Wearable device for noninvasive body temperature measurement

Information

  • Patent Grant
  • 11974833
  • Patent Number
    11,974,833
  • Date Filed
    Friday, March 19, 2021
    3 years ago
  • Date Issued
    Tuesday, May 7, 2024
    21 days ago
Abstract
A wearable device for a noninvasive measurement of a user's body temperature can include a housing, a first substrate coupled to the housing and having an opening, a second substrate coupled to the first substrate and configured to secure to skin of a user, a mounting frame enclosed by the housing and the first substrate, a circuit board secured by the mounting frame, a temperature sensor coupled to the circuit board and configured to determine a body temperature of the user, and a thermally conductive probe. The thermally conductive probe is secured by the mounting frame and positioned proximate to the first temperature sensor. The thermally conductive probe extends at least partially through the opening in the first substrate and transmits a thermal energy from a portion of the user's skin to the first temperature sensor.
Description
TECHNICAL FIELD

The present disclosure relates to devices, methods, and/or systems for monitoring a subject's physiological information. More specifically, the present disclosure describes, among other things, a wearable device that measures a subject's body temperature.


BACKGROUND

Core body temperature is an important vital sign used by clinicians to monitor and/or manage the condition of a subject (for example, a patient). Core body temperature is the internal temperature of a subject. Internal body temperatures are typically maintained within a specific range in order for the body to carry out essential functions. Variations in core body temperature can be indicative of a deteriorating condition of a subject and can negatively impact the body's ability to maintain critical life-sustaining functions. Despite the importance of core body temperature as a vital sign, some commonly employed devices, methods, and/or systems for estimating core body temperature based on skin surface or peripheral measurements are lacking. Skin surface temperature, typically measured using single point measurement devices or heat flux measurement devices, can vary dramatically from core body temperature in some cases, depending on, for example, physiology of the subject (for example, skin thickness), environment of the user, perfusion, and/or other conditions. “Clinical temperature” measurements—temperature measurements typically obtained with a thermometer at a subject's periphery (such as at the subject's armpit, rectum, or under a subject's tongue)—do not represent a true measurement of internal body temperature, but rather, simply an approximation. There is a great need for improved devices, methods, and systems for non-invasively measuring (continuously or periodically) and/or transmitting (for example, wirelessly) a subject's core body temperature.


SUMMARY

Various implementations of the wearable devices disclosed herein provide improved devices, methods, and systems for non-invasively measuring (continuously or periodically) and/or transmitting (for example, wirelessly) a subject's core body temperature. Various embodiments of the disclosed wearable devices can be comfortably worn by a user over a long period of time (for example, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, or 10 days), can monitor (continuously or periodically) the user's core body temperature alone or in combination with other physiological parameters, and can transmit (for example, wirelessly) such physiological information to separate devices (for example, a mobile device). Some embodiments of the disclosed wearable devices can be configured to be removed and reapplied/re-secured in order to position the devices in various locations on the user's body. Some embodiments of the disclosed wearable devices (or portions of such devices) can be disposable, which can reduce the risk of cross-contamination between multiple users. Some embodiments of the disclosed wearable devices (or portions of such devices) can be waterproof, thereby providing minimal disruption to ordinary activities of the user (for example, showering).


A wearable device configured for noninvasive measurement of a user's body temperature can comprise: a housing; a first substrate coupled to the housing and comprising an opening; a second substrate coupled to the first substrate and configured to secure to skin of a user when the wearable device is in use; a mounting frame enclosed by the housing and the first substrate; a circuit board secured by the mounting frame; a first temperature sensor coupled to the circuit board and configured to determine a body temperature of the user; and a thermally conductive probe secured by the mounting frame and positioned proximate to the first temperature sensor, the thermally conductive probe configured to extend at least partially through the opening in the first substrate and further configured to transmit a thermal energy from a portion of the user's skin to the first temperature sensor when the wearable device is in use. The wearable device can be configured to secure to skin of the user and/or can be configured for continuous noninvasive measurement of the user's body temperature. In some variants, the only type of physiological parameter measured and/or monitored by the wearable device is body temperature. In some variants, the only type of physiological parameter measured and/or monitored by the wearable device is body temperature. In some variants, the wearable device does not include an accelerometer, a gyroscope, a magnetometer, an oximetry sensor, a moisture sensor, an impedance sensor, an acoustic/respiration sensor, and/or an ECG sensor. In some variants, the first and second substrates are integrally formed with one another.


The circuit board can comprise a first surface, a second surface opposite the first surface, and one or more openings extending through the circuit board from the first surface to the second surface, the second surface positioned closer to the second substrate than the first surface. The thermally conductive probe can be positioned adjacent the one or more openings and the second surface of the circuit board. The first temperature sensor can be mounted to the first surface of the circuit board adjacent the one or more openings in the circuit board. The one or more openings of the circuit board can be configured to allow said thermal energy to pass through the circuit board to the first temperature sensor. The one or more openings of the circuit board can be filled with a thermally conductive material. The one or more openings of the circuit board can be not filled with a material. The one or more openings of the circuit board can comprise a plurality of openings. Each of the one or more openings of the circuit board can be circular. The first temperature sensor can be configured to determine the body temperature of the user in one minute intervals.


The wearable device can further comprise at least one thermally conductive material positioned between the one or more openings of the circuit board and the thermally conductive probe. The at least one thermally conductive material can comprise a first thermally conductive material and a second thermally conductive material, the first thermally conductive material comprising a thermal paste and the second thermally conductive material comprising a metallic material. The thermal paste can comprise zinc oxide. The metallic material can comprise at least one of gold and copper.


When the wearable device is secured to the user's skin via the second substrate, the second substrate can be positioned between the user's skin and the thermally conductive probe. In some variants, the thermally conductive probe does not contact the portion of the skin of the user when the wearable device is secured to the user's skin during use. An axis extending through a center of a cross-section of the thermally conductive probe and along a height of the thermally conductive probe can be oriented perpendicular with respect to a plane of the circuit board. The thermally conductive probe can comprise a width that is smaller than the height. The thermally conductive probe can comprise a first end, a second end opposite the first end, and a height extending between the first and second ends, and wherein the second end is configured to apply pressure to the portion of the skin of the user when the wearable device is secured to the user. When the wearable device is secured to the user's skin via the second substrate, the second substrate can be positioned between the user's skin and the second end of the thermally conductive probe.


The mounting frame can comprise one or more posts and the housing can comprise one or more cavities. Each of the one or more posts can be configured to secure within one of the one or more cavities. The one or more posts can comprise two posts positioned on opposite sides of the mounting frame and the one or more cavities can comprise two cavities. The circuit board can comprise one or more notches along one or more sides of the circuit board, the one or more notches sized and shaped to receive a portion of the one or more posts. The mounting frame can comprise a slot configured to receive and secure the thermally conductive probe. The slot can be configured to surround a portion of a perimeter of a cross-section of the thermally conductive probe. The slot can be configured to surround less than an entire perimeter of a cross-section of the thermally conductive probe. The thermally conductive probe can comprises a metallic material. The thermally conductive probe can comprise aluminum. The thermally conductive probe can be rigid.


The first substrate can comprise foam. The second substrate can comprise a fabric material and an adhesive material. The housing can comprise a main body and a rim extending around a perimeter of the main body, and the wearable device can further comprises a third substrate including an opening configured to receive the main body of the housing, wherein the third substrate is coupled to the first substrate, and wherein the rim of the housing is secured between the first and third substrates. The wearable device can further comprise a release liner configured to removably secure to the second substrate.


The opening in the first substrate can be sized and shaped to correspond to a size and shape of a perimeter of a cross-section of the thermally conductive probe. The opening in the first substrate and the cross-section of the thermally conductive probe can be circular.


The wearable device can further comprise a second temperature sensor coupled to the circuit board and spaced away from the first temperature sensor by a first distance, the second temperature sensor configured to measure an ambient temperature outside an interior of the housing. The wearable device can further comprise a thermally conductive material extending between the second temperature sensor and an interior surface of the housing, wherein the thermally conductive material is configured to transfer ambient thermal energy from the interior surface of the housing to the second temperature sensor. The second thermally conductive material can comprise a thermal putty configured to at least partially conform to a shape of a portion of the interior surface of the housing. The thermal putty can comprise a ceramic filled silicone sheet.


The wearable device can further comprise a wireless transceiver coupled to the circuit board and configured to wirelessly transmit one or more signals responsive to the determined body temperature over a wireless communication protocol. The wearable device can further comprise a third substrate positioned between the circuit board and the second substrate, wherein the third substrate is configured to reflect at least a portion of the one or more signals wirelessly transmitted from the wireless transceiver away from the user's skin when the wearable device is in use. The third substrate can comprise metallized polypropylene.


The wearable device can further comprise a near field communication (NFC) tag configured to communicate with an NFC reader of a separate computing device. The NFC tag can be secured to an interior surface of the housing. The wearable device can further comprise a battery configured to provide power to the circuit board. The wearable device can further comprise a battery holder configured to couple the battery to the circuit board.


A wearable device configured for noninvasive measurement of a user's body temperature can comprise: a housing; a circuit board; a temperature sensor coupled to the circuit board and configured to generate one or more signals responsive to a thermal energy of a user; a battery configured to provide power to the circuit board; and a mounting frame configured to secure the circuit board to the housing, the mounting frame comprising a first end and a second end opposite the first end, the second end positioned adjacent the battery. The mounting frame, the circuit board, the temperature sensor, and the battery can be at least partially enclosed by the housing. The second end of the mounting frame can be sized and shaped to conform to a size and shape of a portion of the battery, thereby maximizing a size of the battery within the housing of the wearable device.


The second end of the mounting frame can be sized and shaped to surround approximately half of a perimeter of the battery. The second end of the mounting frame can be sized and shaped to surround less than half of a perimeter of the battery. The battery can comprise a circular shape and wherein the second end of the mounting frame can at least partially comprise a half-circle shape configured to surround a portion of a perimeter of the battery. The wearable device can further comprise a battery holder configured to couple the battery to the circuit board, the battery holder comprising opposing arms configured to electrically connect to electrical contacts of the circuit board. The mounting frame can comprise notches at corners of the second end, the notches configured to facilitate alignment of the battery holder and the mounting frame.


A wearable device configured for noninvasive measurement of a user's body temperature can comprise: a housing; a circuit board at least partially enclosed by the housing, the circuit board comprising a first surface, a second surface opposite the first surface, and at least one hole extending through the circuit board from the first surface to the second surface; a first temperature sensor electrically coupled with the circuit board and positioned adjacent the first surface and the at least one hole of the circuit board; a thermally conductive probe comprising a first end and a second end opposite the first end, wherein the first end is positioned adjacent the second surface of the circuit board proximate the at least one hole and aligned with the first temperature sensor; a mounting frame configured to secure the thermally conductive probe and the circuit board to the housing; and one or more substrates operatively connected to the housing and configured to be positioned proximate skin of a user when the wearable device is in use, wherein at least one of the one or more substrates comprises an opening configured to allow at least a portion of the thermally conductive probe to pass at least partially therethrough. The second end of the thermally conductive probe can be configured to be positioned proximate to a portion of the skin of the user when the wearable device is secured to the user, the thermally conductive probe configured to transmit a thermal energy of the user to the first temperature sensor via the at least one hole extending through the circuit board, the first temperature sensor configured to determine a body temperature of the user based on said transmitted thermal energy.


The wearable device can further comprise a first thermally conductive material positioned between the first end of the thermally conductive probe and the first temperature sensor. The first thermally conductive material can comprise a thermal paste positioned between the first end of the thermally conductive probe and the second surface of the circuit board. The thermal paste can comprise zinc oxide. The wearable device can further comprise a second thermally conductive material positioned between the first end of the thermally conductive probe and the first temperature sensor. The first thermally conductive material can comprise a thermal paste positioned between the first end of the thermally conductive probe and the second surface of the circuit board. The second thermally conductive material can comprise a metallic material. The thermal paste can comprise zinc oxide. The metallic material can comprise at least one of gold and copper. The at least one hole of the circuit board can be filled with a thermally conductive material. The at least one hole of the circuit board can be not filled with a thermally conductive material. The at least one hole of the circuit board can comprise a plurality of holes. An axis extending through a center of a cross-section of the thermally conductive probe and along a height of the thermally conductive probe can be oriented perpendicular with respect to a plane of the circuit board. The one or more substrates can comprise a first substrate and a second substrate, said first substrate comprising said opening and coupled to the second substrate, said second substrate configured to secure to the skin of the user when the wearable device is in use. When the wearable device is secured to the user's skin via the second substrate, the second substrate can be positioned between the user's skin and the second end of the thermally conductive probe. The second end of the thermally conductive probe can be configured to apply pressure to the portion of the skin of the user when the wearable device is secured to the user. When the wearable device is secured to the user's skin via the second substrate, the second substrate can be positioned between the user's skin and the second end of the thermally conductive probe. The housing can comprise a main body and a rim extending around a perimeter of the main body. The wearable device can further comprise a third substrate including an opening configured to receive the main body of the housing. The third substrate can be coupled to the first substrate and the rim of the housing can be secured between the first and third substrates. The mounting frame can comprise a slot configured to receive and secure the thermally conductive probe. The slot can be configured to surround a portion of a perimeter of a cross-section of the thermally conductive probe. The slot can be configured to surround less than an entire perimeter of a cross-section of the thermally conductive probe. The thermally conductive probe can comprise a metallic material. The thermally conductive probe can comprise aluminum. The thermally conductive probe can rigid.


A wearable device configured for continuous and noninvasive measurement of a user's body temperature can comprise: a housing; a circuit board at least partially enclosed by the housing, the circuit board comprising a first surface, a second surface opposite the first surface, and at least one hole extending through the circuit board from the first surface to the second surface; a first temperature sensor electrically coupled with the circuit board and positioned adjacent the first surface and the at least one hole of the circuit board; a thermally conductive probe comprising a first end and a second end opposite the first end, wherein the first end is positioned adjacent the second surface of the circuit board proximate the at least one hole and aligned with the first temperature sensor; a first thermally conductive material positioned between the first end of the probe and the first temperature sensor; a mounting frame configured to secure the thermally conductive probe and the circuit board to the housing; and one or more substrates operatively connected to the housing and configured to be positioned proximate skin of the user when the wearable physiological sensor is in use, wherein at least one of the one or more substrates comprises an opening configured to allow at least a portion of the probe to pass therethrough. The second end of the thermally conductive probe can be positioned proximate to a portion of the skin of the user when the wearable physiological sensor is secured to the user during use. The thermally conductive probe can be configured to transmit a thermal energy of the user to the first temperature sensor, and the first temperature sensor can be configured to determine a body temperature of the user based on said received thermal energy.


A wearable device configured for continuous and noninvasive measurement of a user's body temperature can comprise: a housing; a circuit board at least partially enclosed by the housing; a first temperature sensor coupled to the circuit board; a thermally conductive probe vertically aligned with the first temperature sensor and comprising a first end and a second end opposite the first end, the first end positioned closer to the circuit board than the second end; a mounting frame configured to at least partially secure the thermally conductive probe and the circuit board to the housing; and one or more substrates coupled to the housing and configured to contact skin of a user when the wearable device is in use, wherein, when the one or more substrates contact the user's skin, the second end of the thermally conductive probe is positioned proximate to a portion of the skin. The thermally conductive probe can be configured to transmit a thermal energy of the user to the first temperature sensor and the first temperature sensor can be configured to determine a body temperature of the user based on said thermal energy.


For purposes of summarizing the disclosure, certain aspects, advantages, and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages, or features will be embodied in any particular embodiment of the disclosure, and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages, or features.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of this disclosure are described below with reference to the drawings. The illustrated embodiments are intended to illustrate, but not to limit, the embodiments. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.



FIG. 1 illustrates a top perspective view of a wearable device in accordance with aspects of this disclosure.



FIGS. 2A and 2B illustrate top perspective views of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2C illustrates a top view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2D illustrates a bottom view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2E illustrates a side view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2F illustrates another side view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2G illustrates a front view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2H illustrates a back view of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIG. 2I illustrates a schematic block diagram of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 3A and 3B illustrate top and bottom exploded perspective views of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 4A and 4B illustrate top and bottom perspective views of a housing of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 5A and 5B illustrate top and bottom perspective views of a portion of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 5C and 5D illustrate top and bottom exploded perspective views of the portion of the wearable device of FIGS. 5A and 5B in accordance with aspects of this disclosure.



FIG. 6A illustrates a top perspective view of a mounting frame of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 6B and 6C illustrate top and bottom views of the mounting frame of FIG. 6A in accordance with aspects of this disclosure.



FIG. 7 illustrates a cross-section taken through a portion of the wearable device as shown in FIG. 2C in accordance with aspects of this disclosure.



FIGS. 8A and 8B illustrate top and bottom perspective views of a portion of the wearable device of FIG. 1 in accordance with aspects of this disclosure.



FIGS. 8C and 8D illustrate top and bottom exploded perspective views of the portion of the wearable device of FIGS. 8A and 8B in accordance with aspects of this disclosure.



FIGS. 9A-10B illustrate various views of portions of a probe of the portion the wearable device illustrated in FIGS. 8C-8D in accordance with aspects of this disclosure.





DETAILED DESCRIPTION

Various features and advantages of this disclosure will now be described with reference to the accompanying figures. The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. This disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of this disclosure should not be limited by any particular embodiments described below. The features of the illustrated embodiments can be modified, combined, removed, and/or substituted as will be apparent to those of ordinary skill in the art upon consideration of the principles disclosed herein.



FIG. 1 illustrates a top perspective view of a wearable device 10 (which may also be referred to herein as “physiological measurement device”, “physiological monitoring device”, “wearable physiological sensor”, “wearable physiological device”) that can measure and/or monitor one or more physiological parameters of a subject, as discussed further below. The wearable device 10 can secure to a portion of a subject's body, such as a torso, chest, back, arm, neck, leg, under the arm (e.g., armpit), among other portions of the subject's body. The wearable device 10 can secure (for example, removably secure) to skin of a subject and continuously and/or noninvasively measure the subject's temperature with one or more temperature sensors. Additionally, as discussed below, the wearable device 10 can continuously or periodically wirelessly transmit temperature data of the subject to a separate device. FIG. 7, which is discussed in more detail below, illustrates a cross-section taken through the wearable device 10 when the wearable device 10 is secured to skin of a subject. As illustrated in FIG. 7 and as discussed further below, the wearable device 10 can include a thermally conductive probe 140 (or 240) that extends toward the subject's skin and transmits thermal energy from the skin in a direction towards a temperature sensor of the wearable device 10 (such as temperature sensor 150a discussed further below). As also discussed below, the thermally conductive probe 140 (or thermally conductive probe 240) can contact (for example, indirectly via substrate 25) and/or apply pressure to the subject's skin, which can facilitate thermal transmissivity. In some variants, the thermally conductive probe 140 does not contact the subject's skin when the wearable device 10 is secured to the subject. For example, the substrate 25 can be positioned between the thermally conductive probe 140 and the subject's skin when the wearable device 10 is secured to the subject.



FIGS. 3A-3B illustrate exploded perspective views of the wearable device 10. FIGS. 2A-2H illustrate various views of the wearable device 10 without a battery isolator 18 (see FIGS. 3A-3B) attached to better illustrate aspects of the wearable device 10.



FIG. 21 illustrates an exemplary schematic block diagram of the wearable device 10. As shown, the wearable device 10 can include a processor 11, a storage device 12, a wireless transceiver 13, a battery 14, an information element 15, and/or one or more temperature sensors 16. The processor 11 can be configured, among other things, to process data, execute instructions to perform one or more functions, and/or control the operation of the wearable device 10. For example, the processor 11 can process physiological data obtained from the wearable device 10 and can execute instructions to perform functions related to storing and/or transmitting such physiological data. For example, the processor 11 can process data received from one or more temperature sensors 16 and/or one or more other physiological parameter sensors 17 and can execute instructions to perform functions related to storing and/or transmitting such received data.


The storage device 12 can include one or more memory devices that store data, including without limitation, dynamic and/or static random access memory (RAM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and the like. Such stored data can be processed and/or unprocessed physiological data obtained from the wearable device 10, for example. The wireless transceiver 13 can be configured to allow the wearable device 10 to wirelessly communicate with other devices, systems, and/or networks over a communication protocol. The wireless transceiver 13 can be configured to use any of a variety of wireless communication protocols, such as Wi-Fi (802.11x), Bluetooth®, ZigBee®, Z-wave®, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.


The wearable device 10 can include a battery 14. The battery 14 can provide power for the hardware components of the wearable device 10 described herein. The battery 14 can be, for example, battery 110, described in more detail below. The battery 14 can be, for example, a lithium battery. Additionally or alternatively, the wearable device 10 can be configured to obtain power from a power source that is external to the wearable device 10. For example, the wearable device 10 can include or can be configured to connect to a cable which can itself connect to an external power source to provide power to the wearable device 10.


The wearable device 10 can include an information element 15. The information element 15 can be a memory storage element that stores, in non-volatile memory, information used to help maintain a standard of quality associated with the wearable device 10. Illustratively, the information element 15 can store information regarding whether the wearable device 10 has been previously activated and whether the wearable device 10 has been previously operational for a prolonged period of time, such as, for example, four hours. The information stored in the information element 15 can be used to help detect improper re-use of the wearable device 10, for example.


As shown in FIG. 21, the wearable device 10 can include one or more temperature sensors 16 that can continuously or periodically obtain temperature data of the subject. Advantageously, in some implementations, the processor 11 can compare temperature data from more than one temperature sensor 16 to more accurately determine core body temperature of the subject. In some variants, the wearable device 10 includes one or more temperature sensors 16 and also includes one or more other sensors 17, such as one or more of an accelerometer, a gyroscope, a magnetometer, an oximetry sensor, a moisture sensor, an impedance sensor, an acoustic/respiration sensor, and/or an ECG sensor. In some variants, the wearable device 10 includes one or more temperature sensors 16 and does not include an accelerometer, a gyroscope, a magnetometer, an oximetry sensor, a moisture sensor, an impedance sensor, an acoustic/respiration sensor, or an ECG sensor, which can advantageously help conserve battery and processing power and preserve processing capabilities of the wearable device 10 where continuous or periodic core body temperature values are being determined and/or transmitted. In some variants, the only type of physiological parameter measured and/or monitored by the wearable device 10 is body temperature. The one or more temperature sensors 16 can be, for example, any of temperature sensors 150a, 150b, 150c, each of which are discussed in more detail below.


The processor 11 of the wearable device 10 can be configured to process obtained physiological information. For example, the processor 11 can be configured to determine a core body temperature of a user based on thermal energy obtained by one or more temperature sensors 16 of the wearable device 10. The wireless transceiver 13 can be configured to wirelessly transmit the processed physiological information (and/or unprocessed physiological information) to a separate computing device, such as a patient monitor, a mobile device (for example, an iOS or Android enabled smartphone, tablet, laptop), a server or other computing or processing device for display and/or further processing, among other things. The computing device can be configured to store and/or further process the received physiological information, to display information indicative of or derived from the received physiological information, and/or to transmit information—including displays, alarms, alerts, and notifications—to computing devices or systems including a patient monitoring system associated with a hospital, a caregiver (for example, a primary provider), or a user (for example, an employer, a school, friends, family) that have permission to access the subject's (for example, patient's) data. As another example, the wireless transceiver 13 of the wearable device 10 can be configured to wirelessly transmit processed or unprocessed obtained physiological information to a mobile phone which can include one or more hardware processors configured to execute an application that generates a graphical user interface displaying information representative of the processed or unprocessed physiological information obtained from the wearable device 10. In some variants, the wearable device 10 is configured to measure and/or monitor only one type of physiological parameter, that being body temperature.



FIGS. 3A and 3B illustrate exploded views of the wearable device 10. The wearable device 10 can include a housing 40 and one or more substrates, such as one or more of substrates 20, 25, 50, 60, 65, 70, which are described in more detail below. As discussed above, the wearable device 10 can include a processor 11, storage device 12, wireless transceiver 13, battery 14, information element 15, and/or one or more temperature sensors 16. The processor 11, storage device 12, wireless transceiver 13, battery 14, information element 15, and/or one or more temperature sensors 16 can be mounted and/or coupled with a circuit layer of the wearable device 10. The circuit layer can be enclosed or at least partially enclosed by the housing 40 (and/or a portion of the housing 40) and/or one or more of substrates 20, 25, 50, 60, 65, 70. The circuit layer can be positioned between or at least partially between the housing 40 (or a portion of the housing 40) and one or more of the substrates of the wearable device 10, such as any of substrates 20, 25, 50, 60, 65, 70. The circuit layer can be, for example, a circuit board, such as circuit board 105 which is illustrated in at least FIGS. 3A-3B, 5A-5D, 7, and 8A-8D. The circuit board 105 can be a printed circuit board, for example. The battery 14 can be, for example, the battery 110 shown in at least FIGS. 5A-5D and 8A-8D and described elsewhere herein. As shown and as discussed further below, the battery 110 can be mechanically and/or electronically coupled with the circuit board 105, for example, via the battery holder 115.


The wearable device 10 can include a probe that acts as a conduit to transmit thermal energy from the subject to and/or toward one or more temperature sensors 16 of the wearable device 10. The probe can be rigid or flexible. The probe can comprise thermally conductive material. For example, the probe can comprise a metallic material, such as aluminum. The probe can be the probe 140 or the probe 240 which are discussed in more detail below.


The wearable device 10 can include a mounting frame that secures one or more components of the wearable device 10 to the housing 40. The mounting frame can be, for example, mounting frame 130 shown in at least FIGS. 5A-5D and 8A-8D and further discussed below. The mounting frame 130 can secure the circuit board 105 and/or the probe 140 (or probe 240) to the housing 40 and/or to one or more of substrates 20, 25, 50, 60, 65, 70. Where the battery 110 is coupled with the circuit board 105 via the battery holder 115 as described below, the mounting frame 130 can secure the circuit board 105, battery holder 115, and the battery 110 to the housing 40 and/or to one or more of substrates 20, 25, 50, 60, 65, 70.


With reference to FIGS. 3A-3B and 5A-5D, the circuit board 105, the probe 140, the mounting frame 130, the battery 110, the battery holder 115, and/or one or more temperature sensors coupled to the circuit board 105 (such as temperature sensors 150a, 150b) can form an electronics assembly of the wearable device 10, which is generally represented by the numeral “100” in FIGS. 3A-3B. The electronics assembly 100, and any or all of the above-listed components that can form the electronics assembly 100, can be enclosed (or partially enclosed) by the housing 40 (or a portion thereof) and one or more of substrates 20, 25, 50, 60, 65, 70. The electronics assembly 100, and any or all of the above-listed components that can form the electronics assembly 100, can be positioned between or at least partially between the housing 40 (or a portion of the housing 40) and one or more of substrates 20, 25, 50, 60, 65, 70. The use of the phrase “electronics assembly” or the reference numeral “100” in the present disclosure is not intended to be limiting, but rather, is merely intended as a convenient method to refer to one or more components of the wearable device 10 which can be enclosed by the housing 40 and/or one or more of substrates 70, 25, 65, 50, 65, and/or 20.


As discussed above, the wearable device 10 can be configured to wirelessly communicate with a separate computing device. For example, the wearable device 10 can be configured to wirelessly transmit and/or receive information from a separate computing device. As another example, the wearable device 10 can be configured to wirelessly transmit processed and/or unprocessed physiological information obtained by the wearable device 10. As discussed above, the wearable device 10 can include a wireless transceiver 13. The wireless transceiver 13 can be coupled with (for example, mounted on a surface of) the circuit board 105. As discussed above, the wireless transceiver 13 can be configured to use any of a variety of wireless protocols, such as Wi-Fi (802.11x), Bluetooth®, ZigBee®, Z-wave®, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.


The wearable device 10 can include near field communication (NFC) functional capabilities (for example, RFID) that can enable the wearable device 10 to interact and/or communicate with separate computing devices. Such NFC functional capabilities can enable the wearable device 10 to, among other things: confirm or verify that it is and/or is made up of authentic components; transfer data (for example, physiological data obtained by wearable device 10; and determine a lifespan of the wearable device 10. The wearable device 10 can include an RFID tag (for example, in the form of a sticker, label, layer, and/or inlay) that can interact with an RFID reader of a separate computing device that emits a radio frequency. For example, with reference to FIGS. 3A-3B, the wearable device 10 can include a NFC tag 30 that can communicate and/or interact with an NFC reader of a separate computing device. The NFC tag 30 can comprise a layer or inlay that can be secured to a portion of the wearable device 10. For example, as discussed in more detail below, the NFC tag 30 can be secured to a portion of the housing 40, such as to an interior surface of the housing 40. The NFC tag 30 can be secured to a portion of the housing 40 such that, when the wearable device 10 is assembled (as shown in FIGS. 1-2H), the NFC tag 30 is positioned at or near a top portion of the wearable device 10, such as a top portion 41a of the housing 40 which is discussed below. Such positioning can advantageously facilitate communication between the NFC tag 30 and an NFC reader of a separate computing device when brought in proximity to each other. The NFC tag 30 can be an active or passive RFID tag, for example. The NFC tag 30 can allow an NFC reader of a separate device to register, track, and/or determine information about the wearable device 10 such as date and/or location of manufacture, among other things.


The wearable device 10 can include a battery isolator that can block electrical communication between the battery 110 and one or more electrical contacts on the circuit board 105. For example, as shown in FIGS. 3A-3B, the wearable device 10 can include battery isolator 18 (which can also be referred to as a “battery isolator tab”). The battery isolator 18 can be used to preserve battery power until the wearable device 10 is ready for use. The battery isolator 18 can be configured to block electrical connection between the battery 110 and the circuit board 105 until the battery isolator 18 is removed from the wearable device 10. The battery isolator 18 can be made of any material that possesses adequate flexibility to be slidably removed from its initial position and adequate dielectric properties so as to electrically isolate the battery 110 (or a portion thereof) from the circuit board 105. For example, the battery isolator 18 can be made of plastic, polymer film, paper, foam, combinations of such materials, or the like. The battery isolator 18 can extend through a slot of the housing 40 when the wearable device 10 is assembled. For example, the battery isolator 18 can extend through slot 42 of housing 40 discussed below with reference to FIGS. 4A-4B. With reference to FIGS. 3A-3B and FIG. 5B, an end of the battery isolator 18 can be positioned between an electrical contact on a bottom surface of the battery 110 and a portion of the battery holder 115 which is electrically connected to the circuit board 105. Such positioning can allow the battery isolator 18 to block electrical communication between the battery 110 and the circuit board 105. In some variants, the battery isolator 18 is textured (for example, at or near an end thereof that is external to the housing 40) to provide a frictional surface to aid a user in gripping and sliding the battery isolator 18 out of its original assembled position. Once the battery isolator 18 is removed, electrical communication between the battery 110 and the circuit board 105 can be initiated to energize the electronic components of the wearable device 10.


With reference to FIGS. 3A-3B and 4A-4B, the battery isolator 18 can be secured (for example, partially secured) to a portion of the housing 40 with a securement tab 35 (see FIGS. 3A-3B). For example, the securement tab 35 can secure a portion of the battery isolator 18 to a rim 44 of the housing 40 (see FIGS. 4A-4B), and/or can position the battery isolator 18 with respect to the housing 40. The battery isolator 18 can be inserted through a slot of the housing 40 (such as slot 42 extending through a rim 44 of the housing 40). The securement tab 35 can secure a portion of the battery isolator 18 to the rim 44 of the housing 40 proximate the slot 42. For example, the securement tab 35 can secure the battery isolator 18 to the rim 44 over and/or around the slot 42. The securement tab 35 can be and/or comprise, for example, an adhesive tape on one or more sides of the securement tab 35. The securement tab 35 can keep at least a portion of the battery isolator 18 in place (for example, stationary) with respect to the housing 40 until a sufficient force is applied to the battery isolator 18 which causes the securement tab 35 and/or the portion of the battery isolator 18 secured to the housing 40 by the securement tab 35 to “break free” (for example, move). The securement tab 35 can aid in maintaining a position of ends of the battery isolator 18 relative to the wearable device 10. For example, the securement tab 35 can advantageously help maintain a position of a first end of the battery isolator 18 in between the battery 110 and a portion of the battery holder 115 in electrical communication with the circuit board 105 and/or help maintain a position of a second end of the battery isolator 18 external to the housing 40 to facilitate visibility and/or grasping by a user.


The wearable device 10 can include one or more substrates that can secure and/or secure to other portions of the wearable device 10 and/or that can allow the wearable device 10 to secure to a subject (for example, skin of the subject). For example, with reference to FIGS. 3A-3B, the wearable device 10 can include one or more of substrates 20, 50, 60, 65, 25, and/or 70.


Substrate 20 can be configured to surround a portion of the housing 40. For example, substrate 20 can include an opening 22 through which the housing 40 fits during assembly. The opening 22 can be sized and/or shaped to match a size and/or shape of a portion of the housing 40. For example, the opening 22 can be sized and/or shaped to match a size and/or shape of a main body 41 of the housing 40 which can be interior to and/or within the rim 44 of the housing 40. Substrate 50 can be positioned adjacent (for example, underneath) the housing 40 (or a portion thereof) and/or between the substrate 25 and the housing 40 (or a portion thereof). The substrates 20, 50 can sandwich a portion of the housing 40 therebetween. For example, when the wearable device 10 is assembled, the substrates 20, 50 can sandwich the rim 44 of the housing 40. Such configuration can secure the housing 40 (and other components of the wearable device 10 that are directly or indirectly connected to the housing 40) to the substrates 20, 50 and any other of the substrates 70, 25, 65, and/or 60 which can be incorporated in the wearable device 10. As illustrated in FIG. 3A, the substrates 20, 50 can have substantially similar shapes. For example, substrates 20, 50 can have substantially matching perimeters. Substrates 20, 50 can be made of foam material such as white polyethylene, polyurethane, or reticulated polyurethane foams, to name a few. Substrates 20, 50 can be made of medical-grade foam material.


With reference to FIGS. 3A-3B and 5A-5B, substrate 50 can include an opening 55 sized and/or shaped to match a size and/or shape of the probe 140, or probe 240. For example, the opening 55 can have a size and/or shape that matches a size and/or shape of a perimeter of a cross-section of the probe 140 (or a portion of the probe 140), or probe 240 (or a portion of the probe 240). As discussed further below, this can advantageously allow a portion of the probe 140 (or probe 240) to extend through at least a portion of the opening 55 and be in closer proximity to a portion of the subject's skin surface when the wearable device 10 is in use, which can allow the probe 140 (or probe 240) to transmit thermal energy from the subject near, to, and/or toward one or more temperature sensors of the wearable device 10 (for example, temperature sensors 150a and/or 150c). The opening 55 can allow the probe 140 (or a portion of the probe 140), or probe 240 (or a portion of the probe 240) to extend through the opening 55 to contact (directly or indirectly via substrate 25) and/or apply pressure to a portion of the subject's skin surface, which can also increase thermal transmissibility. Opening 55 can extend through a thickness of substrate 50 and/or can extend between opposing surfaces of the substrate 50 (for example, top and bottom surfaces of the substrate 50). Opening 55 can be spaced from a perimeter of the substrate 50. Substrate 50 can include a first end, a second end opposite the first end, and first and second sides extending between the first and second ends and opposite one another. In such configurations, opening 55 can be positioned closer to one of the first or second ends and/or can be positioned equidistantly or non-equidistantly from the first and second sides.


Any of the above mentioned substrates 20, 60, 50, 65, 25 can be integrally formed with one or more of each other. For example, in some variants, substrate 25 (described above) is integrally formed with substrate 50, substrate 60, and/or substrate 65. In some variants, wearable device 10 does not include substrate 65 and/or substrate 60. In some variants, wearable device 10 does not include a substrate 25 but rather includes a substrate 50 that can include the features and/or characteristics described above with respect to substrate 25 (for example, substrate 50 can be configured to secure (e.g., adhere) to skin of a user).


The wearable device 10 can include a substrate configured to contact the subject and/or help secure (for example, removably secure) the wearable device 10 (or portions thereof) to the subject. For example, with reference to FIGS. 3A-3B, the wearable device 10 can include a substrate 25 that can contact and/or secure to skin of a subject when the wearable device 10 is in use. Substrate 25 can be a bottommost one of the one or more substrates (and/or of the wearable device 10) when the wearable device 10 is in use (for example, after the release liner 70 is removed). Substrate 25 can be or include a material configured to secure to skin of a user. Substrate 25 can comprise a material configured to allow for removable securement of the wearable device 10 to the user's skin. For example, the substrate 25 can be coated with a high tack, medical-grade adhesive, which when in contact with the subject's skin, is suitable for long-term monitoring, such as, for example two days or longer, such as 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, or 10 days or longer. Additionally or alternatively, the substrate 25 can be or include a soft, comfortable, and/or breathable material. For example, substrate 25 can be or include fabric, such as non-woven fabric having holes or openings. The substrate 25 can be fabric and include an adhesive material or layer (such as adhesive tape) on one or both surfaces of the substrate 25. Such configuration can allow the wearable device 10 to comfortably secure to the user's skin.


The wearable device 10 can include a substrate that is a release liner 70. The release liner 70 can secure to one or more of the above-described substrates (such as substrate 25) and can be removed prior to securement of the wearable device 10 to a user. For example, release liner 70 can be removed from the substrate 25 prior to placement and/or securement of the wearable device 10 on the subject's skin.


As discussed above, the wearable device 10 can include a wireless transceiver 13 that can transmit data to (and/or receive data from) a separate device over a wireless communication protocol. Advantageously, the wearable device 10 can include one or more substrates positioned between the wireless transceiver 13 (and/or the circuit board 105) and the subject's skin (when the device 10 is in use) that reflect wireless signal(s) transmitted from the wireless transceiver 13 away from the subject's skin. Such configuration can, among other things, help to amplify the emitted signal (for example, in a direction away from the subject's skin), which may be important especially where the wireless communication protocol utilizes a relatively short range (for example, Bluetooth® wireless communication protocols).


For example, with reference to FIGS. 3A-3B, the wearable device 10 can include a substrate 60 that is configured to reflect such wireless signal(s) transmitted from the wireless transceiver 13 away from the subject's skin. Substrate 60 can be positioned between the circuit board 105 (and a wireless transceiver mounted to the circuit board 105) and substrate 50. Substrate 60 can be positioned between the circuit board 105 (and a wireless transceiver mounted to the circuit board 105) and any of substrates 50, 25, 65, and/or the release liner 70. Substrate 60 can be adhered to a surface of substrate 50 and/or one or more of the battery 110, the battery holder 115, and/or the mounting frame 130 (see FIG. 3B and 5B). With reference to FIGS. 3A-3B, in some variants, the substrate 60 is sized and/or shaped to not cover the opening 55 in the substrate 50, which can allow the probe 140 (or probe 240) to extend through the opening 44. Substrate 60 can be a polypropylene film, such as a metalized propylene film, that is configured to reflect wireless signals (for example, transmitted over Bluetooth® wireless communication protocol) away from the subject's skin when the wearable device 10 is in use.


The wearable device 10 can include a substrate 65 positioned between a surface of substrate 25 (or a portion of a surface of substrate 25) and a surface of the substrate 50 (or a portion of a surface of the substrate 50). For example, the substrate 65 can be positioned between the opening 55 in the substrate 50 and a surface of the substrate 25. The substrate 65 can include an adhesive material configured to secure the substrate 50 (or a portion thereof) to the substrate 25 (or a portion thereof). Substrate 65 can be, for example a polypropylene film. Substrate 65 can cover the opening 55 when secured to substrate 50. When an end (for example, bottom end) of the probe 140 (or probe 240) extends through the opening 55 of the substrate 50, the substrate 65 can cover the end of the probe 140 (or probe 240) and/or “bulge” at and/or around the end, for example, as shown in FIG. 7. Substrate 65 can advantageously cover opening 55 and prevent ingress of fluid (for example, sweat) through opening 55 and toward electrical components (for example, the circuit board 105) of the wearable device 10 when in use. Such configuration is especially beneficial where substrate 25 is permeable (for example, a fabric material) and sweat from the subject's skin is present around the perimeter of the probe 140 near the opening 55.


One or more of substrates 60, 65, 25, or 70 can be transparent or semi-transparent. For example, FIG. 2D illustrates substrates 70, 25, 65 as being transparent such that probe 140 can be seen in FIG. 2D. However, any or all of substrates 60, 65, 25, or 70 can be not transparent.


Any or all of substrates 25, 50, 20 can be made of a material that can provide thermal insulation and/or provide thermal conductivity. For example, when the wearable device 10 is positioned on and/or secured to (for example, adhered to) a subject's skin surface, one or more of the substrates 25, 50, 20 can act to insulate the skin surface at, around, and/or proximate to a point or region where temperature is measured and/or where thermal energy is transmitted from the skin surface of the subject to or near one or more temperature sensors of the wearable device 10. For example, when the wearable device 10 is positioned on and/or secured to (for example, adhered to) a subject's skin surface, the substrates 25, 50, 20 can insulate the skin surface around the opening 55 and/or around the probe 140 (or probe 240) which can act as a conduit for thermal energy to flow from the skin surface to and/or toward one or more temperature sensors of the wearable device 10 (such as temperature sensor 150a). In the human body, there is a natural heat flux between the body core and the skin surface because the body core temperature is typically at a higher temperature than that of the skin surface. Thus, heat flows from the body core to the skin. By insulating the skin surface at and around the opening 55 and/or the probe 140 (or probe 240)—thereby preventing heat from escaping—the temperature gradient between the body core and the skin surface will decrease. The skin temperature, under the insulated area will rise until it reaches equilibrium with the warmest region (i.e., the body core) underneath the insulation, thereby approaching the body core temperature. When equilibrium is reached, the skin temperature is equal to the body core temperature. One or more of substrates 25, 50, 20, which can be in direct or indirect contact with the subject's skin around the opening 55, probe 140 (or probe 240), and/or one or more temperature sensors of the wearable device 10, can possess thermal insulation properties. In some configurations, the substrates 20 and/or 50 are made of thermally insulating materials including polyurethane foam, polystyrene foam, neoprene foam, neoprene rubber, polyester (Mylar), polytetrafluoroethylene (PTFE), silicone foam, silicone rubber, or the like, and the substrate 25 is made of a fabric having an adhesive material configured to secure to a subject's skin.


As discussed above and as shown in at least FIGS. 3A-3B, the wearable device 10 can include a housing 40 which can enclose, house, and/or protect various components of the wearable device 10. FIGS. 4A and 4B illustrate top and bottom views of the housing 40, respectively. The housing 40 can be made of any material that is capable of adequately protecting the electronic components of the wearable device 10. The housing 40 can be rigid or alternatively, flexible. The housing 40 can be made of and/or include thermoplastics and/or thermosetting polymers. With reference to FIG. 4A, the housing 40 can have a main body 41 that can include (and/or that can be defined by) a top portion 41a and one or more walls (or a single, continuous wall) 41b extending outward from the top portion 41a and/or around a perimeter of the top portion 41a (or a portion of a perimeter of the top portion 41a). The main body 41 can include a height that can be defined by a height of the wall(s) 41b. As discussed above, a portion of the housing 40 can be positioned within and/or extend through the opening 22 of the substrate 20. For example, the main body 41 can be positioned within and/or can extend through the opening 22. The main body 41 can be sized and/or shaped to be received in and/or through the opening 22 of the substrate 20. The main body 41 can be sized and/or shaped to create a tight fit when positioned within the opening 22 of the substrate 20.


As shown in FIGS. 4A-4B, the housing 40 can include a rim 44 extending around a portion of a perimeter of the main body 41. The rim 44 can extend around an entire perimeter of the main body 41 or a portion of the perimeter of the main body 41. The rim 44 can be connected to and/or can extend outward from the wall(s) 41b. The rim 44 can be used to secure the housing 40 in position relative to one or more substrates of the wearable device 10. For example, as discussed above the rim 44 can be positioned and/or sandwiched between the substrates 20, 50 when the wearable device 10 is assembled, which can allow the housing 40 to be secured to the substrates 20, 50 and/or any other substrates 60, 65, 25, and/or 70 discussed above.


The wearable device 10 can include one or more indicators configured to indicate a status of the wearable device 10, such as whether the wearable device 10 is in an operational (“on”) mode, whether the wearable device 10 is pairing or has paired with a separate device, whether an error has been detected, and/or a power level of the wearable device 10. For example, with reference to at least FIG. 5A, the wearable device 10 can include an emitter 133 configured to emit light of one or more wavelengths to indicate a status of the wearable device 10. The emitter 133 can be coupled to the circuit board 105. The emitter 133 can include one or more light-emitting diodes (LEDs). The emitter 133 can emit light of certain colors to indicate certain statuses of the wearable device 10. For example, the emitter 133 can emit a green light to indicate that the wearable device 10 is powered “on” or a red light to indicate the wearable device 10 is “off”. The housing 40 can be configured to allow light emitted from the emitter 133 to be visible from a location outside an interior of the housing 40. For example, the housing 40 (or a portion thereof such as the main body 41) can comprise a transparent or semi-transparent material that allows light emitted from the emitter 133 to be seen from a location outside an interior of the housing 40. Additionally or alternatively, the housing 40 can include an opening or hole that allows light emitted from the emitter 133 to pass through the housing 40. For example, as shown in FIGS. 4A-4B, the housing 40 can include a hole 46 that can allow light emitted from the emitter 133 to pass through the housing 40. The hole 46 can be located on the main body 41, for example, on the top portion 41a of the main body 41 of the housing 40. However, the hole 46 can be located in an alternative location, for example, on and/or along the wall(s) 41b of the housing 40. The hole 46 can be aligned with the emitter 133 to allow light emitted from the emitter 133 to more easily pass through the housing 40. For example, the hole 46 can be vertically aligned (or at least partially vertically aligned) with the emitter 133 so as to allow the light from the emitter 133 to pass through the housing 40.


As discussed previously, the housing 40 can include a slot through which the battery isolator 18 can be inserted during assembly. As shown in at least FIGS. 4A-4B, the slot 42 can be positioned on and/or can extend through the rim 44. However, the location of the slot 42 is not so limited. The slot 42 can be positioned on and/or can extend through a different portion of the housing 40, for example, the main body 41 or a portion thereof.


With reference to FIG. 4B, the housing 40 can include one or more features that can help secure, align, and/or position the housing 40 with respect to one or more other components of the wearable device 10. Such features can also assist assembly of the wearable device 10. For example, the housing 40 can include one or more features that can secure, align, and/or position the housing 40 with respect to the mounting frame 130 and/or circuit board 105. With reference to FIGS. 4B and 5A-6B, the housing 40 can comprise one or more cavities 49a, 49b configured to receive, retain, and/or secure one or more posts 135a, 135b of the mounting frame 130. The housing 40 can include one, both, or none of cavities 49a, 49b. The cavities 49a, 49b can be defined and/or formed by a wall having a cylindrical shape (see FIG. 4B), among other shapes. Such wall which can define and/or form the cavities 49a, 49b can extend from (for example, perpendicularly from) an interior surface of the top portion 41a of the housing 40. The cavities 49a, 49b can be positioned at or near the wall(s) 41b of the housing 40. The cavities 49a, 49b can be positioned at or near opposing walls 41b or other portions of the housing 40. The cavities 49a, 49b can be sized and/or shaped to receive, retain, and/or secure the one or more posts 135a, 135b of the mounting frame 130 so as to prevent movement of the mounting frame 130 (and/or other components coupled to the mounting frame 130 such as the circuit board 105 and/or the probe 140, 240) with respect to the housing 40 and/or the one or more substrates. The cavities 49a, 49b can be located opposite one another along portions of the housing 40, for example, at or near opposite sides of the housing 40 (and/or main body 41). While the figures illustrate the housing 40 having two cavities 49a, 49b, the housing 40 can have an alternative amount of cavities, such as less than or more than two cavities 49a, 49b. The number of cavities 49a, 49b can correspond with the number of posts 135a, 135b on the mounting frame 130.


With continued reference to FIG. 4B, the housing 40 can include a recess 43 (which can also be referred to as a “recessed portion”). The recess 43 can be located on a portion of the main body 41 of the housing 40, for example, on and/or along an interior surface of a top portion 41a of the main body 41. The recess 43 can align with one or more temperature sensors of the wearable device 10 that can be mounted to the circuit board 105. For example, with reference to FIGS. 3A-3B, 4B, 5A, and 7, the recess 43 can be aligned (for example, vertically aligned), with temperature sensor 150a. The recess 43 can advantageously provide more spacing and/or distance between the temperature sensor 150a and the housing 40 (such as the top portion 41a of the housing 40) to prevent the temperature sensor 150a from being influenced by a temperature of the housing 40 and/or by ambient temperature surrounding the housing 40 and/or wearable device 10. The recess 43 can be circular, among other shapes. The recess 43 can gradually transition from the interior surface of the top portion 41a of the main body 41 at, near, and/or around a perimeter the recess 43 (see FIG. 4B and 7). With reference to FIG. 7, the recess 43 can be recessed a given depth Di from portions of the interior surface of the housing 40 (such as interior surface of the top portion 41a). The depth D1 of the recess 43 can be less than a thickness T1 of the housing 40 or a portion thereof (such as a thickness of the top portion 41a of the housing 40). The recess 43 can be larger than the temperature sensor 150a. For example, the recess 43 can have a width, length, and/or diameter that is larger than a width, length, and/or diameter of the temperature sensor 150a (see FIG. 7).


As discussed previously, the wearable device 10 can include an NFC tag 30 that can allow the wearable device 10 to interact with a separate computing device (such as an NFC reader of a separate device). As also discussed previously, the NFC tag 30 can be secured to a portion of the housing 40. With reference to FIG. 4B, the housing 40 can include an alignment feature 45 configured to align, position, retain, and/or secure the NFC tag 30. The alignment feature 45 can be located on an interior surface of the housing 40, such as on the top portion 41a of the main body 41. The alignment feature 45 can be formed by a protrusion 45a extending outward from an interior surface of the housing 40 (such as an interior surface of the top portion 41a of the housing 40) and extending continuously or intermittently along a portion of such interior surface. The protrusion 45a can have a height smaller than a height of the wall(s) 41b of the housing 40, for example. The alignment feature 45 can have a size and/or shape that matches a size and/or shape of the NFC tag 30. The alignment feature 45 can be configured to receive the NFC tag 30, for example, during assembly of the wearable device 10. The alignment feature 45 can comprise a rectangular shape where the NFC tag 30 comprises a rectangular shape. However, other shapes are possible for the alignment feature 45 and/or the NFC tag 30. The alignment feature 45 can comprise a protrusion 45a extending outward from and along an interior surface of the housing 40 in a rectangular shape. In some variants, the recess 43 interrupts a perimeter of the rectangular shape defined by the protrusions 45a.


The housing 40 can include one or more indicators configured to assist in the positioning and/or placement of the battery isolator 18 with respect to the housing 40 during assembly of the wearable device 10. For example, as shown in FIG. 4B, the housing 40 can include one or more of indicators 47a, 47b on the rim 44 of the housing 40. The indicators 47a, 47b can be straight and/or parallel lines and can be spaced apart from one another. During assembly, a portion of the battery isolator 18 can be placed through the slot 42 of the housing 40 and a width of the battery isolator 18 can be aligned with respect to a distance between the two indicators 47a, 47b. In some cases, the distance between the two indicators 47a, 47b can match a width of the battery isolator 18. In some cases, an end of the battery isolator 18 can be positioned between the two indicators 47a, 47b prior to removal of the battery isolator 18 from the housing 40 and/or wearable device 10. Such positioning can advantageously allow the battery isolator 18 to be properly positioned between an electrical contact of the battery 110 and the battery holder 115 which can be in electrical communication with the circuit board 105. For example, such positioning can ensure that a portion of the battery isolator 18 is positioned between a prong 115c of the battery holder 115 which can be in a middle portion of the battery holder 115 between two opposing arms 115a, 115b of the battery holder 115.



FIGS. 5A-5D show different views of a portion of the wearable device 10. As shown, the wearable device 10 can include a circuit board 105, a battery 110, a battery holder 115, a mounting frame 130, and a probe 140. The circuit board 105 can mechanically support and electrically connect various electrical components of the wearable device 10 to facilitate the performance of various functions of the wearable device 10. Such electrical components can include without limitation, the processor 11, storage device 12, wireless transceiver 13, and one or more temperature sensors 16 (such as temperature sensors 150a, 150b). The circuit board 105 can be double sided, having electronic components mounted on a first and/or second side or surface thereof. The circuit board 105 can include one or more electrical contacts 107 which can be electrically coupled (for example, soldered) to the battery holder 115 (or portions thereof). While the figures illustrate a circuit board 105 which can be, for example, a rigid circuit board (such as a rigid, printed circuit board), the wearable device 10 can alternatively include a flexible circuit that can electrically connect various electrical components of the wearable device 10.


The circuit board 105 or portions thereof can be sized and/or shaped to interact with the mounting frame 130. For example, the circuit board 105 or portions thereof can be sized and/or shaped to be secured to, be retained by, and/or be positioned by and/or with respect to, the mounting frame 130. As discussed in more detail below, a size and/or shape of an end 105a of the circuit board 105 can be configured to fit within a slot defined by one or more walls of the mounting frame 130. For example, the end 105a of the circuit board 105 can have a width that is sized to fit within a slot defined between walls 133c, 133d of the mounting frame 130. Additionally, as discussed further below, the circuit board 105 can include one or more openings 111 that are sized and/or shaped to receive the one or more posts 135a, 135b or portions thereof (such as a portion of a perimeter of the posts 135a, 135b). The openings 111 can be notches, for example, and can be positioned along sides or edges of the circuit board 105. The circuit board 105 can have an end 105a and an end 105b opposite the end 105a. As shown in at least FIGS. 5C-5D, the end 105b of the circuit board 105 can be curved. The curvature of the end 105b can match a curvature of a portion of the battery 110 and/or housing 40 (for example, the main body 41 of the housing), for example.


As illustrated in FIGS. 5A-5D, the battery holder 115 can be attached to electrical contacts 107 on two sides and/or edges of the circuit board 105. The battery holder 115 can form a support structure for the battery 110 and can hold the battery 110 in a stationary position relative to the circuit board 105. The battery holder 115 can be made of electrically conductive material. The battery 110 can provide power to the hardware components of the wearable device 10 which are described herein. The battery 110 can be a coin cell battery (such as a lithium coin cell battery). The battery 110 can have a cathode on a first (top) side and an anode on a second (bottom) side opposite the first side. As shown in at least FIG. 5C, the battery holder 115 can include two opposing arms 115a, 115b which can be electrically connected (for example, soldered) to electrical contacts 107 of the circuit board 105 and can also include a prong 115c that can contact the anode on the bottom side of the battery 110. The prong 115c can biased and/or can extend upward from a portion of the battery holder 115 so as to apply pressure to a portion of the battery 110 when the battery 110 is secured to the battery holder 115. During assembly and prior to use, the battery isolator 18 can be inserted between the anode of the battery 110 and the prong 115c to block electrical contact between the battery 110 and the circuit board 105. As shown in FIG. 5D, the circuit board 105 can include an electrical contact 157 configured to contact the cathode on the top side of the battery 110. The electrical contact 157 can be a gold plated copper pad.


As shown in at least FIGS. 5A-5D and as discussed above, the wearable device 10 can include a mounting frame 130. FIGS. 6A-6C illustrate various views of the mounting frame 130. The mounting frame 130 can secure the circuit board 105 (and electrical components mounted to the circuit board 105) and/or the probe 140 to the housing 40 and/or the mounting frame 130 can operably position the circuit board 105 (and electrical components mounted to the circuit board 105) and/or the probe 140 to the housing 40. Additionally, because the battery holder 115 and battery 110 can be secured to the circuit board 105 as discussed above, the mounting frame 130 can secure the battery 110 and/or battery holder 115 to the housing 40.


With continued reference to FIGS. 6A-6C, the mounting frame 130 can have a first end 130a, a second end 130b opposite the first end 130a, a side 130c, and a side 130d opposite the side 130c. The mounting frame 130 can be sized and/or shaped to conform to a size and/or shape of the battery 110 or a portion thereof. For example, with reference to FIGS. 5A-5D and 6A-6C, the end 130a of the mounting frame 130 (or a portion of the end 130a) can be curved to conform to a portion of a perimeter of the battery 110. The end 130a (or a portion of the end 130a) can comprise a half-moon shape, among other shapes. The curvature of the end 130a can match or partially match a curvature of the battery 110 or a portion thereof. The end 130a can be curved inward toward the end 130b of the mounting frame 130. A surface of the end 130a that faces away from the end 130b can be concave, for example. At least a portion of the end 130 can be sized and/or shaped to surround a portion of the battery 110, such as a portion of a perimeter of the battery 110. For example, at least a portion of the end 130 can be sized and/or shaped to surround less than an entire perimeter of the battery 110, less than ½ of a perimeter of the battery 110, greater than ⅛ of a perimeter of the battery 110, greater than 2/8 of a perimeter of the battery 110, greater than ⅜ of a perimeter of the battery 110, between ⅛ and ⅞ of a perimeter of the battery 110, between ⅛ and 6/8 of a perimeter of the battery 110, between ⅛ and ⅝ of a perimeter of the battery 110, between ⅛ and ½ of a perimeter of the battery 110, approximately ½ of a perimeter of the battery 110, among other values or ranges.


Advantageously, where the end 130a is sized and/or shaped to conform to a size and/or shape of the battery 110 (or a portion of the battery 110) and/or where the end 130a is sized and/or shaped to surround a portion of the battery 110 as described above, such configuration can allow the wearable device 10 to have smaller dimensions while maximizing the size of the battery 110. Minimizing overall dimensions of the wearable device 10 can increase comfort and reduce the bulkiness of the wearable device 10 when placed on a subject and/or handled by a user. Additionally, maximizing the size of the battery 110 in such manner can allow the wearable device 10 to have a longer service life, for example, more than 1 day, more than 2 days, more than 3 days, more than 4 days, more than 5 days, more than 6 days, or more than 7 days.


The mounting frame 130 or a portion thereof can be sized and/or shaped to interact with, secure, retain, and/or position the circuit board 105. For example, the mounting frame 130 can include one or more posts 135a, 135b which are configured to fit within one or more openings 111 in the circuit board 105. With reference to FIGS. 5A-6B, the one or more posts 135a, 135b can fit within a space defined by openings 111 in the circuit board 105. While the figures illustrate the mounting frame 130 having two posts 135a, 135b, the mounting frame 130 can have an alternative amount of posts 135a, 135b. The mounting frame 130 can have one, two, three, four, five, or six or more posts 135a, 135b configured to interact with a corresponding number of openings 111 in the circuit board 105. The one or more posts 135a, 135b can be positioned proximate or adjacent sides 130c, 130d of the mounting frame 130, for example, where the circuit board 105 includes openings 111 on opposite sides and/or edges thereof. The one or more posts 135a, 135b can be positioned in an alternative location, however. The one or more posts 135a, 135b can be positioned closer to the end 130a than to the end 130b of the mounting frame 130 (see FIG. 6B). The one or more posts 135a, 135b can be at least partially retained within the openings 111 and can limit or prevent movement of the circuit board 105 relative to the mounting frame 130 in one or more directions. For example, the one or more posts 135a, 135b, when positioned within the openings 111, can limit or prevent movement of the circuit board 105 relative to the mounting frame 130 in one or more directions along a plane of the circuit board 105. Such plane can extend along and/or be defined by one or more surfaces of the circuit board 105 (for example, opposite surfaces of the circuit board 105). The one or more posts 135a, 135b can have a size and/or shape that corresponds to a size and/or shape of the openings 111 (or a portion thereof). For example, the one or more posts 135a, 135b can have a cylindrical shape that allows positioning within half-circle shaped openings 111. The one or more posts 135a, 135b can extend outward from a surface 131a of the mounting frame 130 (see FIGS. 6A-6B). For example, the one or more posts 135a, 135b can extend transverse (for example, perpendicular) to surface 131a of the mounting frame 130.


The one or more posts 135a, 135b can secure to a portion of the housing 40, as discussed above. For example, the one or more posts 135a, 135b can be sized and/or shaped to secure to and/or within the one or more cavities 49a, 49b of the housing 40. Accordingly, via interaction with the one or more openings 111 of the circuit board 105 and the one or more cavities 49a, 49b of the housing 40, the one or more posts 135a, 135b can secure the circuit board 105 (and components coupled thereto) and the mounting frame 130 to the housing 40. Where the mounting frame 130 is configured to secure the probe 140 (or probe 240) as discussed further below, the one or more posts 135a, 135b can additionally secure the probe 140 (or probe 240) to the housing 40. The securement of the one or more posts 135a, 135b to the one or more cavities 49a, 49b can be a friction fit, for example. As another example, the one or more posts 135a, 135b can comprise a smaller cross-section than the one or more cavities 49a, 49b, allowing the posts 135a, 135b to be received within the cavities 49a, 49b and reduce lateral movement of the mounting frame 130 and housing 40 relative to one another, but also allowing the posts 135a, 135b to more easily be inserted and/or removed from the cavities 49a, 49b (for example, during assembly of the wearable device 10).


The mounting frame 130 can include alternative or additional features that facilitation interaction with, securement and/or retaining of, and/or positioning of the circuit board 105. For example, the mounting frame 130 can include one or more raised portions and/or one or more walls which can extend from a surface 131a of the mounting frame 130 and can retain a portion or portions of the circuit board 105. For example, with reference to FIGS. 6A-6C, the mounting frame 130 can include one or both of raised portions 133a, 133b and/or one or both of walls 133c, 133d. The raised portions 133a, 133b and/or walls 133c, 133d can be positioned proximate or adjacent the end 130b of the mounting frame 130. The walls 133c, 133d can be spaced apart from one another by a distance that is sized to match a portion of the circuit board 105. For example, the walls 133c, 133d can be spaced apart from one another by a width Wi that is sized to receive a width of an end 105a of the circuit board. The width of the end 105a can be smaller than a width of the opposite end 105b of the circuit board 105 and/or smaller than a width of another portion of the circuit board 105 (see FIG. 5C). Advantageously, such configuration can allow the end 105a of the circuit board 105 to be retained between the walls 133c, 133d and can limit or prevent movement of the circuit board 105 relative to the mounting frame 130 in one or more directions along a plane of the circuit board 105 (and/or mounting frame 130). Such plane can extend along and/or be defined by one or more surfaces of the circuit board 105 (for example, opposite surfaces of the circuit board 105). With reference to FIGS. 6A-6B and 5A, the raised portions 133a, 133b can provide additional or alternative securement between portions of the circuit board 105 and the mounting frame 130, for example, portions of the circuit board 105 between the openings 111 and the end 105a. Interaction between the raised portions 133a, 133b, and/or walls 133c, and the end 105a of the circuit board 105 can limit or prevent rotation of the circuit board 105 relative to the mounting frame 130, for example, about an axis extending perpendicular to a surface of the circuit board 105 (for example, a top and/or bottom surface of the circuit board 105). Additionally or alternatively, interaction between the one or more posts 135a, 135b and the openings 111 of the circuit board 105 can limit or prevent rotation of the circuit board 105 relative to the mounting frame 130, for example, about an axis extending perpendicular to a surface of the circuit board 105 (for example, a top and/or bottom surface of the circuit board 105).


As shown in at least FIGS. 6A-6C, one or both of sides 130c, 130d (or portions thereof) can be curved and/or rounded. For example, one or both of surfaces of the sides 130c, 130d can be convex. Alternatively, one or both of sides 130c, 130d can be straight. Where the mounting frame 130 includes one or more of raised portions 133a, 133b, one or both of the raised portions 133a, 133b can be adjacent the sides 130c, 130d and can be curved similarly as the sides 130c, 130d (see FIG. 6B).


With reference to FIG. 6B, the mounting frame 130 can include one or both of notches 138a, 138b at corners where the end 130a joins the sides 130c, 130d. The notches 138a, 138b can interact with the opposing arms 115a, 115b of the battery holder 115 to facilitate alignment, positioning, and/or engagement between the mounting frame 130 and the battery holder 115 (see FIGS. 5A-5B and FIG. 6B).


As discussed elsewhere herein and as shown in at least FIGS. 5A-5D, the wearable device 10 can include a probe 140 that can be configured to transmit thermal energy from the subject to, toward, and/or near one or more temperature sensors of the wearable device 10. The mounting frame 130 can be configured to secure the probe 140 and/or operably position the probe 140 with respect a subject's skin. For example, the mounting frame 130 can include an opening sized and/or shaped to receive and/or secure the probe 140 or a portion thereof. The opening can extend through a thickness or depth of the mounting frame 130. The opening can be positioned adjacent or proximate to end 130a, end 130b, side 130c, and/or 130d. The opening can be a slot, for example, the slot 132 shown in at least FIGS. 5C-6C. As shown, the slot 132 can be positioned at and/or along end 130b of the mounting frame 130. The slot 132 can be sized and/or shaped to receive and/or secure a portion of the probe 140. For example, the slot 132 can be shaped and/or sized to match a size and/or shape of a portion of a cross-section and/or exterior surface or perimeter of the probe 140. The slot 132 can comprise a circular or partially circular shape, for example, where the probe 140 has a cylindrical shape. The slot 132 can be positioned adjacent end 130b so as to allow the probe 140 to be inserted into the slot 132 along a direction that is transverse (for example, perpendicular) to an axis extending through a center of the slot 132. Additionally or alternatively, the slot 132 can be sized, shaped, and/or positioned to allow the probe 140 (or a portion thereof) to be inserted into the slot 132 along a direction that is parallel to such axis extending through a center of the slot 132. The slot 132 can be sized and/or shaped to surround a portion of the probe 140. For example, the slot 132 can be sized and/or shaped to surround a portion of a cross-section and/or exterior surface or perimeter of the probe 140. For example, the mounting frame 130 and/or the slot 132 can be configured such that, when the probe 140 is secured to the mounting frame 130, the mounting frame 130 surrounds less than an entire perimeter of a cross-section of the probe 140, greater than ¼ of a perimeter of a cross-section of the probe 140, greater than ½ of a perimeter of a cross-section of the probe 140, greater than ¾ of a perimeter of a cross-section of the probe 140, approximately ½ of a perimeter of a cross-section of the probe 140, approximately ¾ of a perimeter of a cross-section of the probe 140, or any value therebetween, or any range bounded by any combination of these values, although values and ranges outside these values or ranges can be used in some cases.


As discussed in more detail below, the probe 140 can have a body 144 having a recessed portion 146 which has a cross-section that is smaller than a cross-section of the body 144 of the probe 140. The slot 132 can be sized and/or shaped to receive a size and/or shape of the recessed portion 146 of the probe 140, for example. The slot 132 can have a depth (oriented vertically in the view of FIGS. 5C-5D) that is less than, equal to, or greater than a height (oriented vertically in the view of FIGS. 5C-5D) of the recessed portion 146 of the probe 140 which extends along a portion of a height of the body 144 of the probe 140. With reference to FIGS. 6A-6C, the slot 132 can include one or more protrusions 139 extending along the depth of the slot 132 (or a portion of the depth of the slot 132). For example, the slot 132 can include, one, two, three, four, five, or six or more protrusions 139. The one or more protrusions 139 can be spaced from one another, equidistantly or non-equidistantly, along a length (or width) of the slot 132 (see FIGS. 6A-6C). The protrusions 139 can extend outward from (for example, perpendicular to) a surface of the slot 132. The protrusions 139 can be rigid or alternatively, non-rigid (for example, flexible). The protrusions 139 can engage a portion of the probe 140 when the probe 140 is positioned within the slot 132. For example, the protrusions 139 can engage the recessed portion 146 of the probe 140 when the probe 140 is positioned within the slot 132. The slot 132 can secure the probe 140 in a friction-fit engagement and/or snap-fit engagement, or other type of engagement for example.


When the probe 140 is secured within the slot 132, the probe 140 (and/or an axis extending through a center of the probe 140) can be oriented transverse (for example, perpendicular) to a plane and/or surface of the mounting frame 130. For example, when the probe 140 is secured within the slot 132, the probe 140 can be oriented perpendicular to the surface 131a of the mounting frame 130. Additionally or alternatively, when the probe 140 is secured within the slot 132 of the mounting frame 130, the probe 140 can be oriented perpendicular to the circuit board 105 (and/or a surface or plane of the circuit board 105). Such positioning can help the probe 140 make contact with (whether direct, or indirect via substrates 65 and/or 25) and/or apply pressure to a portion of the subject's skin to facilitate transmission of thermal energy through the probe 140 to and/or near other portions of the wearable device 10 (such as toward temperature sensor 150a).


With reference to FIGS. 6A-6B, the mounting frame 130 can include a recessed portion 137 that can be recessed from surface 131a of the mounting frame 130. The recessed portion 137 can be positioned proximate or adjacent end 130b of the mounting frame 130. The recessed portion 137 can be positioned around the slot 132. A perimeter of the recessed portion 137 can be larger than a perimeter of the slot 132. The perimeter of the recessed portion 137 can be spaced outward from the perimeter of the slot 132 (see FIG. 6B). The recessed portion 137 can be recessed from the surface 131a a depth (oriented vertically in the view of FIGS. 5C-6A) that is sized to correspond to a height of a portion of the probe 140. For example, the recessed portion 137 can be recessed from the surface 131a a depth that is sized to correspond to a height (oriented vertically in the view of FIGS. 5C-5D) of a top portion 148 of the probe 140 which is discussed in more detail below. Such configuration can allow a height of the top portion 148 of the probe 140 to fit within the depth of the recessed portion 137 when the probe 140 is secured within the slot 132.


As discussed elsewhere herein and as illustrated in FIG. 7, the wearable device 10 can include a probe 140 that can act as a conduit to transmit thermal energy from the subject's skin to, toward, and/or near one or more temperature sensors of the wearable device 10. As shown in at least FIGS. 5C-5D, the probe 140 can comprise a first end 142a, a second end 142b opposite the first end 142a, and a body 144. The probe 140 (and/or body 144 of probe 140) can include a height extending between the first and second ends 142a, 142b. The probe 140 can comprise a variety of shapes and/or sizes. The probe 140 can comprise a cylindrical shape among others. As shown, the body 144 can comprise a recessed portion 146 extending along a portion of the body 144 of the probe 140. The recessed portion 146 can be recessed from an outer surface of the body 144. The recessed portion 146 can assist the probe 140 in securing to and/or within the slot 132 of the mounting frame 130. For example, a height of the recessed portion 146 can be sized to correspond to a depth of the slot 132 of the mounting frame 130 so as to allow portions of the body 144 proximate the recessed portion 146 to engage top and bottom surfaces of the mounting frame (and/or recessed portion 137 of the mounting frame 130) when the probe 140 is received within the slot 132. As discussed above, the slot 132 can include one or more protrusions 139 along a width of the slot 132. The recessed depth of the recessed portion 146 of the probe 140 can be sized to fit a distance that the one or more protrusions 139 extend outward from the surface of the slot 132. Additionally or alternatively, the height of the recessed portion 146 of the probe 140 can be sized to fit a height of the one or more protrusions 139. For example, the one or more protrusions 139 can extend outward from a surface of the slot 132 a given distance that corresponds to a depth of the recessed portion 146 (with respect to the outer surface of body 144). As another example, the one or more protrusions 139 can have a height extending along a depth of the slot 132 that corresponds to a height of the recessed portion 146. The height of the recessed portion 146 can extend along a portion of the height of the probe 140 (“vertically” given the orientation shown in FIGS. 5C-5D).


As discussed above, the wearable device 10 can include one or more temperature sensors. FIGS. 5A, 5C, and 5D illustrate a temperature sensor 150a positioned on a first surface of the circuit board 105. When the probe 140 is secured to the mounting frame 130, the probe 140 can be aligned with and/or positioned proximate to the temperature sensor 150a. For example, with respect to FIGS. 5A-5B, when the probe 140 is secured to the mounting frame 130 (for example, within the slot 132), the probe 140 can be vertically aligned with the temperature sensor 150a. For example, an axis extending through a center of the probe 140 can extend through the temperature sensor 150a, and such axis can be perpendicular to a surface or plane of the circuit board 105. When the probe 140 is secured to the mounting frame 130 (for example, within the slot 132), the end 142a of the probe 140 can be positioned proximate or adjacent a surface (for example, bottom surface) of the circuit board 105 proximate the temperature sensor 150a. As another example, when the probe 140 is secured to the mounting frame 130 (for example, within the slot 132), the end 142a of the probe 140 can be positioned adjacent a first surface (for example, bottom surface) of the circuit board 105 and the temperature sensor 150a can be positioned adjacent a second surface (for example, a top surface) of the circuit board 105 and the probe 140 and the temperature sensor 150a can be aligned. As another example, when the probe 140 is secured to the mounting frame 130 (for example, within the slot 132), the circuit board 105 can be positioned between the probe 140 and the temperature sensor 150a.


The wearable device 10 can include a thermally conductive material and/or layer between the end 142a of the probe 140 and a surface of the circuit board 105. For example, with reference to FIGS. 5C-5D, the wearable device 10 can include a thermal paste 173 positioned between the end 142a of the probe 140 and a surface of the circuit board 105 (for example, a bottom surface of the circuit board 105 given the orientation shown in FIGS. 5C-5D). The thermal paste 173 can be aligned (for example, vertically aligned) with the probe 140 and/or the temperature sensor 150a. The thermal paste 173 can comprise zinc oxide, for example. The thermal paste 173 can be silicone free. The thermal paste 173 can comprise a circular shape, among other shapes. For example, the thermal paste 173 can be in the form of a disc. The thermal paste 173 can conform to a shape of the probe 140 and/or can deform when positioned between the circuit board 105 and the probe 140. The thermal paste 173 can reduce or prevent air gaps between end 142a of the probe 140 and the circuit board 105 and thus increase thermal transmissivity.


With reference to FIG. 5D, the circuit board 105 can include one or more openings 159 extending through the circuit board 105. For example, the one or more openings 159 can extend through a thickness of the circuit board 105 and/or between opposing surfaces (for example, top and bottom surfaces) of the circuit board 105. The one or more openings 159 can be located adjacent to the temperature sensor 150a, the thermal paste 173, and/or the probe 140 (for example, end 142a of the probe 140). The one or more openings 159 can allow thermal energy to flow from the probe 140 and/or thermal paste 173 through the circuit board 105 to the temperature sensor 150a. In such configuration, the one or more openings 159 can provide a passageway by which such thermal energy can flow from the probe 140 and/or thermal paste 173 through the circuit board 105 and to the temperature sensor 150a. The circuit board 150 can include one, two, three, four, five, six, seven, eight, nine, or ten or more openings 159. The circuit board 150 can include between one and twenty openings 159, between one and ten openings 159, between one and five openings 159, for example. The circuit board 105 can include a plurality of openings 159, for example, more than two, more than three, more than four, more than five, more than six, more than seven, or more than eight openings 159. The circuit board 105 can include a plurality of openings 159 arranged in an array and/or pattern. For example, the circuit board 105 can include a plurality of openings 159 arranged in an array having a rectangular shape (see FIG. 5D), square shape, circular shape, among others. The plurality of openings 159 can be spaced equidistantly from one another in some cases.


Where such openings 159 are arranged in an array, dimensions of the array can correspond to dimensions of the probe 140 to ensure that thermal energy flowing through the end 142a of the probe 140 is conveyed through the circuit board 105 to the temperature sensor 150a efficiently. For example, where the probe 140 has a circular cross-section, the circuit board 105 can include a plurality of openings 159 arranged in a circular array having a diameter that is less than, equal to, or greater than a diameter of the circular cross-section of the probe 140. As another example, where the probe 140 has a circular cross-section, the circuit board 105 can include a plurality of openings 159 arranged in a non-circular array (e.g., a square or rectangular array) whose length and/or width dimensions are less than, equal to, or greater than a diameter of the circular cross-section of the probe 140. As another example, where the probe 140 has a cross-section having a length and width, a length and/or width of an array of the plurality of openings 159 can be less than, equal to, or greater than such length and/or width of the cross-section of the probe 140.


In some variants, the one or more openings 159 include (for example, are filled with) a thermally conductive material, such as gold and/or copper, to increase thermal transmissivity through the circuit board 105. When the wearable device 10 is assembled, the one or more openings 159 (and/or an array formed by a plurality of the openings 159) can align with the temperature sensor 150a, the thermal paste 173, the probe 140 (for example, an axis extending through a height of the probe 140), the slot 132 of the mounting frame 130, and/or the opening 55 of substrate 50. In some implementations, an axis extending through a center of an array defined by a plurality of openings 159 can align with the temperature sensor 150a, the thermal paste 173, the probe 140 (for example, an axis extending through a height of the probe 140), the slot 132 of the mounting frame 130, and/or the opening 55 of substrate 50. Each of the one or more openings 159 can be smaller than opening 55 of substrate 50 and/or smaller than slot 132 in mounting frame 130, each of which are discussed elsewhere herein. Where the circuit board 105 includes a plurality of openings 159 arranged in an array, the region or area defining and/or forming the boundary of such array can be smaller than opening 55 of substrate 50 and/or smaller than slot 132 in mounting frame 130.


With continued reference to FIGS. 5C-5D, the thermal paste 173 can be positioned between the one or more openings 159 of the circuit board 105 and the thermally conductive probe 140. The thermal paste 173 can be positioned between a surface of the circuit board 105 and the thermally conductive probe 140. The thermal paste 173 can be positioned between end 142a of the thermally conductive probe 140 and a surface of the circuit board 105. The thermal paste 173 can be positioned between end 142a of the thermally conductive probe 140 and the one or more openings 159 of the circuit board 105.


With continued reference to FIG. 5D, the wearable device 10 can include a thermally conductive pad 155 positioned adjacent to the one or more openings 159 and a surface (for example, a bottom surface) of the circuit board 105. The thermally conductive pad 155 can be positioned between the one or more openings 159 and the thermal paste 173 and/or the probe 140. The thermally conductive pad 155 can increase thermal transmissivity of thermal energy from the probe 140 and the thermal paste 173 to the one or more openings 159 through the circuit board 105 and to the temperature sensor 150a. The thermally conductive pad 155 can be metallic. For example, the thermally conductive pad 155 can include gold and/or copper.



FIG. 7 illustrates a cross-section view taken along a portion of the assembled view of the wearable device 10 shown in FIG. 2C when placed adjacent skin of a subject. As shown, when the probe 140 is secured to the mounting frame 130 (for example, within the slot 132) and the mounting frame 130 is secured to the housing 40, the end 142b of the probe 140 can be positioned in proximity to the subject's skin. As also shown, the probe 140 can apply pressure to and/or press against a portion of the skin of a subject when the wearable device 10 is placed on and/or secured to the subject. Where the wearable device 10 includes substrates 65 and/or 25 coupled with the housing 40 (for example, via securement to substrate 50), the substrates 65, 25 can be positioned between the end 142b of the probe 140 and the skin of the subject when the wearable device 10 is secured to the user. As discussed previously, the substrate 50 (which can comprise foam), can include an opening 55 that is sized and/or shaped to allow a portion of the probe 140 to extend therethough.


In some implementations, the probe 140 extends through opening 55 and beyond a surface of substrate 50 (for example, a “bottom” surface of substrate 50) a distance that is equal to or greater than approximately 0.01 inch, approximately 0.02 inch, approximately 0.03 inch, approximately 0.04 inch, approximately 0.05 inch, approximately 0.06 inch, approximately 0.07 inch, approximately 0.08 inch, approximately 0.09 inch, approximately 0.1 inch, approximately 0.2 inch, approximately 0.3 inch, approximately 0.4 inch, or approximately 0.5 inch, or any value or range between any of these values, or any value or range bounded by any combination of these values. In some implementations, the probe 140 extends through opening 55 and beyond a surface of substrate 50 (for example, a “bottom” surface of substrate 50) a distance that is between approximately 0.01 inch and approximately 0.5 inch, for example, between approximately 0.02 inch and approximately 0.4 inch, between approximately 0.03 inch and approximately 0.3 inch, between approximately 0.04 inch and approximately 0.2 inch, between approximately 0.05 inch and approximately 0.1 inch, between approximately 0.06 inch and approximately 0.09 inch, between approximately 0.07 inch and approximately 0.08 inch, between approximately 0.05 inch and approximately 0.2 inch, or between approximately 0.09 inch and approximately 0.2 inch, or any value or range between any of these values or ranges, or any value or range bounded by any combination of these values. Alternatively, in some implementations, the probe 140 does not extend beyond the bottom surface of the substrate 50. For example, in some implementations, the probe 140 extends through the opening 55 but terminates at the bottom surface of the substrate 50 such that a plane of the end 142b of the probe 140 is generally parallel to a plane of the bottom surface of the substrate 50.


When the wearable device 10 is assembled and placed and/or secured to the subject's skin and the end 142b of the probe 140 extends through the opening 55 of substrate 50, the substrate 65 and/or substrate 25 can be positioned between the subject's skin surface and the end 142b of the probe 140. Accordingly, in such configuration, the probe 140 (for example, the end 142b of the probe 140) can indirectly contact a portion of the subject's skin. As discussed above, the substrate 65 can cover the opening 55 and the end 142b of the probe 140 and prevent fluid (for example, sweat) ingress through the opening 55 and to an interior of the housing 40, for example, to and/or toward electrical components of the wearable device 10. As also discussed above, substrate 25 can comprise a thermally conductive material and/or can be configured to allow thermal energy to pass from the subject's skin to the end 142b of the probe 140. As also discussed above, any of substrates 25, 65, 50, and/or 20 can advantageously insulate portions of the subject's skin. When a portion of the probe 140 is positioned through the opening 55 (for example, the end 142b through the opening 55 of the substrate 55), the substrates 25, 20, 65, and/or 50 can insulate portions of the subject's skin around and/or underneath the end 142b of the probe 140, which can allow the probe 140 to transmit thermal energy indicative of the subject's core body temperature, as discussed previously.


The probe 140 can comprise thermally conductive material that allows the probe 140 to transmit and/or act as a conduit for thermal energy of the subject. Thus, thermal energy from the subject's skin can pass through substrates 25 and/or 65, and the probe 140. As discussed above, the probe 140 can comprise aluminum, for example, among other thermally conductive materials. As also discussed above, the probe 140 can be rigid, which can allow the probe 140 to apply pressure to a portion of the subject's skin. Such application of pressure to a portion of the subject's skin can allow the probe 140 to better receive thermal energy from the subject. For example, the probe 140 can be not compressible and/or not extendible (for example, not compressible and/or not extendible relative to a longitudinal axis extending along a height of the probe 140). As another example, the probe 140 can be not compressible and/or not extendible relative to a longitudinal axis extending through a center of a cross-section of the probe 140.


As discussed above and as illustrated in FIG. 7, the end 142a of the probe 140 can be positioned adjacent a first surface of the circuit board 105 (for example, a “bottom” surface of the circuit board 105) and the temperature sensor 150a can be positioned adjacent a second surface of the circuit board 105 (for example, a “top” surface of the circuit board 105). As also discussed above, a thermal paste 173 can be positioned between the end 142a of the probe 140 and the circuit board 150. As also discussed above, a thermally conductive pad 155 can be positioned between one or more openings 159 in the circuit board 105 and the thermal paste 173 and/or the probe 140. The one or more openings 159 can allow thermal energy to pass through the circuit board 105 to the temperature sensor 150a.


As thermal energy is transmitted to the temperature sensor 150a, the temperature sensor 150a can determine a body temperature of the subject and/or can generate and transmit one or more signals responsive to the thermal energy to the processor 11 of the wearable device 10. The temperature sensor 150a can be or include, a thermocouple and/or a thermistor, for example. The temperature sensor 150a can be a chip that is electrically and mechanically coupled with the circuit board 105. The temperature sensor 150a can be configured to generate one or more signals responsive to detected thermal energy, determine body temperature, and/or transmit such generated one or more signals and/or such determined body temperature to the processor 11 of the wearable device 10 continuously and/or intermittently. For example, temperature sensor 150a can be configured to generate one or more signals responsive to detected thermal energy, determine body temperature, and/or transmit such generated one or more signals and/or such determined body temperature every 0.5 seconds, 1 second, 2 second, 3 seconds, 4 seconds, 5 seconds, 10 seconds, 30 seconds, 1 minute, 2 minute, 3 minutes, 4 minutes, 5 minutes, or at other intervals.


In addition to temperature sensor 150a, the wearable device 10 can include one or more additional temperature sensors. For example, with reference to FIG. 5C, the wearable device 10 can include temperature sensor 150b. Similar to temperature sensor 150a, temperature sensor 150b can be electrically and/or mechanically coupled to the circuit board 105. Temperature sensor 150b can be spaced away from the temperature sensor 150a. Temperature sensor 150b can be used to detect a temperature within an interior of the housing 40 and/or proximate the circuit board 105, for example. Temperature sensor 150b can be used to measure an ambient temperature, for example, a temperature outside the interior of the housing 40.


In some implementations, the temperature sensor 150b is surrounded by a material in order to isolate the temperature sensor 150b from nearby electrical components and/or to prevent the temperature sensor 150b from being thermally influenced by the temperature of the interior of the housing 40 so that the temperature sensor 150b can better measure ambient temperatures outside the housing 40. For example, with reference to FIGS. 5A and 5C, the wearable device 10 can include a thermal putty 120 which can be positioned around and/or adjacent to the temperature sensor 150b. Thermal putty 120 can be positioned between the temperature sensor 150b and an interior surface of the top portion 41a of the housing 40 (see FIGS. 5A, 5C, and 4B). For example, the thermal putty 120 can extend from a surface of the circuit board 105 around the temperature sensor 150b outward (for example, “upward” given the view shown in FIGS. 5A and 5C) to the interior surface of the top portion 41a of the housing 40. Advantageously, the thermal putty 120 can transmit thermal energy from the surface of the housing 40 (which is in thermal contact with ambient) to the temperature sensor 150b. The thermal putty 120 can deform and/or conform to a shape of a portion of the interior surface of the top portion 41a of the housing 40 in order to better facilitate the transfer of thermal energy from the interior surface (and ambient) to the temperature sensor 150b. The temperature sensor 150b can be configured to generate one or more signals based on received thermal energy, whether from the interior of the housing 40 or from ambient (for example, via the thermal putty 120). The thermal putty 120 can be a ceramic filled silicone sheet, for example.


The temperature sensor 150b can be configured to generate one or more signals responsive to detected thermal energy, determine temperature, and/or transmit such generated one or more signals and/or such determined temperature to the processor 11 of the wearable device 10 continuously and/or intermittently. For example, temperature sensor 150b can be configured to generate one or more signals responsive to detected thermal energy, determine temperature, and/or transmit such generated one or more signals and/or such determined temperature every 0.5 seconds, 1 second, 2 second, 3 seconds, 4 seconds, 5 seconds, 10 seconds, 30 seconds, 1 minute, 2 minute, 3 minutes, 4 minutes, 5 minutes, or at other intervals. Such generated one or more signals, determined temperature, and/or transmission of such generated one or more signals and/or determined temperature can be simultaneous or non-simultaneous with the generated one or more signals, determined body temperature, and/or transmitted one or more signals and/or determined body temperature from temperature sensor 150a.


Advantageously, incorporating both of temperature sensors 150a, 150b can allow the wearable device 10 to more accurately determine a core body temperature of the user. For example, the processor 11 can utilize temperature data from the temperature sensor 150b in order to adjust or “correct” temperature data received from the first temperature sensor 150a in order to more accurately determine a subject's core body temperature. For example, the processor 11 can compare temperature data received from both of the temperature sensors 150a, 150b and determine a corrected body temperature based on such comparison. The processor 11 can apply weight factors to one or both of temperature data received from temperature sensors 150a, 150b and/or otherwise compare such received data to determine a corrected body temperature.


As discussed above and with continued reference to FIG. 7, the housing 40 can include a recess 43 that is recessed a depth D1 from portions of the interior surface of the housing 40 (such as interior surface of the top portion 41a) which is less than a thickness T1 of the housing 40 (such as a thickness of the top portion 41a of the housing 40). The recess 43, depth D1, and thickness T1 are illustrated in FIG. 7. As discussed above, the recess 43 can advantageously provide more spacing and/or distance between the temperature sensor 150a and the housing 40 (such as the top portion 41a of the housing 40) to prevent the temperature sensor 150a from being influenced by the temperature of the housing 40 and/or ambient temperature surrounding the housing 40 and/or wearable device 10.



FIGS. 8A-8D illustrate an alternative design for an electronics assembly 200 that can be incorporated within the wearable device 10. The electronics assembly 200 can be the same in some or many respects to the electronics assembly 100 discussed above. More specifically, some or many of the components that can form and/or be part of the electronics assembly 100 as discussed above can also form and/or be part of the electronics assembly 200. For example, the electronics assembly 200 can be formed from the circuit board 105, battery 110, battery holder 115, mounting frame 130, temperature sensor 150a, thermal putty 120, temperature sensor 150b, thermal paste 173, thermally conductive pad 155, one or more openings 159, and/or emitter 133, along with one or more other components that are discussed below with reference to FIGS. 8A-10B. Accordingly, the discussion above with reference to any or all of these components and/or other components discussed above is equally applicable to the electronics assembly 200 and components that can form the electronics assembly 200. As mentioned above, the use of the phrase “electronics assembly” or the reference numeral “200” in the present disclosure is not intended to be limiting, but rather, is merely intended as a way to refer to one or more components of the wearable device 10, for example, which can be enclosed by the housing 40 and/or one or more of substrates 70, 25, 65, 50, 65, and/or 20.



FIGS. 8A-8D illustrate an alternative design for a probe 240. FIGS. 8A-8B illustrate an assembled view where probe 240 is secured to the mounting frame 130 (and other components of the wearable device 10) and FIGS. 5C-5D illustrate an exploded view of the probe 240 along with other components of the wearable device 10. FIGS. 8A-8D also illustrate a flexible circuit 230 and a temperature sensor 150c which can be coupled to a portion of the flexible circuit 230. The flexible circuit 230 can include a first end or portion 232 which can be coupled to temperature sensor 150a and/or the circuit board 105 proximate a first surface of the circuit board 105 (for example, a “top” surface of the circuit board 105) and a second end or portion 234 that can be coupled with and/or can support the temperature sensor 150c. The flexible circuit 230 can include a stem 236 which can be connected to the first and second portions (or ends) 232, 234 of the flexible circuit 230.


Similar to as discussed with respect to probe 140, the probe 240 can be rigid. For example, the probe 240 can be not compressible and/or not extendible (for example, not compressible and/or not extendible relative to a longitudinal axis extending along a height of the probe 240). As another example, the probe 240 can be not compressible and/or not extendible relative to a longitudinal axis extending through a center of a cross-section of the probe 240.



FIGS. 9A-10B together illustrate the probe 240. The probe 240 can include a receptacle 260 (FIGS. 9A-9B) and an insert 250 (FIGS. 10A-10B) configured to be received within a portion of the receptacle 260 (which can also be referred to as a “housing 260”). The insert 250 can include a first end 252, a second end 254 opposite the first end 252, a body 258, and a head 256. The body 258 can comprise a cylindrical shape, among others. The head 256 of the insert 250 can be flared outward around a portion of the body 258. The head 256 of the insert 250 can be tapered. The head 256 of the insert 250 can extend around a portion of a perimeter of the body 258 and/or can be positioned at or near the end 252. The head 256 can have a cross-section that increases from a region where the head 256 connects to the body 258 to the end 252. The head 256 can have a frustoconical shape, as illustrated in FIGS. 10A-10B. As discussed below, the body 258 can be sized and/or shaped to fit within a cavity 268 of the receptacle 260. As also discussed below, the head 256 can be sized and/or shaped to fit within a tapered recess 265 of the receptacle 260.


The receptacle 260 can include a first end 260a, a second end opposite the first end 260b, and a body 262. The receptacle 260 can include a head 264 which extends outward from the body 262 and/or which has a cross-section that is greater than a cross-section of the body 262. The head 264 can be located at or near the end 260a of the receptacle 260. The body 262 can be cylindrical, among other shapes, similar to the shape of the body of the probe 140, for example. The head 264 can be sized and/or shaped to fit within the recessed portion 137 of the mounting frame 130 discussed above with reference to FIGS. 6A-6C. The head 264 can comprise a square or rectangular shape, for example, and the head 264 can have rounded corners. A height (or thickness) of the head 264 can be sized to match a depth of the recessed portion 137 of the mounting frame 130 so as to allow the head 264 to fit within the space defined by the recessed portion 137. Such configuration can allow the receptacle 260 (and the probe 240) to be at least partially secured to the mounting frame 130. Similar to the body 144 of the probe 140, the body 262 of the receptacle 260 can be sized and/or shaped to fit within the slot 132 of the mounting frame 130. Accordingly, the discussion above with reference to the securement and/or positioning of the probe 140 within the slot 132 of the mounting frame 130 is equally applicable to the probe 240 (and receptacle 260).


The receptacle 260 can include a protrusion 269 extending outward from a portion of a surface of the body 262 (see FIGS. 9A-9B). The protrusion 269 can extend outward from the surface of the body 262 and have a flat or planar end which can provide a flat surface by which the stem 236 of the flexible circuit 230 can rest against and/or contact, which can help with alignment and/or positioning of the stem 236 and flexible circuit 230 with respect to the receptacle 260 and the probe 240. The protrusion 269 can be circular shaped, for example, or another shape.


The receptacle 260 can include a cavity 268 extending through a portion of a height of the receptacle 260 (for example, the body 262). The cavity 268 can extend along an axis aligned with a height of the receptacle 260 and/or extending through a center of a cross-section of the receptacle 260. The receptacle 260 can additionally include an opening 266 positioned along an outer surface of the body 262. The opening 266 can extend inward from the outer surface of the body 262 towards an interior of the body 262. The opening 266 can meet and/or join the cavity 268 within an interior of the body 262. An axis extending through the opening 266 (e.g., a center of the opening 266) can be transverse (for example, perpendicular) to an axis extending through the cavity 268 (e.g., a center of the cavity 268). The opening 266 can be positioned proximate the end 260b of the receptacle 260. The opening 266 can be positioned closer to the end 260b than to the end 260a of the receptacle 260.


The cavity 268 can be sized and/or shaped to receive the insert 250 or a portion thereof. For example, the cavity 268 can be sized and/or shaped to receive the body 258 of the insert 250. The cavity 258 can be cylindrical, among other shapes, for example. The head 264 of the receptacle 260 can include a tapered recess 265 around the cavity 268. The tapered recess 265 can be sized and/or shaped to receive the head 256 of the insert 250 such that, when the body 258 is positioned within the cavity 268, the end 252 of the insert 250 sits “flush” (for example, on the same plane) with a surface of the end 260a and/or the head 264 of the receptacle 260.


With reference to FIGS. 8C-8D, the temperature sensor 150c can be coupled to the end 234 of the flexible circuit 230 which can be positioned within the opening 266 of the receptacle 260. The insert 250 can be positioned within the cavity 268 of the receptacle 260 such that the end 254 of the insert 250 is positioned proximate or adjacent (for example, above) the temperature sensor 150c. For example, when the insert 250 is positioned within the cavity 268 of the receptacle 260, the end 254 of the insert 250 can contact the temperature sensor 150c. When the probe 240 is secured to the mounting frame 130, for example, via securement of the receptacle 260 within the slot 132 of the mounting frame 130, the probe 240 can transmit thermal energy from a subject in a similar manner as the probe 140 described above. For example, the end 260b of the probe 240 can be positioned adjacent skin of the subject when the wearable device 10 is secured to the subject. Similar to the end 142b of the probe 140, the end 260b can contact (for example, indirectly via substrates 25 and/or 65), apply pressure to, and/or press into the subject skin. Where the wearable device 10 includes one or more of substrates 25 and/or 65, the substrates 25 and/or 65 can be positioned between the end 260b of the probe 240 and the subject's skin when the wearable device 10 is secured to or placed on the subject's skin. The probe 240 or portions thereof (such as the receptacle 260 and/or the insert 250) can comprise thermally conductive material similar to that described with reference to the probe 140. For example, the probe 240 or portions thereof (such as the receptacle 260 and/or the insert 250) can comprise a metallic material, such as aluminum.


Similar to that discussed with reference to probe 140, a portion of the probe 240 (for example, a portion of the receptacle 260) can be positioned through an opening 55 in the substrate 50. The discussion above with reference to the extent to which probe 140 can extend through opening 55 and/or beyond a surface of the substrate 50 is equally applicable to probe 240. In such configuration, when portions of the substrate 25 and/or 65 are secured to the subject's skin around the probe 240, the end 260b can apply pressure to and/or press into a portion of the skin, which can allow the probe 240 to better transmit thermal energy from within the skin. Thermal energy from the skin surface, which can be insulated and/or isolated by one or more of substrates 25, 50, 65 and/or 20, can be transmitted through the end 260b to the temperature sensor 150c positioned within the opening 266. The temperature sensor 150c can determine a body temperature of the subject and/or can generate and transmit one or more signals responsive to the detected thermal energy to the processor 11, for example, via the flexible circuit 230. The thermal energy from the subject's skin surface can also be transmitted from the end 260b through the receptacle 260 and/or insert 250 to the temperature sensor 150a. Such transmitted thermal energy can be transmitted through the thermal paste 173, through the thermally conductive pad 155, and the one or more openings 159 in the circuit board 105 similar to as discussed above with reference to FIG. 5D.


The temperature sensor 150c can be configured to generate one or more signals responsive to detected thermal energy, determined body temperature, and/or transmit such generated one or more signals and/or such determined body temperature to the processor 11 of the wearable device 10 continuously and/or intermittently. For example, temperature sensor 150c can be configured to generate one or more signals responsive to detected thermal energy, determine body temperature, and/or transmit such generated one or more signals and/or such determined temperature every 0.5 seconds, 1 second, 2 second, 3 seconds, 4 seconds, 5 seconds, 10 seconds, 30 seconds, 1 minute, 2 minute, 3 minutes, 4 minutes, 5 minutes, or at other intervals. Such temperature data can be measured and/or transmitted simultaneous of non-simultaneous with temperature data measure and/or transmitted by temperature sensor 150a and/or 150b which is discussed elsewhere herein.


Incorporating both of temperature sensor 150a and 150c can advantageously provide more robust measurements of core body temperature. As shown, temperature sensor 150c can be aligned (for example, vertically aligned with temperature sensor 150a and spaced from temperature sensor 150a along an axis that extends parallel to a height of the probe 240. Similar to temperature sensor 150a, temperature sensor 150c can be spaced away from the temperature sensor 150b. Because the temperature sensor 150c is positioned closer to the subject's skin surface and also closer to the end 260b of the probe than the temperature sensor 150a, the difference or gradient of detected temperature values from sensors 150a, 150c can be used by the processor 11 for purposes of comparison. Additionally, where the wearable device 10 includes all of temperature sensors 150a, 150b, 150c, the processor 11 can determine a core body temperature of the subject based on comparisons of temperature data measured by each of the temperature sensors 150a, 150b, 150c. The processor 11 can apply weight factors to any or all of temperature data received from temperature sensors 150a, 150b, 150c and/or otherwise compare such received data to determine a corrected body temperature.


The various devices, methods, and/or systems discussed above can be used for monitoring a subject's physiological information. For example, as discussed above, the wearable device 10 can be used to measure a subject's temperature, among other things, over time. As discussed above, the wearable device 10 can be configured to wirelessly communicate with (for example, via a wireless transceiver 13 of the wearable device 10) a separate computing device, such as a patient monitor and/or a mobile device (e.g., smart phone). The wearable device 10 can wirelessly transmit physiological data (such as temperature data) over time (continuously or periodically) to such separate computing device for display, among other things. As also discussed above, the wearable device 10 can wirelessly transmit processed or unprocessed obtained physiological information to a mobile phone (for example) which can include one or more hardware processors configured to execute an application that generates a graphical user interface displaying information representative of the processed or unprocessed physiological information obtained from the wearable device 10. Such graphical user interfaces can display continuous and/or periodic measurements obtained from the wearable device 10, display and/or issue various types of alerts, display physiological trend information (for example, temperature trends), among other things. Features or aspects displayed by such graphical user interfaces can include, without limitation, a splash screen, onboarding, device setup, instructions (for example, both visual/graphical and textual) for securing the wearable device 10 to a subject and/or pairing the wearable device 10 to the separate computing device, temperature data and/or trending dashboard, user scenarios, notes (such as medication notes and reminders as well as other user activity notes), temperature trending data and information, user settings and profiles, app settings, and alerts and push notifications.


Any and all of the wearable devices discussed herein can be utilized in systems and/or methods for monitoring and managing health status, exposure levels, and/or risk state of one or more users in relation to a variety of infections or illnesses, such as those described in co-pending U.S. patent application Ser. No. 17/206,794, filed on Mar. 19, 2021, titled “HEALTH MONITORING SYSTEM FOR LIMITING THE SPREAD OF AN INFECTION IN AN ORGANIZATION,” which is hereby incorporated by reference in its entirety.


Any and all of the wearable devices discussed herein can be utilized in systems and/or methods for remote patient care and monitoring of one or more users in relation to a variety of infections or illnesses, such as those described in co-pending U.S. patent application Ser. No. 17/207,469, filed on Mar. 19, 2021, titled “REMOTE PATIENT MANAGEMENT AND MONITORING SYSTEMS AND METHODS,” which is hereby incorporated by reference in its entirety.


Additional Considerations and Terminology

Although this invention has been disclosed in the context of certain preferred embodiments, it should be understood that certain advantages, features and aspects of the systems, devices, and methods may be realized in a variety of other embodiments. Additionally, it is contemplated that various aspects and features described herein can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Furthermore, the systems and devices described above need not include all of the modules and functions described in the preferred embodiments.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain features, elements, and/or steps are optional. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required or that one or more embodiments necessarily include logic for deciding, with or without other input or prompting, whether these features, elements, and/or steps are included or are to be always performed. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 10 degrees, 5 degrees, 3 degrees, or 1 degree. As another example, in certain embodiments, the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by less than or equal to 10 degrees, 5 degrees, 3 degrees, or 1 degree.


Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the systems and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.


Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein may include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication.


The methods and tasks described herein may be performed and fully automated by a computer system. The computer system may, in some cases, include multiple distinct computers or computing devices (e.g., physical servers, workstations, storage arrays, cloud computing resources, etc.) that communicate and interoperate over a network to perform the described functions. Each such computing device typically includes a processor (or multiple processors) that executes program instructions or modules stored in a memory or other non-transitory computer-readable storage medium or device (e.g., solid state storage devices, disk drives, etc.). The various functions disclosed herein may be embodied in such program instructions, and/or may be implemented in application-specific circuitry (e.g., ASICs or FPGAs) of the computer system. Where the computer system includes multiple computing devices, these devices may, but need not, be co-located. The results of the disclosed methods and tasks may be persistently stored by transforming physical storage devices, such as solid state memory chips and/or magnetic disks, into a different state. The computer system may be a cloud-based computing system whose processing resources are shared by multiple distinct business entities or other users.


Depending on the embodiment, certain acts, events, or functions of any of the processes or algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (for example, not all described operations or events are necessary for the practice of the algorithm). Moreover, in certain embodiments, operations or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.


Various illustrative logical blocks, modules, routines, and algorithm steps that may be described in connection with the disclosure herein can be implemented as electronic hardware (e.g., ASICs or FPGA devices), computer software that runs on general purpose computer hardware, or combinations of both. Various illustrative components, blocks, and steps may be described herein generally in terms of their functionality. Whether such functionality is implemented as specialized hardware versus software running on general-purpose hardware depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


Moreover, various illustrative logical blocks and modules that may be described in connection with the disclosure herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. A processor can include an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor may also include primarily analog components. For example, some or all of the rendering techniques described herein may be implemented in analog circuitry or mixed analog and digital circuitry. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The elements of any method, process, routine, or algorithm described in connection with the disclosure herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of a non-transitory computer-readable storage medium. An exemplary storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.


While the above detailed description has shown, described, and pointed out novel features, it can be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As can be recognized, certain portions of the description herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. The scope of certain embodiments disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A wearable device configured for noninvasive measurement of a user's body temperature, the wearable device comprising: a housing;a first substrate coupled to the housing and comprising an opening;a second substrate covering said opening of the first substrate and at least a portion of the first substrate, said second substrate configured to secure to skin of a user when the wearable device is in use;a mounting frame enclosed by the housing and the first substrate;a circuit board secured by the mounting frame and comprising a first surface, a second surface, and at least one opening extending through the circuit board between the first and second surfaces;a first temperature sensor mounted to the first surface of the circuit board and configured to determine a body temperature of the user; anda thermally conductive probe secured by the mounting frame and comprising a first end and a second end opposite said first end, said first end arranged adjacent to the second surface and the at least one opening of the circuit board, the thermally conductive probe configured to extend at least partially through the opening in the first substrate and further configured to transmit thermal energy from the user's skin towards the at least one opening of the circuit board and the first temperature sensor when the wearable device is in use;wherein said wearable device is configured such that said second substrate is positioned between said thermally conductive probe and the user's skin when the wearable device is in use.
  • 2. The wearable device of claim 1, wherein the mounting frame comprises a slot configured to receive and secure the thermally conductive probe, wherein the slot is configured to surround less than an entire perimeter of a cross-section of the thermally conductive probe.
  • 3. The wearable device of claim 1, wherein the thermally conductive probe is rigid.
  • 4. The wearable device of claim 1, wherein the opening in the first substrate is sized and shaped to correspond to a size and shape of a perimeter of a cross-section of the thermally conductive probe.
  • 5. The wearable device of claim 1, wherein the wearable device is configured to wirelessly transmit one or more body temperature values of the user to a separate computing device.
  • 6. The wearable device of claim 1, wherein the first temperature sensor is mounted to the first surface of the circuit board adjacent the at least one opening in the circuit board.
  • 7. The wearable device of claim 6, wherein the at least one opening of the circuit board is filled with a thermally conductive material.
  • 8. The wearable device of claim 6, wherein the at least one opening of the circuit board comprises a plurality of openings.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application No. 63/106,273, entitled “WEARABLE DEVICE FOR NONINVASIVE BODY TEMPERATURE MEASUREMENT,” filed Oct. 27, 2020, U.S. Patent Application No. 63/056,925, entitled “WEARABLE DEVICE FOR NONINVASIVE BODY TEMPERATURE MEASUREMENT,” filed Jul. 27, 2020, U.S. Patent Application No. 63/065,961, entitled “HEALTH SCREENING AND MONITORING SYSTEM,” filed Aug. 14, 2020, U.S. Patent Application No. 63/049,478, entitled “REMOTE PATIENT MANAGEMENT AND MONITORING SYSTEMS AND METHODS,” filed Jul. 8, 2020, U.S. Patent Application No. 62/992,808, entitled “REMOTE PATIENT MANAGEMENT AND MONITORING,” filed Mar. 20, 2020, U.S. Patent Application No. 62/992,779, entitled “OPIOID OVERDOSE MONITORING USER INTERFACE,” filed Mar. 20, 2020, and U.S. Patent Application No. 63/010,669, entitled “REMOTE PATIENT MANAGEMENT AND MONITORING,” filed Apr. 15, 2020. All of the above-mentioned applications are hereby incorporated by reference herein in their entireties. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1574)
Number Name Date Kind
3646606 Buxton et al. Feb 1972 A
3690313 Weppner et al. Sep 1972 A
3978849 Geneen Sep 1976 A
4108166 Schmid Aug 1978 A
4129125 Lester et al. Dec 1978 A
4231354 Kurtz et al. Nov 1980 A
D278363 Schenkel et al. Apr 1985 S
4589415 Haaga May 1986 A
4662378 Thomis May 1987 A
D297460 Inoue et al. Aug 1988 S
4838275 Lee Jun 1989 A
4852570 Levine Aug 1989 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4966154 Cooper et al. Oct 1990 A
5092340 Yamaguchi et al. Mar 1992 A
5140519 Friesdorf et al. Aug 1992 A
5159932 Zanetti et al. Nov 1992 A
5161539 Evans et al. Nov 1992 A
5262944 Weisner et al. Nov 1993 A
5277189 Jacobs Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5282474 Valdes Sosa et al. Feb 1994 A
5296688 Hamilton et al. Mar 1994 A
5318037 Evans et al. Jun 1994 A
5319355 Russek Jun 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5348008 Bornn et al. Sep 1994 A
5358519 Grandjean Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5375599 Shimizu Dec 1994 A
5377676 Vari et al. Jan 1995 A
5400794 Gorman Mar 1995 A
5416695 Stutman et al. May 1995 A
D359546 Savage et al. Jun 1995 S
D360596 Moritz et al. Jul 1995 S
5431170 Mathews Jul 1995 A
5434611 Tamura Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483968 Adam et al. Jan 1996 A
5494041 Wilk Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503149 Beavin Apr 1996 A
5505202 Mogi et al. Apr 1996 A
5523534 Meister et al. Jun 1996 A
5533511 Kaspari et al. Jul 1996 A
D372787 Dozier et al. Aug 1996 S
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5566676 Rosenfeldt et al. Oct 1996 A
5576952 Stutman et al. Nov 1996 A
5579001 Dempsey et al. Nov 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619991 Sloane Apr 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5640967 Fine et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685314 Geheb et al. Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5694020 Lang et al. Dec 1997 A
5724580 Levin et al. Mar 1998 A
5724983 Selker et al. Mar 1998 A
5725308 Smith et al. Mar 1998 A
5726440 Kalkhoran et al. Mar 1998 A
5732146 Yamada et al. Mar 1998 A
5734739 Sheehan et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758079 Ludwig et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5782805 Meinzer Jul 1998 A
5801637 Lomholt Sep 1998 A
5813403 Soller et al. Sep 1998 A
5822544 Chaco et al. Oct 1998 A
5822546 George Oct 1998 A
5855550 Lai et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5910139 Cochran et al. Jun 1999 A
5919134 Diab Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5924074 Evans Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5941836 Friedman Aug 1999 A
5942986 Shabot et al. Aug 1999 A
5950189 Cohen et al. Sep 1999 A
5987343 Kinast Nov 1999 A
5987519 Peifer et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6006119 Soller et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6014346 Malone Jan 2000 A
6018673 Chin et al. Jan 2000 A
6024699 Surwit et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6032063 Hoar et al. Feb 2000 A
6032678 Rottem Mar 2000 A
6035230 Kang et al. Mar 2000 A
6036718 Ledford et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6066204 Haven May 2000 A
6093146 Filangeri Jul 2000 A
6101478 Brown Aug 2000 A
6106463 Wilk Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6129686 Friedman Oct 2000 A
6132218 Benja-Athon Oct 2000 A
6139494 Cairnes Oct 2000 A
6144868 Parker Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6167258 Schmidt et al. Dec 2000 A
D437058 Gozani Jan 2001 S
6168563 Brown Jan 2001 B1
6171237 Avitall et al. Jan 2001 B1
6183417 Gehab et al. Feb 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6185448 Borovsky Feb 2001 B1
6195576 John Feb 2001 B1
6221012 Maschke et al. Apr 2001 B1
6224553 Nevo May 2001 B1
6230142 Benigno et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6267723 Matsumura et al. Jul 2001 B1
6269262 Kandori et al. Jul 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6304767 Soller et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6329139 Nova et al. Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6338039 Lonski et al. Jan 2002 B1
6354235 Davies Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6364834 Reuss et al. Apr 2002 B1
6368283 Xu et al. Apr 2002 B1
6385476 Osadchy et al. May 2002 B1
6385589 Trusheim et al. May 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470893 Boesen Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6524240 Thede Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6542764 Al-Ali et al. Apr 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6578428 Dromms et al. Jun 2003 B1
6580086 Schulz et al. Jun 2003 B1
6582393 Sage, Jr. Jun 2003 B2
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6616606 Peterson et al. Sep 2003 B1
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6641533 Causey et al. Nov 2003 B2
6646556 Smith et al. Nov 2003 B1
6650939 Takpke, II et al. Nov 2003 B2
D483872 Cruz et al. Dec 2003 S
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6694180 Boesen Feb 2004 B1
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
RE38492 Diab et al. Apr 2004 E
6719694 Weng et al. Apr 2004 B2
6735379 Salmon et al. May 2004 B2
6738652 Mattu et al. May 2004 B2
6746406 Lia et al. Jun 2004 B2
6751492 Ben-haim Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6766188 Soller Jul 2004 B2
6783492 Dominguez Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6790178 Mault et al. Sep 2004 B1
6795724 Hogan Sep 2004 B2
6796186 Lia et al. Sep 2004 B2
6804656 Rosenfeld Oct 2004 B1
6807050 Whitehorn et al. Oct 2004 B1
6816241 Grubisic Nov 2004 B2
6817979 Nihtila et al. Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6837848 Bonner et al. Jan 2005 B2
6841535 Divita et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6855112 Kao et al. Feb 2005 B2
6860266 Blike Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6897788 Khair et al. May 2005 B2
6907237 Dorenbosch et al. Jun 2005 B1
6915149 Ben-haim Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6934570 Kiani et al. Aug 2005 B2
6943348 Coffin, IV Sep 2005 B1
D511004 Masuda Oct 2005 S
6952340 Son et al. Oct 2005 B2
6956649 Acosta et al. Oct 2005 B2
D511384 Masuda Nov 2005 S
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6980419 Smith et al. Dec 2005 B2
6983179 Ben-haim Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6990087 Rao et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6997884 Ulmsten Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7004907 Banet et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7025729 De Chazal et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7033761 Shafer Apr 2006 B2
7035686 Hogan Apr 2006 B2
7063666 Weng et al. Jun 2006 B2
7079035 Bock et al. Jul 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7179228 Banet Feb 2007 B2
7188621 DeVries et al. Mar 2007 B2
7208119 Kurtock et al. Apr 2007 B1
7225006 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7229415 Schwartz Jun 2007 B2
7238159 Banet et al. Jul 2007 B2
7241287 Shehada et al. Jul 2007 B2
7244251 Shehada et al. Jul 2007 B2
7245373 Soller et al. Jul 2007 B2
7248172 Clifford et al. Jul 2007 B2
7252659 Shehada et al. Aug 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7256708 Rosenfeld Aug 2007 B2
7261697 Berstein Aug 2007 B2
7264616 Shehada et al. Sep 2007 B2
7267671 Shehada et al. Sep 2007 B2
7268859 Sage, Jr. et al. Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7307543 Rosenfeld Dec 2007 B2
7313423 Griffin et al. Dec 2007 B2
D558882 Brady Jan 2008 S
7314446 Byrd et al. Jan 2008 B2
7315825 Rosenfeld Jan 2008 B2
7321862 Rosenfeld Jan 2008 B2
7322971 Shehada et al. Jan 2008 B2
7336187 Hubbard, Jr. et al. Feb 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7356178 Ziel et al. Apr 2008 B2
7356365 Schurman Apr 2008 B2
7361155 Sage, Jr. et al. Apr 2008 B2
D569280 Chen May 2008 S
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7377794 Al Ali et al. May 2008 B2
7378975 Smith et al. May 2008 B1
7382247 Welch et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7395216 Rosenfeld Jul 2008 B2
7396330 Banet et al. Jul 2008 B2
7411509 Rosenfeld Aug 2008 B2
7413546 Agutter et al. Aug 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7419483 Shehada Sep 2008 B2
7433827 Rosenfeld Oct 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7439856 Weiner et al. Oct 2008 B2
7454359 Rosenfeld Nov 2008 B2
7454360 Rosenfeld Nov 2008 B2
7462151 Childre et al. Dec 2008 B2
7467094 Rosenfeld Dec 2008 B2
7475019 Rosenfeld Jan 2009 B2
7481772 Banet Jan 2009 B2
7483729 Al-Ali et al. Jan 2009 B2
7489250 Bock et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7497828 Wilk et al. Mar 2009 B1
7500950 Al-Ali et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7515043 Welch et al. Apr 2009 B2
7515044 Welch et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7532919 Soyemi et al. May 2009 B2
7549961 Hwang Jun 2009 B1
7551717 Tome et al. Jun 2009 B2
7559520 Quijano et al. Jul 2009 B2
7577475 Consentino et al. Aug 2009 B2
7588558 Sage, Jr. et al. Sep 2009 B2
7590950 Collins et al. Sep 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7597665 Wilk et al. Oct 2009 B2
7606608 Blank et al. Oct 2009 B2
7612999 Clark et al. Nov 2009 B2
7616303 Yang et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7639145 Lawson et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
7650291 Rosenfeld Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D610690 Tokumoto et al. Feb 2010 S
7654966 Westinskow et al. Feb 2010 B2
7658716 Banet et al. Feb 2010 B2
7684845 Juan Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
RE41236 Seely Apr 2010 E
D614305 Al-Ali et al. Apr 2010 S
7693697 Westinskow et al. Apr 2010 B2
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7722542 Lia et al. May 2010 B2
D617463 Tokumoto et al. Jun 2010 S
7729733 Al-Ali et al. Jun 2010 B2
7736318 Consentino et al. Jun 2010 B2
7740590 Bernstein Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7763420 Strizker et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621515 Chua et al. Aug 2010 S
D621516 Kiani et al. Aug 2010 S
7766818 Iketani et al. Aug 2010 B2
7774060 Westenskow et al. Aug 2010 B2
7778851 Schoenberg et al. Aug 2010 B2
7783879 Krummel et al. Aug 2010 B2
7791155 Diab Sep 2010 B2
7794407 Rothenberg Sep 2010 B2
7803120 Banet et al. Sep 2010 B2
7806830 Bernstein Oct 2010 B2
7820184 Strizker et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7831450 Schoenberg Nov 2010 B2
7841986 He et al. Nov 2010 B2
D629524 Zeller et al. Dec 2010 S
7848935 Gotlib Dec 2010 B2
7858322 Tymianski et al. Dec 2010 B2
7865232 Krishnaswamy et al. Jan 2011 B1
7880626 Al-Ali et al. Feb 2011 B2
7881892 Soyemi et al. Feb 2011 B2
7890156 Ooi et al. Feb 2011 B2
D634017 Tokumoto et al. Mar 2011 S
7899518 Trepagnier et al. Mar 2011 B2
7904133 Gehman et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7914514 Calderon Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7941199 Kiani May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7963927 Kelleher et al. Jun 2011 B2
7967749 Hutchinson et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7987069 Rodgers et al. Jul 2011 B2
7988639 Starks Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991463 Kelleher et al. Aug 2011 B2
7991625 Rosenfeld Aug 2011 B2
7993275 Banet et al. Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8027846 Schoenberg Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8033996 Behar Oct 2011 B2
8036736 Snyder et al. Oct 2011 B2
8038625 Afonso et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
8068104 Rampersad Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
8094013 Lee et al. Jan 2012 B1
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
D659836 Bensch et al. May 2012 S
8170887 Rosenfeld May 2012 B2
8175895 Rosenfeld May 2012 B2
8180440 McCombie et al. May 2012 B2
8182443 Kiani May 2012 B1
8190223 Al-Ali et al. May 2012 B2
8200321 McCombie et al. Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8206312 Farquhar Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8229532 Davis Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
D665085 Strother et al. Aug 2012 S
8235907 Wilk et al. Aug 2012 B2
8239010 Banet et al. Aug 2012 B2
8239780 Manetta et al. Aug 2012 B2
8241213 Lynn et al. Aug 2012 B2
8249815 Taylor Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8290574 Field et al. Oct 2012 B2
8294588 Fisher et al. Oct 2012 B2
8294716 Lord et al. Oct 2012 B2
8311747 Taylor Nov 2012 B2
8311748 Taylor et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
8315687 Cross et al. Nov 2012 B2
8315812 Taylor Nov 2012 B2
8315813 Taylor et al. Nov 2012 B2
8315814 Taylor et al. Nov 2012 B2
8321004 Moon et al. Nov 2012 B2
8321150 Taylor Nov 2012 B2
RE43860 Parker Dec 2012 E
8326649 Rosenfeld Dec 2012 B2
8346330 Lamego Jan 2013 B2
8348840 Heit et al. Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8360936 Dibenedetto et al. Jan 2013 B2
8364250 Moon et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
D679018 Fullerton et al. Mar 2013 S
8388353 Kiani et al. Mar 2013 B2
8401602 Kiani Mar 2013 B2
8401874 Rosenfeld Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8419649 Banet et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430317 Ross Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437824 Moon et al. May 2013 B2
8437825 Dalvi et al. May 2013 B2
8442607 Banet et al. May 2013 B2
8449469 Banet et al. May 2013 B2
D684071 Greenwood et al. Jun 2013 S
8455290 Siskavich Jun 2013 B2
8457707 Kiani Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8475370 McCombie et al. Jul 2013 B2
8506480 Banet et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8527038 Moon et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8545417 Banet et al. Oct 2013 B2
8554297 Moon et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8574161 Banet et al. Nov 2013 B2
8577431 Lamego et al. Nov 2013 B2
8579813 Causey, III et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8588924 Dion Nov 2013 B2
8591411 Banet et al. Nov 2013 B2
8594776 McCombie et al. Nov 2013 B2
8600777 Schoenberg Dec 2013 B2
8602997 Banet et al. Dec 2013 B2
8614630 Narasimhan et al. Dec 2013 B2
8620678 Gotlib Dec 2013 B2
8622922 Banet et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8639319 Hugh et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8670811 O'Reilly Mar 2014 B2
8672854 McCombie et al. Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
D701964 Yoneta et al. Apr 2014 S
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8716629 Klewer et al. May 2014 B2
8723677 Kiani May 2014 B1
8727977 Banet et al. May 2014 B2
8738118 Moon et al. May 2014 B2
8740792 Kiani et al. Jun 2014 B1
8740802 Banet et al. Jun 2014 B2
8740807 Banet et al. Jun 2014 B2
8747330 Banet et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
D709846 Oswaks Jul 2014 S
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8808188 Banet et al. Aug 2014 B2
8818477 Soller Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8840549 Al-Ali et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8866620 Amir Oct 2014 B2
8873035 Yang et al. Oct 2014 B2
8878888 Rosenfeld Nov 2014 B2
8888700 Banet et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8898369 Yang Nov 2014 B1
D719267 Vaccarella et al. Dec 2014 S
8907287 Vanderpohl Dec 2014 B2
8909330 McCombie et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8956293 McCombie et al. Feb 2015 B2
8956294 McCombie et al. Feb 2015 B2
8974115 Segal et al. Mar 2015 B2
8979765 Banet et al. Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9035794 Narasimhan et al. May 2015 B2
9055928 McCombie et al. Jun 2015 B2
9057689 Soller Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9095291 Soller Aug 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9131881 Diab et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9149192 Banet et al. Oct 2015 B2
9153112 Kiani et al. Oct 2015 B1
9161700 Banet et al. Oct 2015 B2
D743817 Singh et al. Nov 2015 S
9173593 Banet et al. Nov 2015 B2
9173594 Banet et al. Nov 2015 B2
9183738 Allen, Sr. et al. Nov 2015 B1
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
D745167 Canas et al. Dec 2015 S
D746161 Vardi Dec 2015 S
9204816 Aga et al. Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9214196 Aga et al. Dec 2015 B2
9215986 Banet et al. Dec 2015 B2
9218454 Kiani et al. Dec 2015 B2
9245668 Vo et al. Jan 2016 B1
9247004 Azimi Jan 2016 B2
9267572 Barker et al. Feb 2016 B2
9277864 Yang et al. Mar 2016 B2
9277880 Poeze et al. Mar 2016 B2
9299036 Ross et al. Mar 2016 B2
9307908 Chan et al. Apr 2016 B2
9307915 McCombie et al. Apr 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9339209 Banet et al. May 2016 B2
9339211 Banet et al. May 2016 B2
D759828 Riedle Jun 2016 S
9364158 Banet et al. Jun 2016 B2
9378450 Mei et al. Jun 2016 B1
9380952 Banet et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9408573 Welch et al. Aug 2016 B2
D766113 Dohi et al. Sep 2016 S
9436645 Al-Ali et al. Sep 2016 B2
9439574 McCombie et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9459089 Ganton et al. Oct 2016 B2
9471541 Chan et al. Oct 2016 B1
9474474 Lamego et al. Oct 2016 B2
9480435 Olsen Nov 2016 B2
9483726 Mei et al. Nov 2016 B2
9486138 Simpson et al. Nov 2016 B2
9492092 McCombie et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9545227 Selvaraj et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9563836 Mei et al. Feb 2017 B2
9566007 McCombie et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9588135 Narasimhan et al. Mar 2017 B1
9593985 Segal et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9632533 Li et al. Apr 2017 B2
9632981 Chan et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636029 Narasimhan et al. May 2017 B1
9649054 Lamego et al. May 2017 B2
9655546 Shen et al. May 2017 B2
9655559 Chan et al. May 2017 B2
D789809 Kang Jun 2017 S
9681205 Yang Jun 2017 B1
9697928 Al-Ali et al. Jul 2017 B2
D795100 Alla Aug 2017 S
D795252 Chung et al. Aug 2017 S
D795713 Griffin et al. Aug 2017 S
D795714 Pugmire et al. Aug 2017 S
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9728061 Shen et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
D796350 Bone Sep 2017 S
D796363 Ross et al. Sep 2017 S
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9762581 Wang et al. Sep 2017 B1
9762673 Azimi Sep 2017 B2
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788778 Chan et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814405 Yang et al. Nov 2017 B2
9818281 Narasimhan Nov 2017 B2
D805926 Im et al. Dec 2017 S
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9855003 Chan et al. Jan 2018 B2
9861289 Li et al. Jan 2018 B2
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9870533 Ross Jan 2018 B2
9872619 Lee Jan 2018 B2
9872634 Chan et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936382 Yang et al. Apr 2018 B2
9936917 Poeze et al. Apr 2018 B2
D817784 Swenson et al. May 2018 S
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980678 Chan et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986951 Ferdosi et al. Jun 2018 B1
9986952 Dalvi et al. Jun 2018 B2
9993203 Mei et al. Jun 2018 B2
9999376 Chan et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10020075 Perlman et al. Jul 2018 B2
10039463 Selvaraj et al. Aug 2018 B1
10080524 Xi Sep 2018 B1
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833305 Jang et al. Nov 2018 S
D833624 DeJong et al. Nov 2018 S
10123716 Narasimhan et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10140837 Shen et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10143383 Tseng et al. Dec 2018 B2
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
D838372 Goering et al. Jan 2019 S
10182750 Philippine et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194834 Selvaraj et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10212165 Petersen et al. Feb 2019 B1
10213146 Aga et al. Feb 2019 B2
10213163 Ferdosi et al. Feb 2019 B2
D842136 Jang et al. Mar 2019 S
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
D846746 Lee Apr 2019 S
10262506 Aga et al. Apr 2019 B2
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10317427 Chan et al. Jun 2019 B2
10321872 Li Jun 2019 B2
10324109 Chan et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10357163 Selvaraj et al. Jul 2019 B1
10362002 Ross et al. Jul 2019 B2
10373714 Selvaraj et al. Aug 2019 B1
10383520 Wojitczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10383562 Chan et al. Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10420473 Shi Sep 2019 B2
10422814 Chan et al. Sep 2019 B2
D861508 Ejiri et al. Oct 2019 S
D864120 Forrest et al. Oct 2019 S
10433781 Chan et al. Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448849 Ferdosi et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
D867906 Chang Nov 2019 S
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10506953 Ross et al. Dec 2019 B2
10524726 Wang et al. Jan 2020 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Sherim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10554756 Azimi Feb 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10582854 Liou et al. Mar 2020 B2
10582862 Selvaraj et al. Mar 2020 B1
10588565 Larson et al. Mar 2020 B2
10595776 Selvaraj et al. Mar 2020 B1
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617325 Chan et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10631732 Larson et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D883819 Singh et al. May 2020 S
D886303 Huang et al. Jun 2020 S
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10739205 Jang et al. Aug 2020 B2
10743091 Wang et al. Aug 2020 B1
10750951 Prachar Aug 2020 B1
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10758164 Derkx et al. Sep 2020 B2
10772522 Zadig Sep 2020 B2
10779098 Iswanto et al. Sep 2020 B2
D898924 Hinds et al. Oct 2020 S
10827958 Biederman et al. Nov 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856741 Damania et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D907219 Neri Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
D920138 Kuwashiro et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
11064948 Peabody Jul 2021 B2
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11083371 Szabados et al. Aug 2021 B1
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11172909 Chan et al. Nov 2021 B2
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
11234623 Frick Feb 2022 B2
11253190 Ortiz et al. Feb 2022 B2
D946425 Chang et al. Mar 2022 S
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950492 Wang et al. May 2022 S
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11457810 Van Tassel et al. Oct 2022 B2
11464410 Muhsin Oct 2022 B2
11484265 Wang et al. Nov 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
11517229 Huang et al. Dec 2022 B2
11534086 Garai et al. Dec 2022 B2
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
20010011355 Kawai Aug 2001 A1
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020052311 Solomon et al. May 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020063690 Chung et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020177758 Schoenberg Nov 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030027326 Ulmsten et al. Feb 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030058838 Wengrovitz Mar 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20030216670 Beggs Nov 2003 A1
20040013647 Solomon et al. Jan 2004 A1
20040015103 Aminian et al. Jan 2004 A1
20040064072 Shapira Apr 2004 A1
20040090742 Son et al. May 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040122787 Avinash et al. Jun 2004 A1
20040126007 Ziel et al. Jul 2004 A1
20040147818 Levy et al. Jul 2004 A1
20040179332 Smith et al. Sep 2004 A1
20040186357 Soderberg et al. Sep 2004 A1
20040230179 Shehada et al. Nov 2004 A1
20040243017 Causevic Dec 2004 A1
20040254431 Shehada et al. Dec 2004 A1
20040254432 Shehada et al. Dec 2004 A1
20050005710 Sage Jan 2005 A1
20050009926 Kreye et al. Jan 2005 A1
20050020918 Wilk et al. Jan 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050080336 Byrd et al. Apr 2005 A1
20050096542 Weng et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050124864 Mack et al. Jun 2005 A1
20050125256 Schoenberg Jun 2005 A1
20050148882 Banet et al. Jul 2005 A1
20050164933 Tymianski et al. Jul 2005 A1
20050191294 Arap et al. Sep 2005 A1
20050208648 Sage, Jr. et al. Sep 2005 A1
20050209518 Sage, Jr. et al. Sep 2005 A1
20050228244 Banet Oct 2005 A1
20050228299 Banet Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050242946 Hubbard, Jr. et al. Nov 2005 A1
20050245831 Banet Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050261594 Banet Nov 2005 A1
20050261598 Banet et al. Nov 2005 A1
20050268401 Dixon et al. Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20060009697 Banet et al. Jan 2006 A1
20060009698 Banet et al. Jan 2006 A1
20060049936 Collins, Jr. et al. Mar 2006 A1
20060056487 Kuroda et al. Mar 2006 A1
20060058647 Strommer et al. Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060073719 Kiani Apr 2006 A1
20060084878 Banet et al. Apr 2006 A1
20060089543 Kim et al. Apr 2006 A1
20060094936 Russ May 2006 A1
20060149393 Calderon Jul 2006 A1
20060155175 Ogino et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060200009 Wekell et al. Sep 2006 A1
20060217684 Shehada et al. Sep 2006 A1
20060217685 Shehada et al. Sep 2006 A1
20060224413 Kim et al. Oct 2006 A1
20060235300 Weng et al. Oct 2006 A1
20060253042 Stahmann et al. Nov 2006 A1
20060279426 Bonnet et al. Dec 2006 A1
20060282021 DeVaul et al. Dec 2006 A1
20060286861 Avevor et al. Dec 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070021675 Childre et al. Jan 2007 A1
20070027368 Collins et al. Feb 2007 A1
20070032733 Burton et al. Feb 2007 A1
20070032748 McNeil et al. Feb 2007 A1
20070055116 Clark et al. Mar 2007 A1
20070055544 Jung et al. Mar 2007 A1
20070060798 Krupnik et al. Mar 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070088406 Bennett et al. Apr 2007 A1
20070096897 Weiner May 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070118399 Avinash et al. May 2007 A1
20070132597 Rodgers Jun 2007 A1
20070140475 Kurtock et al. Jun 2007 A1
20070142715 Banet et al. Jun 2007 A1
20070156033 Causey et al. Jul 2007 A1
20070157285 Frank et al. Jul 2007 A1
20070159332 Koblasz Jul 2007 A1
20070163589 DeVries et al. Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070185393 Zhou et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070244724 Pendergast et al. Oct 2007 A1
20070250286 Duncan et al. Oct 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070276261 Banet et al. Nov 2007 A1
20070276262 Banet et al. Nov 2007 A1
20070276632 Banet et al. Nov 2007 A1
20070288263 Rodgers Dec 2007 A1
20080000479 Elaz et al. Jan 2008 A1
20080003200 Arap et al. Jan 2008 A1
20080021731 Rodgers Jan 2008 A1
20080021854 Jung et al. Jan 2008 A1
20080033661 Syroid et al. Feb 2008 A1
20080051670 Banet et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080058614 Banet et al. Mar 2008 A1
20080058657 Schwartz et al. Mar 2008 A1
20080064965 Jay et al. Mar 2008 A1
20080077026 Banet et al. Mar 2008 A1
20080082004 Banet et al. Apr 2008 A1
20080090626 Griffin et al. Apr 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080091471 Michon et al. Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080097167 Yudkovitch et al. Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080114220 Banet et al. May 2008 A1
20080119412 Tymianski et al. May 2008 A1
20080129518 Carlton-Foss Jun 2008 A1
20080138278 Scherz et al. Jun 2008 A1
20080169922 Issokson Jul 2008 A1
20080171919 Stivoric et al. Jul 2008 A1
20080188795 Katz et al. Aug 2008 A1
20080194918 Kulik et al. Aug 2008 A1
20080208912 Garibaldi Aug 2008 A1
20080214949 Stivoric et al. Sep 2008 A1
20080221396 Garces et al. Sep 2008 A1
20080221399 Zhou et al. Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080221461 Zhou et al. Sep 2008 A1
20080228077 Wilk et al. Sep 2008 A1
20080275309 Stivoric et al. Nov 2008 A1
20080281167 Soderberg et al. Nov 2008 A1
20080281168 Gibson et al. Nov 2008 A1
20080281181 Manzione et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080292172 Assmann et al. Nov 2008 A1
20080300020 Nishizawa et al. Dec 2008 A1
20080312542 Banet et al. Dec 2008 A1
20080319275 Chiu et al. Dec 2008 A1
20080319282 Tran Dec 2008 A1
20080319327 Banet et al. Dec 2008 A1
20080319354 Bell et al. Dec 2008 A1
20090005651 Ward et al. Jan 2009 A1
20090018409 Banet et al. Jan 2009 A1
20090018422 Banet et al. Jan 2009 A1
20090018453 Banet et al. Jan 2009 A1
20090018808 Bronstein et al. Jan 2009 A1
20090024008 Brunner et al. Jan 2009 A1
20090036759 Ault et al. Feb 2009 A1
20090044334 Parsell et al. Feb 2009 A1
20090052623 Tome et al. Feb 2009 A1
20090054735 Higgins et al. Feb 2009 A1
20090054743 Wekell et al. Feb 2009 A1
20090062682 Bland et al. Mar 2009 A1
20090069642 Gao et al. Mar 2009 A1
20090069868 Bengtsson et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090099480 Salgo et al. Apr 2009 A1
20090112072 Banet et al. Apr 2009 A1
20090118628 Zhou et al. May 2009 A1
20090119843 Rodgers et al. May 2009 A1
20090124867 Hirsch et al. May 2009 A1
20090131759 Sims et al. May 2009 A1
20090143832 Saba Jun 2009 A1
20090157058 Ferren et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090171225 Gadodia et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090182287 Kassab Jul 2009 A1
20090226372 Ruoslahti et al. Sep 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090254003 Buckman Oct 2009 A1
20090264778 Markowitz et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090281462 Heliot et al. Nov 2009 A1
20090309755 Williamson Dec 2009 A1
20090322540 Richardson et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100010385 Skelton et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100030094 Lundback Feb 2010 A1
20100036209 Ferren et al. Feb 2010 A1
20100063365 Pisani et al. Mar 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100113894 Padiy May 2010 A1
20100121217 Padiy et al. May 2010 A1
20100121226 Ten Kate et al. May 2010 A1
20100125217 Kuo et al. May 2010 A1
20100130875 Banet et al. May 2010 A1
20100144627 Vitek et al. Jun 2010 A1
20100160794 Banet et al. Jun 2010 A1
20100160795 Banet et al. Jun 2010 A1
20100160796 Banet et al. Jun 2010 A1
20100160797 Banet et al. Jun 2010 A1
20100160798 Banet et al. Jun 2010 A1
20100168536 Banet et al. Jul 2010 A1
20100168589 Banet et al. Jul 2010 A1
20100185101 Sakai et al. Jul 2010 A1
20100198622 Gajic et al. Aug 2010 A1
20100210958 Manwaring et al. Aug 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100261982 Noury et al. Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298651 Moon et al. Nov 2010 A1
20100298652 McCombie et al. Nov 2010 A1
20100298653 McCombie et al. Nov 2010 A1
20100298654 McCombie et al. Nov 2010 A1
20100298655 McCombie et al. Nov 2010 A1
20100298656 McCombie et al. Nov 2010 A1
20100298657 McCombie et al. Nov 2010 A1
20100298658 McCombie et al. Nov 2010 A1
20100298659 McCombie et al. Nov 2010 A1
20100298660 McCombie et al. Nov 2010 A1
20100298661 McCombie et al. Nov 2010 A1
20100298742 Perlman et al. Nov 2010 A1
20100305412 Darrah et al. Dec 2010 A1
20100312103 Gorek et al. Dec 2010 A1
20100317951 Rutkowski et al. Dec 2010 A1
20100324384 Moon et al. Dec 2010 A1
20100324385 Moon et al. Dec 2010 A1
20100324386 Moon et al. Dec 2010 A1
20100324387 Moon et al. Dec 2010 A1
20100324388 Moon et al. Dec 2010 A1
20100324389 Moon et al. Dec 2010 A1
20110021930 Mazzeo et al. Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110046495 Osypka Feb 2011 A1
20110046498 Klap et al. Feb 2011 A1
20110066051 Moon et al. Mar 2011 A1
20110077473 Lisogurski Mar 2011 A1
20110077488 Buxton et al. Mar 2011 A1
20110078596 Rawlins et al. Mar 2011 A1
20110080294 Tanishima et al. Apr 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110087084 Jeong et al. Apr 2011 A1
20110087117 Tremper et al. Apr 2011 A1
20110087756 Biondi Apr 2011 A1
20110098583 Pandia et al. Apr 2011 A1
20110105956 Hirth May 2011 A1
20110110560 Adhikari May 2011 A1
20110118561 Tari et al. May 2011 A1
20110118573 Mckenna May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110152629 Eaton et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110172967 Al-Ali et al. Jul 2011 A1
20110184252 Archer et al. Jul 2011 A1
20110184253 Archer et al. Jul 2011 A1
20110201972 Ten Kate Aug 2011 A1
20110208073 Matsukawa et al. Aug 2011 A1
20110212090 Pedersen et al. Sep 2011 A1
20110213225 Bernstein Sep 2011 A1
20110224498 Banet et al. Sep 2011 A1
20110224499 Banet et al. Sep 2011 A1
20110224500 Banet et al. Sep 2011 A1
20110224506 Moon et al. Sep 2011 A1
20110224507 Banet et al. Sep 2011 A1
20110224508 Moon et al. Sep 2011 A1
20110224556 Moon et al. Sep 2011 A1
20110224557 Banet et al. Sep 2011 A1
20110224564 Moon et al. Sep 2011 A1
20110227739 Gilham et al. Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110230791 Ten Kate et al. Sep 2011 A1
20110257489 Banet et al. Oct 2011 A1
20110257544 Kaasinen et al. Oct 2011 A1
20110257551 Banet et al. Oct 2011 A1
20110257552 Banet et al. Oct 2011 A1
20110257553 Banet et al. Oct 2011 A1
20110257554 Banet et al. Oct 2011 A1
20110257555 Banet et al. Oct 2011 A1
20110263950 Larson et al. Oct 2011 A1
20110264035 Yodfat et al. Oct 2011 A1
20110288421 Banet et al. Nov 2011 A1
20110295094 Doyle et al. Dec 2011 A1
20120001751 Baker et al. Jan 2012 A1
20120004579 Luo et al. Jan 2012 A1
20120029300 Paquet Feb 2012 A1
20120029304 Medina et al. Feb 2012 A1
20120029879 Sing et al. Feb 2012 A1
20120059230 Teller et al. Mar 2012 A1
20120059283 Gravem et al. Mar 2012 A1
20120071771 Behar Mar 2012 A1
20120075464 Derenne et al. Mar 2012 A1
20120088999 Bishay et al. Apr 2012 A1
20120095352 Tran Apr 2012 A1
20120095778 Gross et al. Apr 2012 A1
20120101353 Reggiardo et al. Apr 2012 A1
20120101411 Hausdorff et al. Apr 2012 A1
20120101770 Grabiner et al. Apr 2012 A1
20120108983 Banet et al. May 2012 A1
20120117209 Sinha May 2012 A1
20120123231 O'Reilly May 2012 A1
20120123799 Nolen et al. May 2012 A1
20120136221 Killen et al. May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179011 Moon et al. Jul 2012 A1
20120184120 Basta et al. Jul 2012 A1
20120190949 McCombie et al. Jul 2012 A1
20120197619 Namer Yelin et al. Aug 2012 A1
20120203078 Sze et al. Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120226160 Kudoh Sep 2012 A1
20120239434 Breslow et al. Sep 2012 A1
20120242501 Tran et al. Sep 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120284053 Rosenfeld Nov 2012 A1
20120294801 Scherz et al. Nov 2012 A1
20120315867 Davis et al. Dec 2012 A1
20130006131 Narayan et al. Jan 2013 A1
20130006151 Main et al. Jan 2013 A1
20130023775 Lamego et al. Jan 2013 A1
20130035603 Jarausch et al. Feb 2013 A1
20130041591 Lamego Feb 2013 A1
20130046197 Dlugos, Jr. et al. Feb 2013 A1
20130052620 Franklin et al. Feb 2013 A1
20130054180 Barfield Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130099936 Azimi Apr 2013 A1
20130099937 Azimi Apr 2013 A1
20130109929 Menzel May 2013 A1
20130109937 Banet et al. May 2013 A1
20130116515 Banet et al. May 2013 A1
20130120147 Narasimhan et al. May 2013 A1
20130120152 Narasimhan et al. May 2013 A1
20130130622 Yang et al. May 2013 A1
20130138395 Baggen et al. May 2013 A1
20130155889 Brownworth et al. Jun 2013 A1
20130214850 Aga et al. Aug 2013 A1
20130245487 Aga et al. Sep 2013 A1
20130261494 Bloom et al. Oct 2013 A1
20130281875 Narasimhan et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130317333 Yun et al. Nov 2013 A1
20130317393 Weiss et al. Nov 2013 A1
20130340176 Stevens et al. Dec 2013 A1
20130342691 Lewis et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140005502 Klap et al. Jan 2014 A1
20140015687 Narasimhan et al. Jan 2014 A1
20140019080 Chan et al. Jan 2014 A1
20140022081 Ribble et al. Jan 2014 A1
20140025010 Stroup et al. Jan 2014 A1
20140046674 Rosenfeld Feb 2014 A1
20140066795 Ferdosi et al. Mar 2014 A1
20140073982 Yang et al. Mar 2014 A1
20140081099 Banet et al. Mar 2014 A1
20140088385 Moon et al. Mar 2014 A1
20140121543 Chan et al. May 2014 A1
20140128778 Chan et al. May 2014 A1
20140129178 Meduna et al. May 2014 A1
20140142445 Banet et al. May 2014 A1
20140152673 Lynn et al. Jun 2014 A1
20140163393 McCombie et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140200415 McCombie et al. Jul 2014 A1
20140200474 Selvaraj et al. Jul 2014 A1
20140228692 Chan et al. Aug 2014 A1
20140235964 Banet et al. Aug 2014 A1
20140249431 Banet et al. Sep 2014 A1
20140249432 Banet et al. Sep 2014 A1
20140249433 Banet et al. Sep 2014 A1
20140249434 Banet et al. Sep 2014 A1
20140249435 Banet et al. Sep 2014 A1
20140249440 Banet et al. Sep 2014 A1
20140249441 Banet et al. Sep 2014 A1
20140249442 Banet et al. Sep 2014 A1
20140257056 Moon et al. Sep 2014 A1
20140257057 Reis Cunha et al. Sep 2014 A1
20140257850 Walker et al. Sep 2014 A1
20140266787 Tran Sep 2014 A1
20140275845 Eagon et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275888 Wegerich et al. Sep 2014 A1
20140275932 Zadig Sep 2014 A1
20140276127 Ferdosi et al. Sep 2014 A1
20140276145 Banet et al. Sep 2014 A1
20140276175 Banet et al. Sep 2014 A1
20140276238 Osorio Sep 2014 A1
20140288947 Simpson et al. Sep 2014 A1
20140301893 Stroup et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140343889 Ben Shalom et al. Nov 2014 A1
20140375428 Park Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150020571 Chan et al. Jan 2015 A1
20150045628 Moghadam et al. Feb 2015 A1
20150055681 Tsuchida Feb 2015 A1
20150057562 Linders et al. Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087923 Bardy et al. Mar 2015 A1
20150094618 Russell et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112264 Kamen et al. Apr 2015 A1
20150126822 Chavan et al. May 2015 A1
20150126882 Chavan et al. May 2015 A1
20150130613 Fullam May 2015 A1
20150164410 Selvaraj et al. Jun 2015 A1
20150164411 Selvaraj et al. Jun 2015 A1
20150164417 Tupin, Jr. Jun 2015 A1
20150164437 McCombie et al. Jun 2015 A1
20150173654 Bélanger et al. Jun 2015 A1
20150190086 Chan et al. Jul 2015 A1
20150219542 Kent Aug 2015 A1
20150221202 Russell et al. Aug 2015 A1
20150254956 Shen et al. Sep 2015 A1
20150272481 Glaser et al. Oct 2015 A1
20150282717 McCombie et al. Oct 2015 A1
20150320339 Larson et al. Nov 2015 A1
20160004952 Mei Jan 2016 A1
20160022224 Banet et al. Jan 2016 A1
20160038061 Kechichian et al. Feb 2016 A1
20160045163 Weisner et al. Feb 2016 A1
20160095549 Chang Apr 2016 A1
20160143546 McCombie et al. May 2016 A1
20160183794 Gannon et al. Jun 2016 A1
20160183875 Yang et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160206277 Bidichandani et al. Jul 2016 A1
20160228050 Sugla et al. Aug 2016 A1
20160242681 Shen et al. Aug 2016 A1
20160256080 Shen et al. Sep 2016 A1
20160275776 Shen et al. Sep 2016 A1
20160278652 Kaib et al. Sep 2016 A1
20160278691 Larson et al. Sep 2016 A1
20160278692 Larson et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160296159 Larson et al. Oct 2016 A1
20160296160 Larson et al. Oct 2016 A1
20160302698 Perlman Oct 2016 A1
20160302715 Larson et al. Oct 2016 A1
20160338640 Chan et al. Nov 2016 A1
20160338641 Chan et al. Nov 2016 A1
20160367170 Larson et al. Dec 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000410 Chan et al. Jan 2017 A1
20170020429 Chan et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027498 Larson et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170049365 Perlman et al. Feb 2017 A1
20170053083 Perlman Feb 2017 A1
20170150893 McCombie et al. Jun 2017 A1
20170156618 Narasimhan et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170184630 Chan et al. Jun 2017 A1
20170202473 Narasimhan et al. Jul 2017 A1
20170238812 Atlas Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170311116 Aga et al. Oct 2017 A1
20170311862 Aga et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170366615 Azimi Dec 2017 A1
20180028072 Shi Feb 2018 A1
20180035889 Liou et al. Feb 2018 A1
20180035909 Hadley et al. Feb 2018 A1
20180064348 Tsuchimoto Mar 2018 A1
20180064361 Yang et al. Mar 2018 A1
20180064595 Srinivasan Mar 2018 A1
20180078174 Chan et al. Mar 2018 A1
20180078189 Chan et al. Mar 2018 A1
20180078190 Chan et al. Mar 2018 A1
20180078219 Selvaraj Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180146862 Moon et al. May 2018 A1
20180160909 Damania et al. Jun 2018 A1
20180189235 Chan et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249961 Ferdosi et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180289289 Chan et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180303365 Selvaraj et al. Oct 2018 A1
20180303434 Selvaraj et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180310879 Chan et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180338708 Chan et al. Nov 2018 A1
20190015023 Monfre Jan 2019 A1
20190038455 Heitz et al. Feb 2019 A1
20190042614 Wickenhauser Feb 2019 A1
20190059777 Aga et al. Feb 2019 A1
20190082968 Karnik et al. Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090781 Selvaraj et al. Mar 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190150788 Selvaraj et al. May 2019 A1
20190183425 Ferdosi et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190221803 Moore et al. Jul 2019 A1
20190223722 Xi Jul 2019 A1
20190238546 Petersen et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190272916 Selvaraj et al. Sep 2019 A1
20190320906 Olsen Oct 2019 A1
20190336010 Selvaraj et al. Nov 2019 A1
20190350665 Furutani Nov 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20190388013 Achmann Dec 2019 A1
20190388030 Colliou et al. Dec 2019 A1
20200011746 Allen et al. Jan 2020 A1
20200021930 Iswanto et al. Jan 2020 A1
20200046231 Ferdosi et al. Feb 2020 A1
20200054218 Xi Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200069252 Upadhya et al. Mar 2020 A1
20200069281 Chan et al. Mar 2020 A1
20200077951 Nallathambi et al. Mar 2020 A1
20200085310 Zahner et al. Mar 2020 A1
20200086133 Wang et al. Mar 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138314 Doctor et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200138399 Li et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20200390336 Mensch et al. Dec 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210186337 Matsunaga et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275095 Sarussi et al. Sep 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210321917 Choi et al. Oct 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386368 Carlsson et al. Dec 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220026946 Wen Jan 2022 A1
20220031171 van der Linden et al. Feb 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220095930 Li et al. Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220117520 Wang et al. Apr 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220370012 Golenberg et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20220401037 Sadeghzadeh et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230106359 Wang et al. Apr 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
Foreign Referenced Citations (56)
Number Date Country
101401313 Apr 2009 CN
104127181 Nov 2014 CN
104586398 May 2015 CN
103308069 Jun 2015 CN
104688196 Jun 2015 CN
106934444 Jul 2017 CN
0 735 499 Oct 1996 EP
10-336064 Dec 1998 JP
2002-513602 May 2002 JP
2002-542493 Dec 2002 JP
2003-521985 Jul 2003 JP
2003-322569 Nov 2003 JP
2005-218036 Aug 2005 JP
2005-295375 Oct 2005 JP
2007-095365 Apr 2007 JP
2007-174051 Jul 2007 JP
2007-296266 Nov 2007 JP
2008-027030 Feb 2008 JP
2008-519635 Jun 2008 JP
2009-017959 Jan 2009 JP
2009-529930 Aug 2009 JP
2010-000286 Jan 2010 JP
2010-524510 Jul 2010 JP
2011-510363 Mar 2011 JP
2012-502671 Feb 2012 JP
2012-237670 Dec 2012 JP
2013-034511 Feb 2013 JP
2013-526900 Jun 2013 JP
2013-544616 Dec 2013 JP
D1531996 Jul 2015 JP
WO 98029790 Jul 1998 WO
WO 99013766 Mar 1999 WO
WO 00063713 Oct 2000 WO
WO 2004056266 Jul 2004 WO
WO 2004059551 Jul 2004 WO
WO 2009036313 Mar 2009 WO
WO 2010125096 Nov 2010 WO
WO 2010135518 Nov 2010 WO
WO 2011002904 Jan 2011 WO
WO 2013033631 Mar 2013 WO
WO 2013056160 Apr 2013 WO
WO 2013119982 Aug 2013 WO
WO 2013120014 Aug 2013 WO
WO 2014047205 Mar 2014 WO
WO 2014083888 Jun 2014 WO
WO 2015054665 Apr 2015 WO
WO 2015074007 May 2015 WO
WO 2015123157 Aug 2015 WO
WO 2016058032 Apr 2016 WO
WO 2016185905 Nov 2016 WO
WO 2017040700 Mar 2017 WO
WO 2018071715 Apr 2018 WO
WO 2018152566 Aug 2018 WO
WO 2019005801 Jan 2019 WO
WO 2019161277 Aug 2019 WO
WO 2021189002 Sep 2021 WO
Non-Patent Literature Citations (66)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
US 9,167,986 B2, 10/2015, Aga et al. (withdrawn)
US 9,241,629 B2, 01/2016, Yang et al. (withdrawn)
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
Aminian et al., “Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes”, Journal of Biomechanics, 2002, vol. 35, pp. 689-699.
Anliker et al., “AMON: A Wearable Multiparameter Medical Monitoring and Alert System”, IEEE Transactions on Information Technology in Biomedicine, vol. 8, No. 4, Dec. 2004, pp. 415-427.
Asada et al., “Mobile Monitoring with Wearable Photoplethysmographic Biosensors”, IEEE Engineering in Medicine and Biology Magazine, May/Jun. 2003, pp. 28-40.
Ayello et al., “How and Why to Do Pressure Ulcer Risk Assessment”, Advances in Skin & Wound Care, May/Jun. 2002, vol. 15, No. 3, pp. 125-133.
Bergstrom et al., “A Prospective Study of Pressure Sore Risk Among Institutionalized Elderly”, Journal of the American Geriatrics Society, Aug. 1992, vol. 40, No. 8, pp. 747-758.
Bourke et al., “Evaluation of a Threshold-Based Tri-Axial Accelerometer Fall Detection Algorithm”, Gait & Posture, vol. 26, 2007, pp. 194-199.
Campo et al., “Wireless Fall Sensor with GPS Location for Monitoring the Elderly”, 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, Aug. 20-24, 2008, pp. 498-501.
Caporusso et al., “A Pervasive Solution for Risk Awareness in the Context of Fall Prevention”, Pervasive Health, 2009, pp. 8.
Capuano et al., “Remote Telemetry—New Twists for Old Technology”, Nursing Management, Jul. 1995, vol. 26, No. 7, pp. 26-32.
Chen et al., “In-Bed Fibre Optic Breathing and Movement Sensor for Non-Intrusive Monitoring”, Proceedings of SPIE vol. 7173, 2009, pp. 6.
Chen et al., “Wearable Sensors for Reliable Fall Detection”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 1-4, 2005, pp. 3551-3554.
Degen et al., “Speedy: A Fall Detector in a Wrist Watch”, Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC'03), 2003, pp. 184-187.
Dhillon et al., “Towards the Prevention of Pressure Ulcers with a Wearable Patient Posture Monitor Based on Adaptive Accelerometer Alignment”, 34th Annual International Conference of the IEEE EMBS, San Diego, CA, Aug. 28-Sep. 1, 2012, pp. 4513-4516.
Di Rienzo et al., “MagIC System: a New Textile-Based Wearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, Sep. 1-4, 2005, pp. 7167-7169.
Dinh et al., “A Fall and Near-Fall Assessment and Evaluation System”, The Open Biomedical Engineering Journal, 2009, vol. 3, pp. 1-7.
Elmer-Dewitt, Philip, “Apple's iWatch: The killer apps may be in hospitals, not health clubs”, Fortune.com, Feb. 3, 2014, http://fortune.com/2014/02/03/apples-iwatch-the-killer-apps-may-be-in-hospitals-not-health-clubs/, 4 pages.
Giansanti et al., “Assessment of Fall-Risk by Means of a Neural Network Based on Parameters Assessed by a Wearable Device During Posturography”, Medical Engineering & Physics, vol. 30, 2008, pp. 367-372.
Giansanti, Daniele, “Investigation of Fall-Risk Using a Wearable Device with Accelerometers and Rate Gyroscopes”, Institute of Physics Publishing, Physiological Measurement, vol. 27, 2006, pp. 1081-1090.
Grundy et al., “Telemedicine in Critical Care: An Experiment in Health Care Delivery”, JACEP, Oct. 1977, vol. 6, No. 10, pp. 439-444.
Grundy et al., “Telemedicine in Critical Care: Problems in Design, Implementation and Assessment”, Jul. 1982, vol. 10, No. 7, pp. 471-475.
Gunningberg et al., “Accuracy in the Recording of Pressure Ulcers and Prevention after Implementing an Electronic Health Record in Hospital Care”, Quality Safe Health Care, 2008, vol. 17, pp. 281-285.
Gunningberg et al., “Improved Quality and Comprehensiveness in Nursing Documentation of Pressure Ulcers after Implementing an Electronic Health Record in Hospital Care”, Journal of Clinical Nursing, 2009, vol. 18, pp. 1557-1564.
Harada et al., “Portable Orientation Estimation Device Based on Accelerometers, Magnetometers and Gyroscope Sensors for Sensor Network”, IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems 2003, 2003, pp. 191-196.
Hwang et al., “Development of Novel Algorithm and Real-time Monitoring Ambulatory System Using Bluetooth Module for Fall Detection in the Elderly”, Proceedings of the 26th Annual International Conference of the IEEE EMBS, Sep. 1-5, 2004, pp. 2204-2207.
Kang et al., “A Wrist-Worn Integrated Health Monitoring Instrument with a Tele-Reporting Device for Telemedicine and Telecare”, IEEE Transaction on Instrumentation and Measurement, vol. 55, No. 5, Oct. 2006, pp. 1655-1661.
Kärki et al., “Pressure Mapping System for Physiological Measurements”, XVIII IMEKO World Congress, Metrology for a Sustainable Development, Sep. 17-22, 2006, Rio de Janeiro, Brazil, pp. 5.
Li et al., “Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information”, Conference Paper, Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, Berkeley, CA, USA, Jun. 3-5, 2009, pp. 6.
Lindemann et al., “Evaluation of a Fall Detector Based on Accelerometers: A Pilot Study”, Medical & Biological Engineering & Computing, vol. 43, 2005, pp. 548-551.
Linder-Ganz et al., “Real-Time Continuous Monitoring of Sub-Dermal Tissue Stresses Under the Ischial Tuberosities in Individuals with Spinal Cord Injury”, Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008), Jun. 25-29, 2008, Marriott Resort, Marco Island, Florida, pp. 2.
Luo et al., “A Dynamic Motion Pattern Analysis Approach to Fall Detection”, 2004 IEEE International Workshop on Biomedical Circuits & Systems, Dec. 1-3, 2004, pp. S2.1-5-S2.1-8.
“Masimo Announces FDA Clearance of Centroid™”, Business Wire, Jun. 25, 2020, pp. 3.
Mathie et al., “A System for Monitoring Posture and Physical Activity Using Accelerometers”, Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, Oct. 25-28, 2001, pp. 3654-3657.
McInerney, Joan A., “Reducing Hospital-Acquired Pressure Ulcer Prevalence Through a Focused Prevention Program”, Advances in Skin & Wound Care, vol. 21, No. 2, Feb. 2008, pp. 75-78.
Merbitz et al., “Wheelchair Push-ups: Measuring Pressure Relief Frequency”, Archives of Physical Medicine and Rehabilitation, vol. 66, No. 7, Jul. 1985, pp. 433-438.
Narayanan et al., “Falls Management: Detection and Prevention, Using a Waist-Mounted Triaxial Accelerometer”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, Aug. 23-26, 2007, pp. 4037-4040.
Noury, Norbert, “A Smart Sensor for the Remote Follow Up of Activity and Fall Detection of the Elderly”, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, pp. 314-317.
Nyan et al., “A Wearable System for Pre-Impact Fall Detection”, Journal of Biomechanics, vol. 41, 2008, pp. 3475-3481.
Nyan et al., “Garment-Based Detection of Falls and Activities of Daily Living Using 3-Axis MEMS Accelerometer”, Institute of Physics Publishing, International MEMS Conference 2006, Journal of Physics: Conference Series 34, 2006, pp. 1059-1067.
O'Donovan et al., “A Context Aware Wireless Body Area Network”, Pervasive Health, 2009, pp. 8.
Pannurat et al., “Automatic Fall Monitoring: A Review”, Sensors, 2014, vol. 14, pp. 12900-12936.
Pérolle et al., “Automatic Fall Detection and Activity Monitoring for Elderly”, Jan. 2007, pp. 5.
Po et al., “Overview of MEMSWear II—Incorporating MEMS Technology Into Smart Shirt for Geriatric Care”, Institute of Physics Publishing, International MEMS Conference 2006, Journal of Physics: Conference Series 34, 2006, pp. 1079-1085.
Prado et al., “Distributed Intelligent Architecture for Falling Detection and Physical Activity Analysis in the Elderly”, Proceedings of the Second Joint EMBS/BMES Conference, Oct. 23-26, 2002, pp. 1910-1911.
Rithalia et al., “Quantification of Pressure Relief Using Interface Pressure and Tissue Perfusion in Alternating Pressure Air Mattresses”, Archives of Physical Medicine and Rehabilitation, vol. 81, Oct. 2000, pp. 1364-1369.
Rysavy, Peter, “Making the Call with Two-Way Paging”, Network Computing, Published Jan. 15, 1997, www.rysavy.com/Articles/twoway.htm, pp. 5.
Sakai et al., “Continuous Monitoring of Interface Pressure Distribution in Intensive Care Patients for Pressure Ulcer Prevention”, Journal of Advanced Nursing, vol. 65, No. 4, 2009, pp. 809-817.
Spillman Jr., et al., “A ‘Smart’ Bed for Non-Intrusive Monitoring of Patient Physiological Factors”, Measurement Science and Technology, Aug. 2004, vol. 15, No. 8, pp. 1614-1620.
Wachter et al., “The Employment of an Iterative Design Process to Develop a Pulmonary Graphical Display”, Journal of the American Medical Informatics Association, vol. 10, No. 4, Jul./Aug. 2003, pp. 363-372.
Webster, John G., “A Pressure Mat for Preventing Pressure Sores”, IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1989, pp. 2.
Williams et al., “A Remote Electronic Monitoring System for the Prevention of Pressure Sores”, Proceedings of the 19th International Conference, IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL, pp. 1076-1079.
Wu et al., “Portable Preimpact Fall Detector with Inertial Sensors”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, No. 2, Apr. 2008, pp. 178-183.
International Search Report & Written Opinion in PCT Application No. PCT/US2013/025384, dated Aug. 6, 2013.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2013/025384, dated Aug. 21, 2014.
International Search Report & Written Opinion in PCT Application No. PCT/US2016/049751, dated Mar. 13, 2017.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2016/049751, dated Mar. 6, 2018.
International Search Report & Written Opinion in PCT Application No. PCT/US2017/056405, dated Jan. 26, 2018.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2017/056405, dated Apr. 25, 2019.
International Search Report & Written Opinion in PCT Application No. PCT/US2021/023331, dated Jun. 22, 2021.
Virtual Expo Group, Home Page. (HJ30049031) in 1 page.
International Search Report & Written Opinion in PCT Application No. PCT/US2022/076733, dated Dec. 16, 2022.
Letter from Payal Patel to Masimo Corporation re 510(k) No. K203215, U.S. Food & Drug Administration, dated Jun. 11, 2021 in 13 pages.
Lötters et al., “Procedure for in-use Calibration of Triaxial Accelerometers in Medical Applications”, Sensors and Actuators A: Physical, Jun. 15, 1998, vol. 68, No. 1-3, pp. 221-228.
Related Publications (1)
Number Date Country
20210290072 A1 Sep 2021 US
Provisional Applications (7)
Number Date Country
63106273 Oct 2020 US
63065961 Aug 2020 US
63056925 Jul 2020 US
63049478 Jul 2020 US
63010669 Apr 2020 US
62992808 Mar 2020 US
62992779 Mar 2020 US