plastic, woven fabric, latex, or any other desired material. For example, the top 182 may be formed from a pad and the bottom 184 may comprise an adhesive material 236, such as a medical-grade adhesive or other suitable material. The adhesive material 236 couples to the skin of the user 102 to couple the attachments 118, 120 to the user 102. Further, the top 182 may also have an adhesive layer 194, which may be smaller in area than the first layer 172. Further, the adhesive layer 194 can be less than or equal to the area of the second layer 174. The adhesive layer 194 may be ovular in shape, and define one or more notches or voids in an outer periphery. Further, the first layer 172 can define notches 180 in an outer periphery for assisting in aligning the first attachment 118 relative to a predetermined location, or mark, on the user 102. The notches 180 can be v-shaped or have any other desired shape. Further yet, the first layer 172 may define a pair of voids or alignment holes 178, which may assist in the alignment of the first attachment 118 relative to a predetermined location, or mark, on the user 102. The alignment holes 178 and notches 118 of the first layer 172 may be the same as, or aligned with, the notches or voids of the adhesive layer 194.
The second layer 174 may have a top 186 and a bottom 188, and may be formed of a foam material or any other desired material. The second layer 174 may couple to the adhesion layer 194 of the first layer 172. To prevent uncoupling, the foam material of the second layer 174 may dampen forces between the goniometer 110 and the attachments 118, 120. The top 186 of the second layer 174 may also have an adhesive layer 195 on an upper surface 238 of the top 186, which may be smaller in area than the area of the pod 176. The adhesive layer 195 may have an ovular shape, or any other desired shape. Further, the adhesive layer 195 and the second layer 174 may have one or more holes, or one or more cutouts that may be aligned with the alignment hole 178 of the first layer 172 to align the adhesive layer 195 and the second layer 174 with the first layer 172. The adhesive layers 194, 195 can be formed of an adhesive material or any other desired coupling material, such as a hook- or a loop-type material. The first layer 172 can have a length L1 and a width W1. The second layer 174 can have a length L2 and a width W2. The adhesive layer 195 can have a length L3 and a width W3.
As illustrated in
More specifically, the pod 176 has an underside, such as the bottom 192, which may couple to the upper surface 238 of the second layer 174. The bottom 192 can have one or more hooks or loops, to couple to the upper surface 238. Alternatively, the upper surface 238 and the bottom 192 may comprise an adhesive material to facilitate the detachable coupling between the upper surface 238 and the pod 176. The top 190 of the pod 176 may have one or more recesses 198. The recess 198 may be ovular in shape or have any other desired shape. The recesses 198 may also have tapered edges to assist a user 102 in uncoupling from the pod 176 by moving the arms 128, 130 perpendicularly relative to the pod 176. Two recesses 198 may be formed in the pod 176 at opposing ends or sides of the pod 176.
With reference to
When the user 102 moves the first or second limb portions 104, 106, the first or second arms 128, 130 move or rotate with the first and second hubs 146, 148. The goniometer 110 can measure the rotation of joint 107 by measuring the angle between the first and second hubs 146, 148. To achieve this, and with reference to
For enclosing the opening, a cover 150 may be attached to the center hub 116, and more specifically to the first hub 146. The cover 150 can be detachably coupled to the first hub 146 or any other desired location. The cover 150 can also be configured to inhibit movement of the PCB 152 and other components located within the center hub 116. For example, when the cover is closed, a bottom portion of the cover 150 may apply direct or indirect pressure to the PCB 152. The cover 150 may have a snap mechanism 226, such as a finger snap or any other desired mechanism, configured to attach and detach the cover to the center hub 116.
The magnet 156 may couple to the second hub 148, and the sensor 216 also disposed in the center hub 116 is configured to detect rotation of the magnet 156. The sensor 216 can be configured to measure the rotation of the magnet 156 to a sensitivity up to one-hundredth of a degree, or to any other desired sensitivity.
As illustrated in
When the cover 150 is removed, the PCB 152 may be accessed.
In
The circuit 220 may be configured to generate an electrical signal based on the rotation of the magnet 156. The circuit 220 may be configured to transmit the electrical signal in real time. The circuit 220 may transmit the electrical signal. For example, a transmitter 222 may be coupled to the PCB 152 and configured to transmit an electrical signal based on the rotation of the magnet 156 to an external device. The transmitter 222 may include wired or wireless transmission, such as Bluetooth™, WiFi, NFC or any other means or method of desired transmission. The external device may be a mobile phone, a computer, a tablet, or any other desired device. The external device may have a user interface. The user interface may be configured to receive the electrical signal and display data obtained from the electrical signal. The data may include the angle of the joint 107, or any other desired information.
The user interface may include an app that receives the data, manipulates the data, records the data, and displays aspects of the data. For example, the app may display the angle of the joint 107 of a user 102, a history of the angle of the joint 107, duration of the angle, or any other desired information, such as a measurement of the angle in real time.
The sensor 216 may be a Hall Effect sensor, or any other desired sensor (e.g., a magnetic position sensor AS5601 using internal MEMS Hall Effect sensors). The sensor 216 may be coupled to the PCB 152 or any other desired device. The sensor 216 may be coupled to the bottom side 214 of the PCB 152 at a location directly above the magnet 156 when the PCB 152 is disposed within the center hub 116. The PCB 152 and the sensor 216 may rotate with the first hub 146 and the first arm 128. The magnet 156 may rotate with the second hub 148 and the second arm 130. The design of the wearable device 100, including the configuration of the sensor 216 and the magnet 156, may improve the accuracy of the measurements of the angle of the joint 107.
With reference to
The alignment device 300 comprises a first segment 302 and a second segment 304 pivotably coupled to the first segment 302 at a pivot point P. More specifically, the segments 302, 304 each have a coupling end 306 where the segments 302, 304 pivotably couple to one another at the pivot point P. Moreover, the pivot point P is spaced adjacently and equidistant from each coupling end 306 of the segments 302, 304. Further yet, when the segments 302, 304 are pivotally coupled, center axes C of each segment 302, 304 intersect at the pivot point P.
The alignment device 300 further includes voids 308 defined by each segment 302, 304, and the voids 308 facilitate the marking of the skin of the user 102 during use of the alignment device 300. The voids 308 are spaced equidistant on each segment 302, 304 from the pivot point P, and the spacing between, and size, of each void 308 is commensurate with the spacing between, and size, of each alignment hole 178 of the attachments 118, 120 (see
Using the alignment device 300, the clinician may locate the center of the joint 107 of the user 102, and then position the pivot point P at the center of the joint 107. When the joint 107 of the user 102 is a knee, the clinician may locate the lateral epicondyle of the knee, and position the pivot point P adjacent to the lateral epicondyle. With the pivot point P positioned adjacent to the lateral epicondyle, the clinician may centrally position each segment 302, 304 adjacent to the opposing limb portions 104, 106 of the joint 107. The clinical may rely on the center axes C of each segment 302, 304 to assist in centrally aligning with the segments 302, 304 to the opposing limb portions 104, 106. With reference to
Alternatively, and with reference to
In one embodiment, and with reference to
In another embodiment of the alignment device 400, and with reference to
In some versions, the pedometer 1701 can include the ability to attach to the magnets of the goniometer 110 to ensure accurate tracking of all steps of the user. The pedometer 1701 can include metallic elements that are magnetically attracted to the magnets of the goniometer 110. Alternatively, additional magnets 1703 mounted to the pedometer 1701. Embodiments of the pedometer 1701 can further include a body 1705, a removable cap 1707, a circuit board 1709 including one or more sensors (e.g., a motion sensor such as an accelerometer, mechanical sensor or other electromechanical sensor), a battery 1711 and fasteners 1713.
Before either pod 176 is removed (
Starting at the edge of one of the pods 176 (
In
In
The fingertips can be used to flatten the edges of the adhesive fully against the skin (
A pair of truncated pull tab pod assemblies, one adhered to the upper leg, and one to the lower leg, act as anchors to the ends of the goniometer, which measures the angle of the knee over the course of the patient’s sessions. Although the goniometer is removed between sessions, the pair of pods are to be left in place for about a week. Once a week, the patient or caregiver replaces the first set of pod assemblies with new pod assemblies. Repeat weekly. Location targets marked on the legs can be “refreshed” by the patient to provide for repeatable placement locations for each new pair of pod assemblies. The “semi-continuous” measurement anchor points provided by the pods allow for a reliable assessment of range of motion over the duration of the therapy.
The pod assembly can include three basic layers. The bottom layer can be highly compliant, hypoallergenic, breathable, and adheres to the skin. The middle layer can be a thin foam that is moderately compliant. The top layer can be a rigid plastic molded part that has locating features and a pair of magnets and is adhered to the middle layer with an adhesive.
Four location notches in the bottom layer can provide for reliable marking of initial pod locations such that subsequent pods can be placed accurately in the same location and orientation. The middle layer can act as a transitional material between the larger, compliant layer and the smaller pod with snaps. Features in the rigid pod can include the top layer as location features to assemble to the goniometer and to the pod template. The magnets, mating with similar magnets in the goniometer, provide the retention force to allow use of the goniometer during a session. Before assembly to the body, the pod comes from the package with two release papers with large pull tabs that cover the adhesive of the bottom layer.
The pods can be consistent anchor points for the goniometer. When the goniometer is not in place during a session, either the pods can act as attachment points for the goniometer or a pedometer. For the goniometer to provide relevant and reliable range of motion information for clinical use, the pods can be initially located accurately with respect to physiological landmarks and reliably replaced. The pod assembly allows for accurate initial placement and reliable replacement. A combination of novel features and functions in the pod assembly and the alignment assembly allow for these features. Within the pod assembly, the V-notches in allow for accurate replacement of subsequent pods. The asymmetric release paper adhesive backing and large numbered pull tabs allow for the easy location and highly reliable placement and adhesion to the skin. Once the skin is marked with the four targets triangles, the patient can easily locate and orient a new pod by aligning the V-notches to the marked triangles. This “peel-in-place” feature allows for targeting and adhering to be decoupled. Once the first section of the adhesive is revealed and adhered to the skin it acts as an anchor for the following steps. The patient or caregiver can pull the second pull tab and reveal the rest of the adhesive, and can simply smooth the rest of the pod onto the skin with little concern it will be out of place.
The alignment assembly allows physiological landmarks of the patient to be used for accurate pods placements for use with the goniometer. The skin over the lateral epicondyle is located and a circular sticker is placed on the patient’s skin or clothing over both the greater trochanter and lateral malleolus. A knee pivot anchor of the alignment assembly can be accurately placed over the lateral epicondyle. The pod is placed with the alignment assembly such that it “points” to either the greater trochanter or lateral malleolus target sticker. Once aligned, the assembly is stabilized and affixed. The process is repeated for other pods as described herein.
The alignment arm can be a long chipboard part that has a hole to accept the knee pivot anchor, “pointing” features at the far end to help align with the physiological landmarks, and a hole in the mid-section that aligns to and snaps to features on pods. The distance between these two holes in the template assists in final placement of the pods, and corresponds to hard dimensions in the goniometer. The knee pivot anchor can be a plastic part with a pad of adhesive that snaps into a hole in the end of the template and allows for rotation such that it can be used for both segments of the leg. The center of the anchor can be hollow so that a mark can be placed over the lateral epicondyle. The “skin-side” of the anchor is designed to be flexible, such that the adhesive pad assembled to it can conform to the side of the knee and provide a good adhesion point for use. This part can be removed.
These designs provide accuracy, repeatability, and ease of use for both the patient and the caregiver. The “peel-in-place” release paper design can be superior to the conventional “peel then place” method for the pods. The “mark after placement” method for initial alignment rather than conventional “mark (with a template) then place” method also is an advantage. The release paper can be asymmetric to allow for holding during the first release paper pull. The release paper can use pull tabs to number the release paper in the order of release. In addition to being an ergonomic aid (a “third hand”) for stabilizing the assembly to the leg, the locked pivot point, used for both pod placements insures that the pod-to-pod distance will be well controlled, and within the tolerances of use with the corresponding and highly repeatable goniometer geometry.
Other embodiments can include one or more of the following items or components.
900
A system for measuring an angle of a joint of a user, comprising:
The system further comprising a printed circuit board (PCB) removably disposed in the center hub, the PCB having an inward notch; and an outward notch coupled to the first hub, wherein the outward notch is configured to couple with the inward notch to align the sensor and the magnet.
The system further comprising a cover detachably coupled to the first hub, wherein the cover is configured to inhibit movement of the PCB within the center hub.
The system wherein the sensor is a Hall Effect sensor coupled to the PCB.
The system wherein the sensor is configured to measure the rotation of the magnet up to a precision of about +/- 0.01 degree.
The system further comprising a retaining ring configured to couple the magnet to the second hub.
The system wherein the magnet is configured with north and south polarity within the center hub.
The system further comprising a circuit configured to generate an electrical signal based on the rotation of the magnet and to transmit the electrical signal in real time.
The system further comprising a user interface configured to receive the electrical signal and display data obtained from the electrical signal.
The system wherein the data includes the angle of the joint of the user.
The system wherein the first hub and the second hub are configured to rotate 360 degrees about an axis.
A system for measuring an angle of a joint of a user, comprising:
The system further comprising a battery housing coupled to the PCB; and a battery detachably coupled to the battery housing.
The system further comprising a transmitter coupled to the PCB and configured to transmit an electrical signal based on the rotation of the magnet.
The system further comprising a user interface configured to receive the electrical signal and display data obtained from the electrical signal, wherein the data has the angle of the joint of the user.
The system wherein the first and second arms are adhesively attached to respective ones of the first and second limb portions of the user.
A system for measuring an angle of a joint of a user, comprising:
The system further comprising a cover coupled to the center hub, wherein the cover has a snap mechanism configured to attach and detach the cover.
The system wherein the first and second arms have sections configured to rotate the first and second arms about +/- ten degrees.
The system wherein the first and second arms have sections configured to twist the first and second arms about +/- eighteen degrees.
1000
An apparatus for coupling a device to a user, the apparatus comprising:
The apparatus wherein, to prevent the apparatus from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between the device and the apparatus and caused by relative movement between the device and the apparatus.
The apparatus wherein the adhesive material is a medical grade adhesive.
The apparatus wherein the upper surface area comprises one of hooks and loops, wherein the pod has an underside comprised of one of hooks and loops, and wherein the upper surface and the underside are detachably coupled by the hooks and loops.
The apparatus wherein the first layer defines a notch for assisting in aligning the apparatus relative to a predetermined location on the user.
The apparatus wherein the notch is V-shaped.
The apparatus wherein the first layer defines a pair of alignment holes.
The apparatus wherein, to facilitate alignment of the apparatus relative to a predetermined location on the user, the upper surface of the second layer comprises an adhesive material to enable detachable coupling between the upper surface and the pod.
The apparatus wherein, when the device couples to the apparatus, the pod defines a recess for positioning and aligning the device relative to the apparatus.
The apparatus wherein the pod comprises a magnet positioned adjacent to the recess to detachably couple the pod to the apparatus.
An apparatus for coupling a device to a user, the apparatus comprising:
The apparatus wherein, to prevent the apparatus from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between and caused by relative movement between the device and the apparatus.
An apparatus for measuring flexion and extension of a joint of a user, said apparatus comprising:
The apparatus wherein, to prevent the attachments from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between the goniometer and the attachments and caused by relative movement between the goniometer and the attachments.
The apparatus wherein the goniometer has a pair of arms rotatably coupled to and about a center hub, and each arm has a boss for aligning and coupling each arm to a respective pod.
The apparatus wherein each pod defines a recess for receiving and detachably coupling to one of the bosses of the goniometer, and for positioning the goniometer relative to each attachment.
The apparatus wherein, to prevent the goniometer from uncoupling from the attachments, the bosses are sized to be movable within the recesses to allow movement of the bosses in the recesses.
The apparatus wherein, to detachably couple the goniometer to the attachments, magnets are disposed adjacent to each boss and each recess.
The apparatus wherein wings extend outwardly from the sides of each arm of the goniometer configured to enable a user to move the arms of the goniometer perpendicularly relative to the attachments, and to uncouple the goniometer from the attachments.
The apparatus wherein the edges of the pod are tapered, such configuration enabling a user to further move the arms of the goniometer perpendicularly relative to the attachments, and to uncouple the goniometer from the attachments.
1010
An apparatus for coupling a device to a user, the apparatus comprising:
The apparatus wherein, to prevent the apparatus from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between the device and the apparatus and caused by relative movement between the device and the apparatus.
The apparatus wherein the adhesive material is a medical grade adhesive.
The apparatus wherein the upper surface area comprises one of hooks and loops, wherein the pod has an underside comprised of one of hooks and loops, and wherein the upper surface and the underside are detachably coupled by the hooks and loops.
The apparatus wherein the first layer defines a notch for assisting in aligning the apparatus relative to a predetermined location on the user.
The apparatus wherein the notch is V-shaped.
The apparatus wherein the first layer defines a pair of alignment holes.
The apparatus wherein, to facilitate alignment of the apparatus relative to a predetermined location on the user, the upper surface of the second layer comprises an adhesive material to enable detachable coupling between the upper surface and the pod.
The apparatus wherein, when the device couples to the apparatus, the pod defines a recess for positioning and aligning the device relative to the apparatus.
The apparatus wherein the pod comprises a magnet positioned adjacent to the recess to detachably couple the pod to the apparatus.
An apparatus for coupling a device to a user, the apparatus comprising:
The apparatus wherein, to prevent the apparatus from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between and caused by relative movement between the device and the apparatus.
An apparatus for measuring flexion and extension of a joint of a user, said apparatus comprising:
The apparatus wherein, to prevent the attachments from uncoupling from the user, the second layer comprises a material configured to dampen forces acting between the goniometer and the attachments and caused by relative movement between the goniometer and the attachments.
The apparatus wherein the goniometer has a pair of arms rotatably coupled to and about a center hub, and each arm has a boss for aligning and coupling each arm to a respective pod.
The apparatus wherein each pod defines a recess for receiving and detachably coupling to one of the bosses of the goniometer, and for positioning the goniometer relative to each attachment.
The apparatus wherein, to prevent the goniometer from uncoupling from the attachments, the bosses are sized to be movable within the recesses to allow movement of the bosses in the recesses.
The apparatus wherein, to detachably couple the goniometer to the attachments, magnets are disposed adjacent to each boss and each recess.
The apparatus wherein wings extend outwardly from the sides of each arm of the goniometer configured to enable a user to move the arms of the goniometer perpendicularly relative to the attachments, and to uncouple the goniometer from the attachments.
The apparatus wherein the edges of the pod are tapered, such configuration enabling a user to further move the arms of the goniometer perpendicularly relative to the attachments, and to uncouple the goniometer from the attachments.
1500
An apparatus for measuring flexion and extension at a joint of a user, the apparatus comprising:
The apparatus of claim 1, wherein each of the first and second arms comprise an inner link for pivotably coupling the first and second arms to the first and second hubs, and the inner links are configured to allow the first and second arms to flex and extend relative to the center hub.
The apparatus wherein each of the first and second arms comprise an outer link coupled to the inner link, and the outer links are configured to rotate the first and second arms relative to the center hub.
The apparatus further comprising a screw configured to couple one of the inner and one of the outer links, wherein the screw is aligned parallel to a length of a respective one of the first and second arms, and wherein, to allow the rotation of the first and second arms relative to the center hub, the screw provides for rotation of the inner and outer links.
The apparatus wherein each of the first and second arms comprises an outer end coupled to the outer link, and the outer end is configured to flex and extend relative to the center hub such that further flexion and extension of the first and second arms relative to the center hub are enabled.
The apparatus further comprising link arms extending outwardly from each of the first and second hubs, wherein the link arms couple to respective ones of the first and second arms.
The apparatus further comprising pins configured to couple between a respective outer link and a respective outer end, and between a respective inner link and a respective link arm, and wherein the pins are aligned perpendicular to a length of a respective arm, and wherein the pins provide for the flexion and extension of the first and second arms relative to the center hub.
The apparatus wherein the arms include a magnet and a boss.
An apparatus for measuring flexion and extension at a joint of a user, the apparatus comprising:
The apparatus further comprising link arms that extend outwardly from each of the upper and lower hubs, and the arms couple to a respective hub at a respective link arm.
The apparatus wherein pins couple each of the link arms and each of the arms, and the pins are aligned perpendicular to the length of a respective arm and configured to allow flexion and extension of the arms, and a screw couples between each of the link arms and each of the arms, and each screw is aligned parallel with the length of a respective arm configured to allow rotation of each arm about each screw.
The apparatus wherein the arms include a magnet and a boss for aligning and coupling the arms to attachments.
An apparatus for measuring flexion and extension at a joint of a user, the apparatus comprising:
The apparatus wherein the link arms are integrally formed with the hubs.
The apparatus wherein the link arms are coupled to the respective hubs, and the link arms are configured to allow flexion and extension of the arms relative to the center hub.
The apparatus wherein the link arms couple to the respective hubs and are configured to allow rotation of the arms relative to the center hub.
The apparatus wherein a pin couples the inner link and the link arm, and the pin is aligned perpendicular to the length of the arm, and the pin provides for the pivotable coupling between the inner links and link arm.
The apparatus wherein a pin couples the outer link and the outer end, and the pin is aligned perpendicular to the length of the arm, and the pin provides for the pivotable coupling between the outer link and the outer end.
The apparatus wherein a screw couples the inner and outer link, and the screw is aligned parallel with the length of the arm, and the screw provides for the rotatable coupling between the inner link and outer link.
The apparatus wherein the arms include a magnet and a boss.
1700
An apparatus for assisting a person in aligning, relative to a center of a joint of a user, a wearable device on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and the alignment holes have a size, the apparatus comprising:
The apparatus wherein the first and second segments each have center axes, the center axes intersect at the pivot point, and prior to marking locations on the respective opposing limb portions, the person pivots each segment to centrally align the center axes with the respective centers of the opposing limb portions.
The apparatus wherein the second segment pivotably couples to the first segment at the pivot point.
The apparatus wherein the second segment couples to the first coupling end at a pivot point by overlaying with the first segment.
The apparatus wherein the pivot point is spaced adjacent to and equidistant from first and second coupling ends of the respective first and second segments.
The apparatus wherein the alignment holes of the attachments are aligned coaxially with respective marks to align the attachments, and enable the wearable device to be mounted on the user.
A method for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and each alignment hole has a size, the method comprising:
The method further comprising:
The method further comprising:
The method wherein the step of locating the center of the joint is further defined as locating the lateral epicondyle of a knee joint.
An apparatus for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and the alignment holes have a size, the apparatus comprising:
A method for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and each alignment hole has a size, the method comprising:
The method further comprising the step of marking on the opposing limb portions the location of the laser beam, and aligning the alignment holes of the attachments coaxial with respective marks to align the attachments and to couple the wearable device to the user.
An apparatus for assisting a person in aligning a wearable device relative to a center of a joint of a user and on opposing limb portions of the joint of the user, the apparatus comprising:
The apparatus wherein the personal communication device is a display.
The apparatus wherein the personal communication device is a speaker.
A method for assisting a person in aligning a wearable device on opposing limb portions of a joint of a user relative to a center of the joint of the user, the method comprising:
The method wherein the step of communicating to the person with the personal communication device further comprises providing audio instruction through a speaker to the personal communication device.
The method wherein the step of communication to the person with the communication device further comprises providing visual instruction through a display to the personal communication device.
An apparatus for assisting a person in aligning, relative to a center of a joint of a user, a wearable device on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and the alignment holes have a size, the apparatus comprising:
The apparatus wherein the first and second segments each have center axes, the center axes intersect at the pivot point, and prior to marking locations on the respective opposing limb portions, the person pivots each segment to centrally align the center axes with the respective centers of the opposing limb portions.
The apparatus wherein the second segment pivotably couples to the first segment at the pivot point.
The apparatus wherein the second segment couples to the first coupling end at a pivot point by overlaying with the first segment.
The apparatus wherein the pivot point is spaced adjacent to and equidistant from first and second coupling ends of the respective first and second segments.
The apparatus wherein the alignment holes of the attachments are aligned coaxially with respective marks to align the attachments, and enable the wearable device to be mounted on the user.
A method for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and each alignment hole has a size, the method comprising:
The method further comprising:
The method further comprising:
The method wherein the step of locating the center of the joint is further defined as locating the lateral epicondyle of a knee joint.
An apparatus for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and the alignment holes have a size, the apparatus comprising:
A method for assisting a person in aligning a wearable device relative to a center of a joint of a user, on opposing limb portions of the joint of the user, the wearable device has attachments, each attachment defines alignment holes spaced from each other, and each alignment hole has a size, the method comprising:
The method further comprising the step of marking on the opposing limb portions the location of the laser beam, and aligning the alignment holes of the attachments coaxial with respective marks to align the attachments and to couple the wearable device to the user.
An apparatus for assisting a person in aligning a wearable device relative to a center of a joint of a user and on opposing limb portions of the joint of the user, the apparatus comprising:
The apparatus wherein the personal communication device is a display.
The apparatus wherein the personal communication device is a speaker.
A method for assisting a person in aligning a wearable device on opposing limb portions of a joint of a user relative to a center of the joint of the user, the method comprising:
The method wherein the step of communicating to the person with the personal communication device further comprises providing audio instruction through a speaker to the personal communication device.
The method wherein the step of communication to the person with the communication device further comprises providing visual instruction through a display to the personal communication device.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
The various aspects, embodiments, implementations or features of the described embodiments may be used separately or in any combination. The embodiments disclosed herein are modular in nature and may be used in conjunction with or coupled to other embodiments.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that can cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, sacrosanct or an essential feature of any or all of the claims.
Consistent with the above disclosure, the examples of assemblies enumerated in the following clauses are specifically contemplated and are intended as a non-limiting set of examples.
This application claims priority to and the benefit of: U.S. Prov. Pat. App. No. 62/991,295 (Atty. Dkt. 91346-1010), filed Mar. 18, 2020, U.S. Prov. Pat. App. No. 62/911,515 (Atty. Dkt. 91346-1700), filed Oct. 7, 2019, U.S. Prov. Pat. App. No. 62/904,013 (Atty. Dkt. 91346-1500), filed Sep. 23, 2019, U.S. Prov. Pat. App. No. 62/901,464 (Atty. Dkt. 91346-900), filed Sep. 17, 2019, and U.S. Prov. Pat. App. No. 62/901,411 (Atty. Dkt. 91346-1000), filed Sep. 17, 2019, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62991295 | Mar 2020 | US | |
62911515 | Oct 2019 | US | |
62904013 | Sep 2019 | US | |
62901464 | Sep 2019 | US | |
62901411 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17017062 | Sep 2020 | US |
Child | 17973858 | US |