Not applicable.
Not applicable.
Not applicable.
Some wearable devices, such as shoes, may be worn on the feet of a user to protect the feet of the user while also providing an improvement in ambulatory motion. Some improvements in ambulatory motion attributable to the use of shoes may include allowing faster speeds, improved stability, and/or insulation from elements of a surface, such as a ground surface, traversed during the ambulatory motion. Other devices, such as skateboards, may incorporate roller elements that may be associated with the feet of a user to enable a user to perform ambulatory motions otherwise unavailable to the user in the absence of a device with an incorporated roller element. Further, some wearable devices, such as skates, combine features of shoes with roller elements to enable a user to perform ambulatory motions otherwise unavailable to the user in the absence of a wearable device with an incorporated roller element.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
Roger R. Adams, the sole inventor of the subject matter disclosed herein, is also the sole inventor of various patents including the previously issued U.S. Pat. No. 6,450,509 (hereinafter referred to as the '509 patent) which disclosed, inter alia, the innovative concept of providing a single wheel in the heel of a shoe. Some of the inventive concepts of the '509 patent are commercially sold under the United States trademark of “Heelys.” In the present patent application, Roger R. Adams discloses a plurality of shortcomings of current roller devices and further discloses new and innovative subject matter that may be utilized to overcome the identified shortcomings as well as provide additional benefits and functionality described herein.
Some so-called “roller devices” provide features of a shoe integrated with one or more roller elements. Other roller devices may provide a means for attaching one or more roller elements to a user and/or to a shoe that may be worn by a user. In various manners, each of the above-described roller devices may be used to provide “roller transportation” in which the roller device itself, a user wearing the roller device, and/or an object and/or a user at least partially carried by the roller device is provided translational movement that is at least partially attributable to rolling one or more roller elements of the roller device. Roller transportation may be desirable for practical transportation of a user or an object carried by a roller device, recreational purposes, and/or competitive and/or sporting use of the roller device.
Roller transportation may serve a practical purpose of providing transportation of a user and/or an object carried by a roller device by accomplishing transportation of the user and/or object from a start location to an end location in a manner that is faster, requires less work, quieter, requires less supervisory attention, and/or is generally safer than other available and/or economical means of transportation. In some cases, a user may attach a roller device to the user's feet and perform roller transportation over a distance in less time than the same user could have otherwise traveled the distance without the aid of the roller device. In other cases, transportation of a user and/or object over a distance using a roller device may be accomplished using less physical work or energy. For example, a roller device may transport a user and/or an object downhill in a manner that allows a roller element of the roller device to take advantage of a gravitational potential energy of the user and/or the object to provide transportation using less physical work and/or energy. In other cases, roller transportation may provide quieter and/or smoother movement of a user and/or object due to a reduction in impact force used to effectuate translational movement of the user and/or object. In still other cases, transportation of a user and/or object may be provided in a manner that requires less supervisory attention as compared to other means of providing translational movement. For example, some roller devices may provide a resistance to allowing unintentional deviation from an initial direction of translational movement, thereby allowing the movement to occur with a reduced need for concern and/or oversight over iterative course corrections during the translational movement. In yet other cases, roller transportation may provide safer translational movement by generally maintaining a greater number of points of contact with the surface being traversed as opposed to alternative means of translational movement such as walking and/or running in which points of contact with the surface being traversed are cyclically established and eliminated. In other words, some forms of roller transportation may provide periods of translational movement, for example, but not limited to, so-called “coasting” during which a user may retain a broader base of support that may utilize multiple points of contact associated with each foot of the user and the ground surface being traversed. For example, in some cases, a user may traverse a ground surface by coasting without removing his feet from the ground surface. In such cases, in some embodiments, the user may accordingly generally maintain, for example, but not limited to, eight points of contact with the ground surface, four points of contact associated with each foot. During such coasting using some embodiments of roller devices disclosed herein, the user is not required to generally remove contact between either of his feet and the ground surface (the above-described cyclically established and eliminated points of contact) to continue traversing the ground surface. Further, roller transportation may provide an economic efficiency insofar as, for example, roller devices may be worn by wait staff at a restaurant to more quickly and/or efficiently service customers.
Roller devices may further provide roller transportation as a source of recreational transportation. For some users, roller transportation may be preferred over walking, running, and/or other means of translational movement so that a user of a roller device may enjoy easily traveling along a sidewalk, boardwalk, and/or a scenic route. Such recreational transportation, in some cases, may be accomplished through the use of so-called “traditional quad-type roller skates” and/or so-called “in-line skates”. For other users, roller transportation made available by roller devices may present an attractive means of transportation where the skill required to use the roller device may be increasingly acquired as a skill that may be competitively pitted against another user's skill in roller transportation. For example, some users may enjoy speed racing using the roller devices, performing so-called “tricks” using the roller devices, and/or participating in competitions based on performing artistic body movements using the roller devices. It will be appreciated that, in some cases, commercial venues such as roller rinks and/or so-called “skate parks” may provide convenient locations for recreational and/or competitive roller transportation events. Further, the use of roller transportation may be employed as one of many components of a sport, such as the sport of so-called “roller derby”.
While there are many roller devices that are wearable by a user and/or attachable to a user and/or a shoe of a user, much room for improvement remains. Some roller devices provide a user with a higher center of gravity that may lead to a higher risk and/or perceived higher risk of injury if the user were to fall. Similarly, roller devices that cause a user to have a higher center of gravity may increase a nervousness and/or anxiety of a user due to the perceived higher center of gravity and/or relative increased distance from the ground and/or surface being traversed. Some roller devices, such as in-line skates, may be considered by some users as being difficult to use and/or difficult to maneuver, uncomfortable for recreation, and/or not cool or fashionable. Still further, some roller devices, such as traditional quad-style skates, may be considered by some users as being too heavy, too slow, and/or too prone to result in a crash and/or fall in response to encountering common transportation obstacles. Further yet, some users may believe that durable, comfortable, acceptable performance, and/or aesthetically attractive roller devices are prohibitively expensive.
The systems and devices of this disclosure, in some embodiments, overcome one or more of the above problems related to roller transportation as well as other unlisted problems with conventional roller transportation devices. In some embodiments of this disclosure, a wearable device, such as, but not limited to, a skate, may be provided that combines the provision of a very low center of gravity for the skate and/or the user while also associating a unique independent suspension to one or more of the wheel assemblies of the skate. In some embodiments, the combined features may allow even an inexperienced skater to quickly learn to skate, in some cases, as a result of enjoying the lower center of gravity and the stability and maneuverability provided by the application of the independent suspensions. Still further, in some embodiments, because the skate comprises an aesthetically desirable shoe portion that is much more visually prominent than other mechanical components of the skate, the user can skate while maintaining a desired sense of fashion. In some embodiments, the skate may be a low profile skate that hugs closely to the ground without sacrificing skating performance or style.
In some embodiments of the wearable devices disclosed herein, such as, but not limited to, wearable devices 1000, 3000, the wearable devices 1000, 3000 may provide users of all skill levels of roller transportation and/or experience levels of roller transportation with a variety of features unavailable to a user in a single roller device previous to provision of the embodiments of this disclosure. For example, in some cases, an inexperienced and/or relatively unskilled roller device user may use wearable devices 1000, 3000 disclosed herein to obtain roller transportation skills and/or otherwise perform roller transportation with increased confidence as a result of a combination of the features disclosed herein. Particularly, in some cases, the improved lower centers of gravity, broader base of support relative to the ground surface 1008, and/or increased resistance to catastrophic falls related to encountering everyday roller transportation obstacles may convince an otherwise tepid user of roller devices that the wearable devices 1000, 3000 are safer and/or more enjoyable to use than other available roller devices. As described above, the lower centers of gravity may be, in some embodiments, attributable to the locations of clearance planes 1002, foot interface surfaces 1006, axes of rotation 1808, and/or other features of the wearable devices relative to each other and/or relative to the ground 1008. The broader base of support may be, in some embodiments, attributable to the relative locations of wheel assemblies 1800 and attachment systems 2000, 3006, 3120. Further, the increased resistance to falls may be, in some embodiments, at least partially attributable to the relative locations of one or more of the cavity axes 1412, suspension axes 1602, and the axes of rotation 1808 to each other. Still further, the increased resistance to falls and/or generally more enjoyable use of roller devices may be at least partially attributable to the overall nature of the substantially independent suspensions 1600 and/or the nature in which the floating axles 1652 rotate about the centers of rotation 1654. In some embodiments of the wearable devices 1000, 3000, the provision of wheel assemblies 1800 each having a separate axle and/or suspension 1600 may provide benefits over traditional roller devices comprising shared axle arrangements. By not requiring shared axle arrangements, the present invention and some embodiments of the wearable devices 1000, 3000 may provide forward/rearward offsetting of generally left/right opposing wheel assemblies 1800, the wheel assemblies 1800 may be associated with independent suspensions 1600, and the axes of rotation 1800 may be higher than the foot interface surface 1006 and/or the user's foot, each of these features contributing to a smoother, more stable, lower center of gravity roller device and allowing for improved roller transportation.
Still further, users having higher levels of skill in using roller devices and/or professional roller device users may enjoy the same features described above to achieve other performance related improvements in roller transportation using the roller devices and/or wearable devices 1000, 3000 disclosed herein. For example, the roller devices and/or wearable devices 1000, 3000 disclosed herein may enable a user to achieve, for example, but not limited to, higher rates of acceleration and/or deceleration, higher velocities, increased turning velocities and/or decreased turning radii, greater stability when performing tricks and/or jumps relative to the ground surface 1008 and/or other objects, and/or an increased ability for the user to withstand destabilizing forces applied to the user's body while the user is performing roller transportation. For example, a user may perform jam skating (in some cases, a combination of dance, gymnastics, and skating) using wearable devices 1000, 3000 and the components of the wearable devices 1000, 3000 may be specially selected to provide increased flexibility, shock absorption, and/or static stability to support successful body movements of a jam skater. In other embodiments, a wearable devices 1000, 3000 may be configured for use in sports, such as, but not limited to, roller derby sports in which competitors travel around a continuous loop track that is sometimes inclined and where direction of travel is sometimes generally limited to repetitive clockwise, or alternatively, counterclockwise travel. In some cases, wearable devices 1000, 3000 may comprise components configured to accommodate the above-described direction of travel along a track and/or an incline of a track by altering component geometry and/or component material composition differently in a left-right direction of a wearable device. Such alternative configurations may improve component life, increase user comfort, and/or otherwise provide superior turning and/or speed capabilities as compared to a roller device 1000, 3000 that is primarily configured for traversing a substantially flat and/or straight support surface.
In general, the roller devices and/or wearable devices 1000, 3000 disclosed herein may be well suited for wide acceptance by experienced and inexperienced roller device users alike. In some cases, the roller devices and/or wearable devices 1000, 3000 disclosed herein may provide roller device users with an otherwise unavailable form of exercise and/or recreation. In other cases, the roller devices and/or wearable devices 1000, 3000 disclosed herein may provide a sufficient increase in performance and/or desirable tangible physical and/or emotional sensations (for example due to one or more or combinations of the following characteristics: sensations at least partially attributable to the lower centers of gravity, the broad base of support, independent type suspension, off centered and/or staggered wheel placement, wheels and/or tires that are generally shaped as taller and narrower, athletic type shoe configuration, and/or a general increase in comfort and/or smooth ride) that infrequent or experienced users of roller devices may, of their own volition and in view of the availability of the roller devices and/or wearable devices 1000, 3000 disclosed herein, increase the frequency and/or duration of their participation in roller transportation activities.
Referring now to
Accordingly, the discussion below and associated illustrative figures initially concentrate in great detail on the wearable device 1000. Most generally, the wearable device 1000 will be discussed below, first, as a whole to explain the major components of the wearable device 1000 and the most basic functionality of the wearable device 1000. Subsequently, the major components of the wearable device 1000 will be discussed individually in greater detail. Still later, additional functionality of the wearable device 1000 will be discussed prior to discussions of many methods of operating and/or using the wearable device 1000 and other systems.
This disclosure is organized to provide an understanding of the above-listed systems and methods through a step-wise detailed discussion of an embodiment of a wearable device 1000 according to the present disclosure. It will be appreciated that the discussion of the wearable device 1000 does not proscribe the entire disclosure, but rather, serves as a specific embodiment of a system according to the disclosure against which many systems and methods of this disclosure may be relatively discussed. For example, in one embodiment discussed in great detail, a wearable device 1000 comprising features of a shoe associated with roller elements is disclosed. In some embodiments, the wearable device 1000 may generally comprise what may be described as a shoe removably attached to a frame. In some embodiments, the frame may serve to join the shoe to one or more roller elements. Further, in some embodiments of the wearable device 1000, one or more of the roller elements may be attached to the frame via a suspension. It will be appreciated the inventive aspects of the systems and methods disclose herein are not limited to merely the sum of all of the parts of the embodiments disclosed, but rather, the inventive nature of some embodiments may additionally be accounted for by the methods in which the component parts of the embodiments interact relative to each other.
Referring now to
Wearable device 1000 may be described as a wearable roller device configurable to selectively provide roller transportation. Most generally, wearable device 1000 comprises a shoe 1200, a frame 1400 configured for selective attachment to the shoe 1200, and a plurality of suspensions 1600 selectively configurable to attach a plurality of wheel assemblies 1800 to the frame 1400. In a broad sense, the wearable device 1000 may accept a foot of a user of the wearable device 1000 into the shoe 1200 and the wearable device 1000 may provide roller transportation to a user in response to rotation of one or more of the wheel assemblies 1800. Although only one shoe 1200 is shown, this disclosure anticipates that a second shoe for a user's left foot may be worn concurrently while the user wears the shoe 1200 on the user's right foot. In some embodiments, the second shoe may be configured to appropriately accommodate typical anatomical differences between the user's left foot and the user's right foot. Still further, the second shoe may, in some embodiments, be associated with a second frame (in some embodiments, similarly configured to appropriately accommodate typical anatomical differences between the user's left foot and the user's right foot) and/or a second plurality of wheel assemblies 1800, and/or a second plurality of suspensions 1600.
In this embodiment, the shoe 1200 comprises an upper 1202, a sole 1204, and a heel counter 1206. The upper 1202 is generally more flexible than the sole 1204 and comprises a toebox 1208 to contain and/or protect toes of a user. The upper 1202 also comprises a vamp 1210 and a tongue 1212 configured to selectively cover a medial portion of the user's foot. The vamp 1210 and the tongue 1212 may selectively be restrained in position relative to the user's foot through the use of laces 1214 and/or an optional strap 1216. In this embodiment, the strap 1216 comprises a hook and loop type fastener material configured for selective attachment to compatible hook and loop type fastener material of an optional strap landing 1218. The strap 1216 and strap landing 1218 are not included in some embodiments and wearable device 1000 is shown in
The sole 1204 comprises a removable insole 1222 that may contact a bottom of the user's foot and/or sock worn on the user's foot. The sole 1204 further comprises an outsole 1224 that generally serves as a lowest portion of the shoe 1200. The sole 1204 additionally comprises midsole 1226 generally sandwiched between the removable insole 1222 and the outsole 1224. The midsole 1226 may comprise material and/or structural elements selected to provide a balance between support, stability, and cushioning. The outsole 1224 may generally be more resistant to wear and/or abrasion since the outsole 1224 may, in some embodiments, selectively contact a ground surface. The outsole 1224 may further comprise tread protrusions 1228 that may extend downward from a primary tread surface 1230.
The sole 1204 may further comprise an optional sole cavity 1232, in this embodiment, represented generally as a portion of the sole 1204 with a reduced amount of midsole 1226 above the outsole 1224. In some embodiments, the sole cavity 1232, may be located elsewhere within the sole 1204 and/or may be provided with a pressurized fluid and/or interchangeable insert, each of which may change one or more of the support, stability, and cushioning provided by the sole 1204. The sole cavity 1232 is not included in some embodiments and wearable device 1000 is shown in
The heel counter 1206 of the shoe 1200 may be provided to wrap around the back of a user's heel to stabilize the heel and/or aid in motion control. The heel counter 1206 may comprise ergonomic features to prevent uncomfortable interference with the user's foot and/or ankle. For example, in some embodiments, the heel counter 1206 may comprise an inner ankle profile 1240, an outer ankle profile 1242, and/or an achilles tendon profile 1244. Profiles 1240, 1242, and 1244 may allow a user's foot to move and/or rotate about the ankle with a reduced chance of causing blistering and/or other pressure injury to the user's foot. The profiles 1240, 1242, and 1244 may also prevent blistering and/or other injury that may otherwise result from varying degrees of foot and/or ankle displacement relative to the shoe 1200 during use of the wearable device 1000.
In
In some embodiments, the components of suspensions 1600 may be substantially disposed along a suspension axis 1602. In some embodiments, dependent upon the magnitude and direction of forces applied to the wearable device 1000 as discussed in greater detail below, the suspension axes 1602 may lie substantially coaxial with the respective associated cavity axes 1412.
In some embodiments, each suspension 1600 may independently connect a wheel assembly 1800 to a suspension block 1408. Most generally, each wheel assembly 1800 may comprise a substantially cylindrical wheel hub 1802 that is substantially circumferentially enveloped by a tire 1804. In some embodiments, each wheel hub 1802 may comprise a substantially central bore 1806 that, in some embodiments, is a through hole extending through the wheel hub 1802. In some embodiments, each wheel assembly 1800 may comprise an axis of rotation 1808 that generally represents a central axis of the bore 1806. Wheel assemblies 1800 may generally be configured for rotation about their respective axes of rotation 1808, which in some embodiments, may provide the above-described rotational transportation. Accordingly, the wheel assemblies 1800 may be referred to as the so-called roller elements that, in some embodiments, may generally enable the wearable device 1000 to provide the above-described roller transportation. In some embodiments, dependent upon the magnitude and direction of forces applied to the wearable device 1000 as discussed in greater detail below, the axes of rotation 1808 may lie substantially coaxial with their respective associated suspension axes 1602 and/or cavity axes 1412. In some embodiments, the tire 1804 may comprise a generally commercially available tire that has been altered through the reduction of a leftward/rightward thickness of the tire 1804 in a localized manner that may leave a central neck and/or support hub of tire material.
The wearable device 1000 may be described as comprising a plurality of reference planes and/or surfaces that may vary in position based on whether the wearable device 1000 is in the above-described unloaded state. In some cases, the wearable device 1000 may be in a “loaded state” where external forces (excepting gravitational forces) are applied to the wearable device 1000. In other cases, the wearable device 1000 may be in a “used state” in which a physical orientation, shape, and/or form of the wearable device 1000 varies from the unloaded state due to previous use, wear, and/or breakage. In still other cases, the wearable device 1000 may be in both the loaded state and the used state simultaneously. Accordingly, reference planes and/or surfaces may vary greatly in position in response to the magnitude and direction of external forces applied to the wearable device 1000 and/or in response to previous use, wear, and/or breakage. Unless otherwise specified, the term, “ground,” may be used to signify a substantially planar surface upon which the wearable device 1000 may rest and/or over which the wearable device 1000 may be translationally moved. In some cases, the translational movement may be attributable to rotating one or more of the wheel assemblies 1800 while substantially prohibiting sliding of the wheel assemblies 1800 relative to the ground.
In some embodiments, the wearable device 1000 in an unloaded state may comprise a clearance plane 1002 that is substantially parallel to the ground and coincident with a lowest portion of the wearable device 1000 (excepting the wheel assembly 1800). Most generally, the distance between the clearance plane 1002 and the ground may be generalized as a minimum clearance distance of the wearable device 1000. In
The above-described reference planes and surfaces are useful in explaining how, in some embodiments, the wearable device 1000 may be configured to provide roller transportation while also providing a reduced space and/or distance between the ground and the foot interface surface 1006. Because the foot interface surface 1006 is a substantially complicated space curve, such reduced space and/or vertical distance between the ground and the foot interface surface 1006 may be more easily conceptualized as reducing one or more of: a maximum vertical distance between the ground and the foot interface surface 1006, an average and/or integrated vertical distance between the ground and the foot interface surface 1006, and a volume of space between the ground and the foot interface surface 1006. Further, each of the above-described reduced spaces and/or vertical distances, when evaluating the wearable device 1000 in a loaded state, may be measured as further reduced by accounting for only the portions of the foot interface surface 1006 that are in actual contact with the bottom of the user's foot. At least partially as a result of reducing the above-described spaces and/or vertical distances, in some embodiments, the wearable device may provide a vertically lower center of gravity of the wearable device 1000 itself. Similarly, and perhaps in some embodiments more importantly, the wearable device 1000 may provide a user who is wearing the wearable device 1000 a vertically lower center of gravity of the user, for example, as compared to the centers of gravity provided by other roller devices that provide roller elements such as wheel assemblies and/or tires entirely below at least a portion of a foot interface surface of the other roller devices.
In
Most generally,
In some embodiments, a wearable device 1000, in the unloaded state, may comprise one or more so-called translation planes 1010. In the embodiment shown in
Referring now to
In some embodiments, the branches 1406 may extend, as viewed from above and below, from the trunk 1404 to form the distal ends of the above-described X-shaped profile. In some embodiments, the branches 1406 may each comprise a hypothetical branch midline plane 1416 that is substantially perpendicular to the ground 1008 and that generally intersects the trunk midline plane 1414 with an outer angle 1418. In some embodiments, each outer angle 1418 may comprise a different value which may indicate that one or more of the branches 1406 are not similarly angled toward the trunk midline plane 1414. Considering the above-described variation in outer angle 1418 values and considering that each branch may comprise a different overall length, it follows that the distal ends of each branch 1406 may be generally offset from the trunk midline plane 1414 by a distance that is different from the offset distances of the distal ends of other branches 1406. In the frame 1400 shown in
In some embodiments, the suspension blocks 1408 of a frame 1400 may comprise a substantially block-shaped vertical extension rising from an associated branch 1406. In the embodiment shown in
In some embodiments, structurally supportive webs 1420 may be used to join the suspension blocks 1408 to the associated branches 1406 in a manner that bolsters a stiffness of the connection and/or increases a service life of the wearable device 1000 by increasing a resistance of the frame 1400 to fatigue failure. The webs 1420 of the embodiment shown are substantially shaped as wedge like portions of material connected between the suspension blocks 1408 and an upper interface surface 1422 that generally spans uppermost portions of the trunk 1404 and the branches 1406 substantially coincident with what may be referred to as an uppermost interface plane 1424. In some embodiments, the upper interface surface 1422 and/or the uppermost interface plane 1424 may comprise the portion of the trunk 1404 and/or branches 1406 that extend vertically highest and/or into a vertically highest contact between the shoe 1200 and the interface 1402, trunk 1404, and/or branches 1406. In some embodiments, a thickness and/or shape of the webs 1420 may be selected in response to a length and/or a cross-sectional shape and/or thickness of a branch 1406.
The interface 1402, the trunk 1404, and/or the branches 1406 may comprise features primarily attributable to the existence of indentions and/or concavities formed into the frame 1400. In some embodiments, the frame 1400 may comprise piece mounts 1426 that may serve to receive fasteners (i.e., in some embodiments, threaded fasteners such as screws) and/or other physical retaining devices useful for holding the frame 1400 during manufacturing and/or other handling of the frame 1400. In some embodiments, the piece mounts 1426 may lie substantially along the trunk midline plane 1414. In some embodiments, the frame 1400 may comprise mass reduction cavities 1428 formed in one or more of the interface 1402, the trunk 1404, and/or the branches 1406. In some embodiments, mass reduction cavities 1428 may be formed substantially along a length of the trunk 1404 and/or at least partially parallel to the trunk midline plane 1414. In some embodiments, reducing the overall mass of the frame 1400 may provide a wearable device 1000 with a lower weight and/or lower associated cost.
In some embodiments, the frame 1400 may comprise so-called outer profile steps 1430 along an outer perimeter of the frame 1400 as viewed from above. In some embodiments, each outer profile step 1430 may comprise a generally vertically upright wall 1432 and an associated ledge 1434. In some embodiments, the upright walls 1432 may follow a curvilinear path (for example, when viewed from above) while each of the ledges 1434 may lie substantially flat and/or parallel and/or substantially coincident with a ledge plane 1436 that is substantially parallel to the ground 1008 and/or substantially parallel to the uppermost interface plane 1424.
In some embodiments, the frame 1400 may comprise plate indentions 1438 formed in the interface 1402, the trunk 1404, and/or one or more of the branches 1406. The plate indentions 1438 may, in some embodiments, provide a recess of the frame 1400 into which one or more cover plates 1440 may be at least partially received. In some embodiments, an uppermost surface of a cover plate 1440 may lie substantially parallel with the uppermost interface plane 1424. Accordingly, in some embodiments, an uppermost surface of the cover plate 1440 may contact the shoe 1200 in a manner substantially similar to the manner in which upper interface surface 1422 may contact the shoe 1200. As discussed in greater detail below, the cover plate 1440 may selectively retain elements of an attachment system 2000 that, most generally, may provide selective attachment and/or detachment of the shoe 1200 relative to the frame 1400.
In some embodiments, an interface bottom surface 1442 may generally comprise bottom surfaces of the trunk 1404 and/or one or more bottom surfaces of the branches 1406. In some embodiments the interface bottom surface 1442 may generally comprise a convex surface extending downward toward the ground 1008. In some embodiments, a lowermost portion of the interface bottom surface 1442 may lie coincident with the clearance plane 1002. In some embodiments, the interface bottom surface 1442 may be joined to one or more of the outer profile steps 1430 by one or more transition surfaces 1444. In some embodiments the transition surfaces 1444 may form crenellation-like concave indentions spanning between the interface bottom surface 1442 to one or more ledges 1434.
In some embodiments, including the embodiment shown, the frame 1400 may comprise an overall shape and/or may locate the interface 1402, the trunk 1404, and/or the branches 1406 in a manner well suited for supporting the weight of a user of the wearable device 1000 and/or for transferring forces between the wearable device 1000 and the ground 1008 and/or any other suitable surface or object. For example, in some embodiments, the branches 1406 may be positioned so that when the frame 1400 is attached to the shoe 1200 and when a user's foot is properly inserted into the shoe 1200, the branches 1406 may each be associated with portions of the user's foot that may likely be used to transfer forces to the wearable device 1000.
In the embodiment shown, a portion of the front-left branch 1406 of the frame 1400 may be located below a primary point of force transfer of a user's foot. In particular, a portion of the front-left branch 1406 may be located, for example, but not limited to, below and/or in the vicinity of a distal portion of the innermost metatarsal bone of the user's foot, a proximal portion of the innermost proximal phalanges bone of the user's foot, and/or a portion of the joint between innermost metatarsal bone of the user's foot and the innermost proximal phalanges bone of the user's foot. Similarly a portion of the front-right branch 1406 may be located, for example, but not limited to, below and/or in the vicinity of a distal portion of the outermost metatarsal bone of the user's foot, a proximal portion of the outermost proximal phalanges bone of the user's foot, and/or a portion of the joint between the outermost metatarsal bone of the user's foot and the outermost proximal phalanges bone of the user's foot. Put another way, the front-left branch 1406 may be located below a left portion of the so-called “ball” of the user's foot. Similarly, the front-right branch 1406 may be located below a right portion of the ball of the user's foot. Further, in the embodiment shown, a portion of the rear-left branch 1406 of the frame 1400 may be located below, in the vicinity of, and/or adjacent to an inner portion of the calcaneus bone and/or so-called “heel” bone of the user's foot as viewed from above. Similarly, in the embodiment shown, a portion of the rear-right branch 1406 of the frame 1400 may be located below, in the vicinity of, and/or adjacent to an outer portion of the calcaneus and/or heel bone of the user's foot as viewed from above. It will be appreciated that the above-described locations of the features of the frame 1400 relative to a user's foot that is inserted into the shoe 1200 that is connected to the frame 1400 may provide improved and/or efficient force transfer paths for forces that may be transferred between the user's foot and the wheel assemblies 1800.
In some embodiments, because the suspension blocks 1408 are substantially carried by the branches 1406, it follows that the forward/rearward directionality locations of suspension blocks 1408 relative to each other is dependent upon the physical layout of the branches 1406. In the embodiment shown, the suspension blocks 1408 and more particularly the cavity axes 1412 of the suspension cavities 1410 may not be aligned in a conventional manner. For example, in the embodiment shown, the front-left cavity axis 1412 is not aligned with the front-right cavity axis 1412. Instead, the front-left cavity axis 1412 is located relatively forward of the front-right cavity axis 1412. Further, in the embodiment shown, the rear-left cavity axis 1412 is located relatively rearward of the rear-right cavity axis 1412. Nonetheless, in this embodiment, while the front cavity axes 1412 are not aligned in the forward/rearward directionality and while the rear cavity axes 1412 are not aligned in the forward/rearward directionality, all four cavity axes 1412 lie substantially coincident with the above-described rotation plane 1004 while the wearable device 1000 is in an unloaded state.
Further, in the embodiment shown, the suspensions 1600 associated with each of the four branches 1406 are substantially similar and the wheel assemblies 1800 associated with each of the four branches 1406 are substantially similar. Accordingly, and because the suspension blocks 1408 are substantially carried by the branches 1406, it follows that the leftward/rightward directionality locations of translation planes 1010 relative to each other is dependent upon the physical layout of the branches 1406. In the embodiment shown, the front-left translation plane 1010 is not aligned with and/or coplanar with the rear-left translation plane 1010. Instead, the front-left translation plane 1010 is located relatively leftward of the rear-left translation plane 1010. Further, in the embodiment shown, the front-right translation plane 1010 is not aligned with and/or coplanar with the rear-right translation plane 1010. Instead, the front-right translation plane 1010 is located relatively rightward of the rear-right translation plane 1010. Further, in the embodiment shown, the front translation planes 1010 are separated by a separation distance greater than the separation distance between the rear translation planes 1010. Also in this embodiment, the rear translation planes 1010 may be bounded by the front-left translation plane 1010 on the left and bounded by the front-right translation plane 1010 on the right. In some embodiments, such an arrangement may lead to a wider and/or more stable set of front force transfer paths (via the front wheel assemblies 1800) between the wearable device 1000 and a ground as compared to the set of rear force transfer paths (via the rear wheel assemblies 1800). In this embodiment, while the left translation planes 1010 are not coplanar with each other and while the right translation planes 1010 are not coplanar with each other, all four translation planes 1010 are substantially parallel to each other while the wearable device 1000 is in an unloaded state.
In some embodiments, one or more of the cavity axes 1412, suspension axes 1602, and/or axes of rotation 1808 may project through a user's foot that is properly inserted into the shoe 1200. However, in alternative embodiments, one or more of the cavity axes 1412, suspension axes 1602, and/or axes of rotation 1808 may not project through a user's foot that is properly inserted into the shoe 1200. In some embodiments, one of the above-described axes 1412, 1602, 1808 projecting through a user's foot may be a function of a wearable device 1000 having a so-called low profile that is not prevented from allowing an inserted foot of a user to be closer to the ground 1008 than one or more of the axes 1412, 1602, 1808. Accordingly, in cases where one or more of the axes 1412, 1602, 1808 project through a user's foot while the wearable device 1000 is in an unloaded state, it is clear that the one or more of the axes 1412, 1602, 1808 projecting through the user's foot must also project through the foot interface surface 1006. Of course, in some embodiments, one or more of the axes 1412, 1602, 1808 may not project through the foot interface surface 1006 while the wearable device 1000 is in an unloaded state but in those same embodiments, placing the wearable device 1000 in a loaded and/or used state may cause one or more of the axes 1412, 1602, 1808 to project through the foot interface surface 1006. Such projection through the foot interface surface 1006 may be attributable to flexure and/or compression of one or more component of the wearable device 1000. In alternative embodiments, a leftward/rightward location of one or more translation planes 1010 and/or an upward/downward location of one or more cavity axes 1412, suspension axes 1602, and/or axes of rotation 1808 may depend on selected design parameters of the wearable device 1000. For example, altering an overall diameter of a wheel assembly 1800 may affect a vertical location of a multitude of the components of the wearable device 1000 as well as a potential vertical location of a user's foot that is inserted into the shoe 1200. Of course, in some embodiments, the effect of such increases in a wheel assembly 1800 overall diameter may be reduced by vertically adjusting the location and/or shape of other components of the wearable device 1000. For example, in a case where a larger overall diameter of a wheel assembly 1800 is used, while in some cases the associated axis of rotation may not be unchanged, the vertical locations of a substantial remainder of the wearable device 1000 may be maintained by for example, but not limited to, vertically elongating an associated suspension block 1408 to lower the other portions of the wearable device 1000. As such, in some alternative embodiments, wheel assemblies 1800 having different overall diameters may be used on a single wearable device 1000 in a manner that provides various axis of rotation 1808 heights while still providing a low profile wearable device 1000 allows low centers of gravity for the wearable devices 1000 and for a user of the wearable devices 1000.
Referring back to
In still further alternative embodiments, the frame 1400 and/or the interface 1402 may be provided as multiple components. For example, in some embodiments, the functionality of the frame 1400 shown in
In yet further alternative embodiments, independent frames may be provided for use in association with each wheel assembly 1800. In other words, in some embodiments the frame 1400 shown in
It will be appreciated that, in some embodiments, the frame 1400 shown in
Referring now to
Referring now to
In still other alternative embodiments, the use of the pin 1624 and/or the pinhole 1628 may be functionally replaced by including additional structural features on the frame 1400. For example, a ledge, wall, protrusion or other structural element may be integrally formed into the frame 1400, for example, but not limited to, formed in the suspension block 1408 to provide a stop against which one or more of the edges of the pin notches 1622 and/or otherwise flattened portions of the suspension elements may interfere with upon their rotation about the suspension axis 1602. In some alternative embodiments, the somewhat circular pin notches 1622 may be replaced by a simple flattened portion, in some embodiments accomplished by simply grinding an edge of the female head 1618. Such a flattened portion may then be selectively inserted along the suspension axis 1602 into the suspension cavity 1410 in a manner so that the flat portion of the female head 1618 substantially prevents rotation of the female axle bolt 1604 in response to its rotation being obstructed by the integral formation provided on the frame 1400. Of course, in further alternative embodiments, the above-described obstructing geometries may comprise more complicated geometries, such as, but not limited to, hex shapes and/or any other suitable geometries for limiting rotation of the suspension elements.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
Most generally, the above-described wearable device 1000 may provide biomechanically and/or ergonomically sensible force transfer between a user and the ground 1008 by, in some embodiments, transferring forces through transfer paths selected in response to the size and/or anatomy of a user's foot (i.e., the location and relative spacing of the branches 1406, wheel assemblies 1800, etc.). The wearable device 1000 may also provide a user with a low profile (close to the ground 1008) transportation solution that provides a desirable amount of ground clearance without causing the wearable device 1000 and/or the user of the wearable device 1000 to have an undesirably vertically high center of gravity. Still further, in response to the above-described physical layout of the frame 1400, everyday roller transportation obstacles, such as, but not limited to, raised cracks in sidewalks, may prevent less danger to the user of a wearable device 1000. As an example, consider a user of the wearable device 1000 travelling in a first direction along the ground 1008. If the user approaches a raised sidewalk crack that is substantially perpendicular to the user's established direction of travel, the user may feel less of an impact and/or may have a greater amount of time to react to the crack because the front-left tire 1804 may encounter the crack prior to the other tires 1804. In other words, not only may the somewhat staggered and/or non-uniform arrangement of wheel assemblies 1800 provide ergonomic and/or more efficient force transfer between the user and the ground 1008, the same physical layout may additionally insulate the user from encountering common roller transportation obstacles with unnecessarily high impedance forces relative to the user's direction of travel.
Of course, in alternative embodiments, one or more of the female axle bolt 1604 and/or the male axle bolt 1606 may be attached to the frame 1400 and/or the shoe 1200 in a cantilever manner that may relocate the center of rotation 1654 to near the point of substantially rigid attachment to the frame 1400 and/or the shoe 1200. In further alternative embodiments, the floating axle 1652 may be restrained nearer a midpoint along a length of the floating axle 1652 and/or the floating axle 1652 may be duplicatively constrained by adding a cantilever type connection to an end of the floating axle 1652 as an additional constraint to the flexible constraint shown in
Referring now to
Referring to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
Referring now to
Referring now to
In alternative embodiments of the wearable device 1000, alternative systems for selectively attaching the shoe 1200 to the frame 1400 may be provided. In some embodiments, the alternative attachment systems may comprise one or more push-buttons that may be configured to release one or more of the studs 2002 from associated retainers 2004 and/or their functional equivalents. In some embodiments, such push-buttons may be configured to release one or both of the front attachment points. In other embodiments, a single push-button may be configured to release all attachment points between the shoe 1200 and the frame 1400. Similarly, one or more rotatable elements may be configured to release one or more of the studs 2002 from associated retainers 2004 and/or their functional equivalents. For example, in some embodiments, a rotatable element may be associated with sliding bars configured to selectively engage the retainers 2004 in a manner that allows selective release of the studs 2002 in response to a rotational movement of the rotatable element. In some embodiments, one or more of the rotatable elements and/or the push-buttons may be conveniently carried within one or more of the trunk 1404 of the frame, the intermediate sole 1238 of the shoe, and/or any other suitable conveniently accessible portion of the wearable device 1000.
This disclosure further provides methods of performing roller transportation using the above-described wearable device 1000 embodiments and the many disclosed alternative embodiments. A first method of performing roller transportation may comprise a user first inserting his foot into a shoe 1200 of a wearable device 1000. In some methods, the user may insert each of his feet into an appropriately designed and/or physically dimensioned shoe 1200 of a wearable device so that the user is wearing two wearable devices 1000. In some embodiments, a user may desire to generate translational movement over the ground in a first direction. Accordingly, in some embodiments, the user may begin moving forward using a so-called “toe start” and/or so-called “sprint start” where the user proceeds to accelerate forward by walking and/or running substantially using the toes and/or balls of the user's feet. In some cases, the above-described toe start and/or sprint start may comprise the user contacting at least a portion of the front sole 1234 with the ground 1008 so that force may be transferred between the user and the ground 1008. As the user, in some cases, has reached a desired forward velocity, the user may thereafter convert from the toe start mode of transportation to a roller transportation type of transportation in which one or more of the wheel assemblies 1800 are used to traverse the ground 1008 as a result of the one or more tires 1804 contacting the ground for a period of time while the tire 1804 also rotates about an axis of rotation 1808.
In some embodiments, the above-described toe start may ensure that even while the user is accelerating using the above-described running action, the user's foot and/or ankle is flexed within a substantially normal range of motion for running. In some embodiments, allowing for such natural movement to accelerate the user may prevent injury and or allow greater acceleration as compared to other devices that may require toe starts outside the normal physiological range of motion. The above-described natural range of user physiological motion may, in some embodiments, be attributable to the wearable device 1000 providing the foot interface surface 1006 to remain relatively close to the ground 1008 during the toe start. In some embodiments, the toe start may be performed by lifting the rear tires 1804 from the ground 1008 and rotating the wearable device 1000 forward about one or more of the front axes of rotation 1808 until the front sole 1234 engages the ground 1008. With the front sole 1234 engaged with the ground, the user may transfer force to the ground 1008 directly through the sole 1204 in much the same manner the user would normally accelerate during regular running or walking. It will be appreciated that the user may effectively maintain, and in some cases even lower, centers of gravity during the above-described toe start.
In other embodiments, roller transportation may be accomplished using so-called “in-line skating methods” and/or so-called ice skating methods in which a user positions himself in a so-called “duck foot stance” where force is transferred from the user to the ground 1008 while ensuring the translation planes 1010 are not substantially parallel to the direction of the force applied to the ground (ignoring the vertical component of any force vectors). From such a stance, a user may either push against the ground to increase velocity and/or may push against the ground to start moving from a rest position.
In other embodiments, a velocity of roller transportation may be reduced and/or stopped by any one of dragging one or more tires 1804 against the ground 1008, dragging a portion of the sole 1204 against the ground 1008, and/or gradually coasting to a lower velocity as a result of naturally occurring friction forces attributable either to fluid flow resistance against the user and/or the wearable device 1000 and/or attributable to frictional forces resulting from relative movement of the components of the wearable device 1000 relative to other components of the wearable device 1000. In some embodiments, the wearable device 1000 may be decelerated in response to the user shifting a center of gravity or otherwise causing the wearable device to lift the front tires 1804 from the ground 1008, rotating the wearable device 1000 about one or more of the rear axes of rotation 1808, and engaging the rear sole 1236 with the ground 1008. This method of deceleration may be referred to as a heel stop. Another method of decelerating the wearable device 1000 may comprise the user reversing a direction of travel so that the user is travelling backward and thereafter shifting a center of gravity or otherwise causing the wearable device 1000 to lift the rear tires 1804 from the ground, rotating the wearable device 1000 about one or more of the front axes of rotation 1808, and engaging the front sole 1234 with the ground 1008. Of course, the above-described methods of accelerating and decelerating are only examples of how the wearable device 1000 may be operated and/or used and the wearable device 1000 is not limited to use in those manners only.
Alternative embodiments of the wearable device 1000 above may comprise materials and/or components selected and/or designed in response to a desired use of the wearable device 1000. For example, it may be desirable for a recreational and/or less experienced user of a wearable device 1000 to use a wearable device comprising tires 1804 constructed of about 80 to about 84 durometer material rating, for example, but not limited to, an 82 A durometer rating material. In alternative embodiments, a material comprising a durometer rating of about 25 A or lower may be utilized but, in some embodiments, low durometer materials may result in system instability or so-called “high speed wobble” as a result of insufficient system stiffness. In some embodiments, a professional user of a wearable device 1000 may prefer tires 1804 constructed of a material having about a 90-92 durometer rating.
Similarly, it may be desirable for a recreational and/or less experienced user of a wearable device 1000 to use a wearable device comprising tires having a diameter of about 80 mm to about 84 mm in diameter while a professional and/or more experienced user of a wearable device may prefer a larger diameter tire of up to about 120 mm or even more in order to achieve desired speeds. Still further, it may be desirable for a recreational and/or less experienced user of a wearable device 1000 to use a standard and/or typical so-called “608 skate bearing” to serve as bearing 1812 while a professional and/or more experienced user of a wearable device 1000 may prefer to use bearing comprising ceramic or other specialized materials that reduce friction loss and/or provide other improvements over the standard 608 bearings. It will be appreciated that overall tire 1804 diameters may be selected from even less than 60 mm to above 120 mm and that tire 1804 durometer ratings may be selected from less than a rating of 25 A to above a rating of 95 A.
While some embodiments of a wearable device 1000 may comprise particular material used to form the various components of the device, alternative materials and/or compositions may be substituted. In some embodiments, one or more of the suspension spacer 1612, the bearing spacer 1814, and the frame 1400 may comprise so-called 6061-T6 aluminum. In other embodiments, one or more of the female axle bolt 1604 and the male axle bolt 1606 may comprise so-called 18-8 stainless steel. In still other embodiments, one or more of the inner tophat 1608 and the outer tophat 1610 may comprise a urethane material that may be generated using raw material supplied by BF Goodrich Company and which material may be used to generate materials comprising at least some material similarity to so-called polyurethane 95 A. In other embodiments, the frame 1400 and/or other components of the wearable device 1000 may comprise cast aluminum, plastic, resin, urethane, polyurethane, and/or any other suitable material.
In alternative embodiments, different types of shoes may be used. For example, heavy duty leather boots with uppers that extend above the ankle of a user may be used to provide increased support and/or increased force transfer. In some cases, such increased strength shoes may be preferred by professional and/or more skilled users of roller transportation devices such as wearable device 1000. In other embodiments, only partial shoes (i.e., only a heel portion, only a toe portion, or only straps and/or laces emulating a shoe) may be used to connect the user's foot to the wearable device 1000. In some embodiments, sole plugs may be provided to fill sole holes 1254 when studs 2002 are not inserted therethrough. Additionally, some embodiments may provide access holes formed in the upper 1202 to allow access to the frontward located rivets, mounting bolts, or studs 2002. Still further, in some embodiments, a conventional shoe may simply be strapped atop a frame 1400 rather than including the above-described attachment system 2000. In some embodiments, a side portion of the sole 1204 may be recessed to accept a portion of the frame 1400, the suspension 1600, and/or the wheel assembly 1800.
In yet other embodiments, the frame 1400 may comprise a plurality of adjustable components. For example, a frame 1400 may comprise an adjustable length trunk 1404, branch 1406, and/or suspension block 1408. Still further, in some embodiments, the outer angle 1418 at which the trunk and branches interface with each other may be adjustable. In other embodiments, the frame may comprise flexible components that provide additional mechanical suspension of the wheel assemblies 1800. Further, in other embodiments, more or fewer than four wheel assemblies 1800 may be used and the relative location, size, and force transfer capabilities of the wheel assemblies 1800 may be varied.
Referring now to
Additionally, abrasion zones 2028 may be provided in the shoe 1200. In some embodiments, abrasion zones 2028 may comprise materials having relatively higher abrasion resistance as compared to other portions of the shoe 1200 and particularly as compared to other portions of the sole 1204. In some embodiments, abrasion zones 2028 may be provided at one or more of the front portion of the front sole 1234 and at the rear portion of the rear sole 1236. The material of the abrasion zone may be substantially similar to aircraft tire material and/or any other suitable high abrasion resistant material. In some embodiments, the abrasion resistant material may be selected as a so-called “non-marking” material to prevent the ground 1008 from being marked or otherwise discolored or damaged in response to interaction with the abrasion zones 2028.
Referring now to
Referring now to
The above described turning and maneuvering in response to a user shifting a center of gravity may, in some embodiments, may be attributable to well known factors of tire contact patch areas, tire slip angles which may contribute to cornering force, and tire camber angles which may contribute to camber thrust. These factors and principles of tires physics may, in some embodiments, contribute to the overall stability and responsiveness of a wearable device 1000. Accordingly, any of the above-described embodiments of wearable devices 1000 may be provided with tires 1804 and/or wheel assemblies 1800 comprising various tire 1804 profiles and/or various tire 1804 camber angles. In some embodiments, the tire 1804 profiles and the tire 1804 camber angles of a wearable device 1000 may be selected to be substantially equal when in a loaded state and/or an unloaded state. However, in alternative embodiments, the tire 1804 profiles and/or camber angles and/or other wheel assembly 1800 physical configurations affecting the tires 1804 and their interaction with the ground 1008 may be unequal amongst the set of tires 1804 of the wearable device 1000. Further, it will be appreciated that due to the wearable device 1000 comprising independent suspensions 1600, the individual characteristics of each tire 1804 of a wearable device 1000 and each tire's response to perturbation may vary from other tires 1804 of the same wearable device in order to provide improved shock absorption and/or improved maneuverability
Referring now to
Referring now to
In this embodiment, the rear lock blocks 3014 extend generally vertically upward from upper interface surface 3016 of frame 3004. Each rear lock block 3014 generally comprises a rectangular box-like structure comprising a recessed slot 3018 that is open to the front, right, and left extents of the rear lock blocks 3014. In other words, as viewed from the left or right sides, the rear lock blocks 3014 may generally comprise a C-shaped structure open toward the front of the frame 3004. In this embodiment, each rear lock block 3014 further comprises a fortified base extension 3020 that is generally shaped as a sloped wall extending slightly further rearward as compared to a remainder of the rear lock blocks 3014. In this embodiment, the rear lock blocks 3014 may be formed integrally with the frame 3004 by milling and/or machining the frame 3004 and the rear lock blocks 3014 from a unitary piece of metal. However, in other embodiments, rear lock blocks 3014 may comprise material different than the frame 3004 and may be attached to the frame 3004 using mechanical fasteners, adhesives, welding, soldering, brazing and/or any other suitable manner of joining the rear lock blocks 3014 to the frame 3004. In this embodiment, the rear lock blocks 3014 are generally offset from each other by less distance than the distance by which the front lock blocks 3012 are offset from each other. In this embodiment, rear lock blocks 3014 are located substantially at a rear end of the trunk 3024. In alternative embodiments, one or more of the rear lock blocks 3014 may be positioned at least partially on a rear left and/or rear right branch 3022 of the frame 3004. Still further, in some embodiments, rear lock blocks 3014 may be selectively removable and/or conveniently replaceable. While this embodiment comprises only two front lock blocks 3012 and two rear lock blocks 3014, alternative embodiments may comprise more or fewer front lock blocks 3012 and rear lock blocks 3014 and the locations of the lock blocks 3012, 3014 may be different.
Referring now to
The lock box assembly 3026 comprises a plurality of features configured to allow selective movement of the crossbar 3040. The guide tube 3038 is configured to allow insertion of a rod, stick, or other appropriately sized and sufficiently rigid member into an entry 3042 of the guide tube 3038. The rigid member may be extended through the interior of the guide tube 3038 and through the guided channel port 3034. In some embodiments, a cylindrical spacer 3044 that is generally captured between walls 3046 may abut a rearward portion of the crossbar 3040. A forward portion of the crossbar 3040 may be abutted by spring sliders 3048. Spring sliders 3048 may be captured in slider channels 3050 that generally extend in forward-rearward directions. Slider springs 3052 may also be disposed in slider channels 3050 to provide biasing forces to the spring sliders 3048, crossbar 3040, and a cylindrical spacer 3044. The box 3030 further comprises fastener apertures 3054 for receiving fasteners configured to connect lock box lid 3028 to box 3030. The lock box lid 3028 also comprises fastener apertures 3054.
Referring now to
Referring now to
In some embodiments, the wearable device 3000 may be operable to selectively remove the shoe 3002 from the frame 3004. A first step in removing the shoe 3002 from the frame 3004 may comprise inserting a sufficiently rigid rod, in some embodiments, the rod being a portion of a so-called T-tool 3037 (see
In some embodiments, a tip of the T-tool 3037 may comprise a hex tool or hex wrench. In some embodiments, the T-tool 3037 may be used to effectuate connection and/or removal of a shoe to a frame as well as to attach and/or remove a wheel assembly and/or a suspension to a frame. Further, in some embodiments, with appropriate configuration of bolt heads and/or attachment system actuation mechanisms, a single tool, such as, but not limited to, the T-tool 3037, may be configured to be the only tool necessary to fully or nearly fully disassemble and/or reassemble the wearable devices.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Still further, the rotary disc 3128 is rotationally biased by rotation spring 3138 captured in a radially swept slot 3140 of the rotary disc 3128. One end of the compressed rotation spring 3138 biases the rotary disc 3128 to rotate clockwise as viewed from above while the other end of the spring 3138 acts against a rigid spring pin 3142 that extends upward from the frame 3122 and into the slot 3140. Additionally, the attachment system 3120 comprises a lock lever 3144 that is spring biased to engage a notch 3146 formed along the outer periphery of the rotary disc 3128. Such engagement between the lock lever 3144 and a notch 3146 prevents inadvertent counterclockwise rotation of the rotary disc 3128. To discontinue contact between the lock lever 3144 and the rotary disc 3128, a spring biased release button 3148 is pressed inward toward the frame 3122 to rotate the lock lever 3144 to a position that releases the rotary disc 3128.
In operation, a shoe may be joined to the frame 3122 by first attaching a front portion of the shoe to the frame 3122 using a catch block substantially similar to catch block 3056. Next, studs substantially similar to studs 2002 may be used to attach a rear portion of the shoe to the frame 3122. The attachment system 3120 is spring biased so that upon sufficient entry of the studs into the recessed paths 3124 relative to the retainers 2004, the shoe may be considered fully joined to the frame 3122. A shoe may be released from the frame 3122 by first passing and holding the release button 3148 to unlock movement of the rotary disc 3128. With the movement unlocked, the button 3126 may be pressed to rotate the rotary disc 3128 thereby pulling the retainers 2004 away from the studs 2002. With the retainers 2004 moved away from the studs 2002, the rear portion of the shoe may be lifted away from the frame 3122. Next, the shoe may be moved rearward relative to the frame to disconnect the front lock blocks 3012 from the catch block 3056. Finally, the front of the shoe may be moved vertically away from the frame 3122 until the front lock blocks 3012 are fully removed from the block entrances 3060.
Referring now to
Referring now to
Referring now to
In some embodiments, metal components may comprise one or more of 303 stainless steel, 1018 CR steel, 6061 aluminum, spring steel, 7075 aluminum, and/or nickel plated steel. In some embodiments, components may comprise about 20 A to about 120 A durometer polyurethane, about 75 D polyurethane, acrylonitrile butadiene styrene (ABS) plastic, resin, polytetrafluoroethylene (PTFE), one or more types of rubber, polyamides such as Nylon, a polyoxymethylene (POM), acetal, polyacetal, or polyformaldehydedelrin such as Delrin, polypropylene HD, and/or molded plastic.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe configured to at least partially accept a foot of a user of the wearable device, the shoe comprising a foot interface surface configured for selective contact with a bottom of the foot; a wheel assembly configured to selectively roll relative to a ground surface in response to rotation of at least a portion of the wheel assembly about an axle that is substantially coincident with an axis of rotation; and a frame connected between the shoe and the wheel assembly, the frame being configured to selectively transfer forces between the shoe and the wheel assembly and the frame comprising a clearance plane vertically offset from the ground surface. In some embodiments, at least one of a distance between the ground surface and the foot interface surface and a space between the ground surface and the foot interface surface is selected to provide a low center of gravity for at least one of the wearable device and the user when the wheel assembly is in contact with the ground surface and positioned to selectively roll relative to the ground surface. In some embodiments, the wearable device is configured so that at least one of a portion of the wheel assembly is located vertically higher than the foot interface surface, the clearance plane is at least partially coincident with the foot interface surface, the clearance plane is located vertically lower than the foot interface surface, at least a portion of the axle is located vertically higher than the clearance plane, at least a portion of the axle is located vertically higher than the foot interface surface, and the distance by which the clearance plane is vertically offset from the ground surface is less than an overall diameter of the wheel assembly. The wearable device may further comprise a plurality of wheel assemblies and a plurality of axles, the plurality of axles being substantially coincident with different axes of rotation so that none of the axles share an axis of rotation. The wearable device may further comprise four wheel assemblies. In some embodiments, the axis of rotation is substantially parallel to the ground surface when the ground surface is substantially planar and when the wearable device is substantially in an unloaded state. In some embodiments, the axis of rotation is movable with respect to the frame. In some embodiments, the axis of rotation is movable relative to the shoe. In some embodiments, the axis of rotation is movable with respect to the frame. In some embodiments, the wheel assembly is configured to selectively orbit about a center of rotation. In some embodiments, the center of rotation is coincident with the axis of rotation. In some embodiments, the center of rotation is vertically higher than the clearance plane. In some embodiments, the center of rotation is located along an inner one-half length of the axle. In some embodiments, the center of rotation is located along an outer one-half length of the axle. In some embodiments, the center of rotation is located along the axle at substantially a midpoint of a length of the axle. In some embodiments, the center of rotation is substantially fixed relative to the frame. In some embodiments, the frame may comprise a suspension cavity configured to receive a portion of a suspension wherein the center of rotation is located within the suspension cavity. In some embodiments, the suspension cavity comprises a through hole having a cavity axis. In some embodiments, the cavity axis located vertically higher relative to the clearance plane. In some embodiments, the cavity axis is substantially fixed relative to the clearance plane. In some embodiments, at least a portion of the foot interface surface is vertically movable relative to the cavity axis in response to a force being at least partially vertically applied to wearable device. In some embodiments, the cavity axis is substantially parallel to the clearance plane. In some embodiments, the cavity axis is substantially orthogonal relative to a forward-rearward direction of the wearable device. In some embodiments, the forward-rearward direction of the wearable device is substantially parallel to a translation plane of the wearable device. In some embodiments, the translation plane is substantially orthogonal to the clearance plane and wherein the translation plane generally extends in the forward-rearward direction of the wearable device. In some embodiments, the wheel assembly is configured to selectively rotate substantially in a partial spherical sweep relative to the center of rotation. In some embodiments, the partial spherical sweep comprises a sweep radius that extends from the center of rotation. In some embodiments, the partial spherical sweep does not envelope the center of rotation. In some embodiments, the partial spherical sweep at least partially defines a range of motion of the wheel assembly relative to the frame. In some embodiments, the partial spherical sweep is sized to prevent the wheel assembly from directly contacting the shoe. In some embodiments, a resistance to moving the wheel assembly along the partial spherical sweep is substantially linear. In some embodiments a resistance to moving the wheel assembly along the partial spherical sweep is non-linear. In some embodiments, the frame may comprise a suspension cavity configured to receive a portion of a suspension wherein at least a portion of the axle is received within the suspension cavity. In some embodiments, the axle is a component of the suspension. In some embodiments, an elastically deformable material of the suspension is disposed between the portion of the axle received within the suspension cavity and a wall that at least partially defines the suspension cavity. In some embodiments, a portion of an elastically deformable tophat of the suspension is at least partially disposed between the axle and a wall that at least partially defines the suspension cavity. In some embodiments, at least a portion of each of at least two elastically deformable tophats of the suspension are received within the suspension cavity. In some embodiments the wearable device may comprise a plurality of wheel assemblies and a plurality of suspensions, each suspension being associated with only one wheel assembly and only one suspension. In some embodiments, each suspension comprises at least one elastically deformable tophat. In some embodiments, at least one of the elastically deformable tophats comprises urethane. In some embodiments, each suspension is at least partially circumferentially constrained by different ones of a plurality of suspension cavities. In some embodiments, the suspension is located substantially above the clearance plane. In some embodiments, the clearance plane is selectively movable with respect to the ground in response to a deformation of the suspension. In some embodiments the frame may comprise a trunk extending generally in a forward-rearward direction of the wearable device. In some embodiments, the trunk generally comprises a trunk midline plane substantially orthogonal to the clearance plane and askew relative to the forward-rearward direction of the wearable device. In some embodiments, the frame comprises a substantially central trunk and a plurality of branches extending from the trunk. In some embodiments, the frame is substantially X-shaped. In some embodiments, the trunk generally comprises a trunk midline plane substantially orthogonal to the clearance plane and askew relative to the forward-rearward direction of the wearable device and at least one of the branches comprises a branch midline plane substantially orthogonal to the clearance plane and which generally intersects the trunk midline plane at an outer angle. In some embodiments, at least two branches each comprise branch midline planes and wherein the branch midline planes intersect the trunk at unequal outer angles. In some embodiments, the at least two branches are unequal in overall length. In some embodiments, at least one of the trunk and the branches are adjustable in length. In some embodiments, at least a portion of the frame is embedded within the shoe. In some embodiments, at least a portion of the frame is formed integral with the shoe.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe; a plurality of wheel assemblies, each wheel assembly being configured to selectively roll relative to a ground surface about an associated axis of rotation; and a frame connected between the wheel assemblies and the frame, the frame comprising a trunk and a plurality of branches extending from the trunk, each of the branches being configured for connection to at least one of the plurality of wheel assemblies. In some embodiments, at least a portion of the shoe is located vertically higher than at least a portion of the frame when at least one of the wheel assemblies is in contact with the ground surface and the at least one of the wheel assemblies is positioned to selectively roll relative to the ground surface. In some embodiments, at least a portion of the shoe is located vertically lower than a clearance plane of the frame. In some embodiments, at least a portion of the frame is embedded within the shoe. In some embodiments, the trunk comprises a trunk midline plane that is substantially orthogonal to the ground surface and that extends generally along a forward-rearward direction of the wearable device. In some embodiments, at least one of the plurality of wheel assemblies is generally leftward of the trunk midline plane and at least one of the plurality of wheel assemblies is generally located rightward of the trunk midline plane. In some embodiments, at least one of the plurality of branches is generally leftward of the trunk midline plane and at least one of the plurality of branches is generally located rightward of the trunk midline plane. In some embodiments, the location of each of the branches at least partially defines a location of an axis of rotation. In some embodiments, each branch comprises a branch midline plane that intersects the trunk midline plane at an outer angle. In some embodiments, the outer angles associated with at least two of the branches are unequal in value. In some embodiments, the wearable device may further comprise four branches and four associated wheel assemblies. In some embodiments, the wearable device may further comprise four branches and four associated outer angles, each of the outer angles comprising different values. In some embodiments, the wearable device may further comprise four branches, each of the four branches comprising a different overall length. In some embodiments, the wearable device may further comprise four branches, each of the four branches comprising a different overall length and each of the branches comprising a branch midline plane intersecting the trunk midline plane with different outer angle values. In some embodiments, the trunk vertically extends between a clearance plane coincident with a lowest portion of the frame and an upper interface surface of the frame that contacts the shoe in a vertically highest location. In some embodiments, the trunk comprises the lowest portion of the frame. In some embodiments, a branch comprises the lowest portion of the frame. In some embodiments, the trunk comprises the upper interface surface. In some embodiments, a branch comprises the upper interface surface. In some embodiments, the upper interface surface is at least partially received within the shoe. In some embodiments, the upper interface surface is at least partially received within a sole cutout profile of the shoe. In some embodiments, the upper interface surface is substantially abutted against an outsole of the shoe. In some embodiments, each of the wheel assemblies is substantially offset from a sole outer profile of the shoe by an equal offset distance. In some embodiments, each of the branches comprises a suspension block extending in a substantially vertical direction from the associated branch. In some embodiments, each of the suspension blocks comprises a suspension cavity for receiving at least a portion of a suspension. In some embodiments, each of the suspension cavities comprises a cavity axis that extends in a generally leftward-rightward direction of the wearable device. In some embodiments, each of the cavity axes is substantially coplanar when the wearable device is in an unloaded state. In some embodiments, each of the cavity axes is substantially fixed relative to the frame. In some embodiments, at least two branches and at least two associated cavity axes are associated with a front sole of the shoe. In some embodiments, at least two branches and at least two associated cavity axes are associated with a rear sole of the shoe. In some embodiments, at least two branches and at least two associated cavity axes are associated with a front sole of the shoe and wherein at least two branches and at least two associated cavity axes are associated with a rear sole of the shoe. In some embodiments, the two branches associated with the rear sole of the shoe are each shorter in length than the two branches associated with the front sole of the shoe. In some embodiments, the wheel assemblies associated with the two branches associated with the rear sole of the shoe are separated in a leftward-rightward direction of the wearable device by a distance less than a distance that that the wheel assemblies associated with the two branches associated with the front sole of the shoe are separated in the leftward-rightward direction of the wearable device. In some embodiments, the wheel assembly associated with a front-left branch is offset in a frontward-rearward direction of the wearable device relative to the wheel assembly associated with a front-right branch. In some embodiments, the wheel assembly associated with a rear-left branch is offset in a frontward-rearward direction of the wearable device relative to the wheel assembly associated with a rear-right branch. In some embodiments, the wheel assembly associated with a front-left branch is offset in a leftward-rightward direction of the wearable device relative to the wheel assembly associated with a rear-left branch. In some embodiments, the wheel assembly associated with a front-right branch is offset in a leftward-rightward direction of the wearable device relative to the wheel assembly associated with a rear-right branch. In some embodiments, the wheel assembly associated with a front-left branch is offset in a frontward-rearward direction of the wearable device relative to the wheel assembly associated with a front-right branch; the wheel assembly associated with a rear-left branch is offset in the frontward-rearward direction of the wearable device relative to the wheel assembly associated with a rear-right branch; the wheel assembly associated with the front-left branch is offset in a leftward-rightward direction of the wearable device relative to the wheel assembly associated with the rear-left branch; and the wheel assembly associated with a front-right branch is offset in the leftward-rightward direction of the wearable device relative to the wheel assembly associated with the rear-right branch. In some embodiments, the wearable device is configured for use with a right foot of a human user. In some embodiments, the front-left wheel assembly is located leftward of the rear-left wheel assembly and is located forward of the front-right wheel assembly. In some embodiments, the front-right wheel assembly is located rightward of the rear-right wheel assembly and is located rearward of the front-left wheel assembly. In some embodiments, the rear-left wheel assembly is located rightward of the front-right wheel assembly and is located rearward of the rear-right wheel assembly. In some embodiments, the rear-right wheel assembly is located leftward of the front-right wheel assembly and is located frontward of the rear-left wheel assembly. In some embodiments, the wearable device is configured for use with a left foot of a human user. In some embodiments, the front-left wheel assembly is located leftward of the rear-left wheel assembly and is located rearward of the front-right wheel assembly. In some embodiments, the front-right wheel assembly is located rightward of the rear-right wheel assembly and is located forward of the front-left wheel assembly. In some embodiments, the rear-left wheel assembly is located rightward of the front-left wheel assembly and is located forward of the rear-right wheel assembly. In some embodiments, the rear-right wheel assembly is located leftward of the front-right wheel assembly and is located rearward of the rear-left wheel assembly. In some embodiments, the rear-left wheel assembly and the rear-right wheel assembly are associated with a heel of a user. In some embodiments, the front-left wheel assembly and the front-right wheel assembly are associated with a ball of a foot of a user. In some embodiments, the frame may comprise an outer profile step. In some embodiments, the frame may comprise a piece mount. In some embodiments, the frame may comprise a transition surface. In some embodiments, the frame may comprise a mass reduction cavity. In some embodiments, the frame may comprise a retainer channel. In some embodiments the frame may comprise, a plate indention configured to receive a cover plate. In some embodiments, the cover plate may comprise a stud aperture. In some embodiments, the wearable device may comprise four wheel assemblies, each wheel assembly comprising a separate and distinct axis of rotation. In some embodiments, each branch connects only one wheel assembly to the frame.
In some embodiments, a suspension for a wearable device configured to selectively provide roller transportation may comprise: an axle configured to be at least partially circumferentially restrained along a length of the axle wherein the axle is movable about a center of rotation located along a suspension axis of the suspension that is substantially coincident with an axis of rotation of a wheel assembly carried by the axle. In some embodiments, at least a portion of the axle is received within a through hole. In some embodiments, the suspension may further comprise at least one elastically deformable tophat. In some embodiments, the at least one tophat is at least partially received within the through hole. In some embodiments, the at least one tophat comprises urethane. In some embodiments, at least a portion of the tophat is located circumferentially around the axle and within the through hole. In some embodiments, the axle comprises a bolt head. In some embodiments, the bolt head is offset from the through hole and at least a portion of the tophat is located between the bolt head and the through hole. In some embodiments, the axle comprises ridges at least partially located within the through hole. In some embodiments, the bolt head comprises a diameter greater than a diameter of the through hole. In some embodiments, at least a portion of the tophat is located between the through hole and the wheel assembly. In some embodiments, a suspension spacer is located between the tophat and the wheel assembly. In some embodiments, the wheel assembly comprises a friction reducing coating adjacent the suspension spacer. In some embodiments, the axle comprises a female axle bolt and a complementary male axle bolt. In some embodiments, at least one of the female axle bolt and the male axle bolt comprise an integral relative position retainer feature. In some embodiments, the integral relative position retainer feature comprises a knurled face of at least one of the female axle bolt and the complementary male axle bolt. In some embodiments, the suspension may further comprise an inner tophat at least partially received within the through hole and at least partially extending from an inner end of the through hole and an outer tophat at least partially received within the through hole and at least partially extending from an outer end of the through hole. In some embodiments, the portion of the inner tophat extending from the inner end of the through hole is restrained by a bolt head of the axle. In some embodiments, the portion of the outer tophat extending from the outer end of the through hole is restrained by a suspension spacer. In some embodiments, the axle comprises two complementary components. In some embodiments, at least a portion of each of the two complementary components is received within the wheel assembly. In some embodiments, the center of rotation is substantially coincident with the axis of rotation and wherein each of the suspension axis, the axis of rotation, and the center of rotation remain coincident during rotation of the wheel assembly about the axis of rotation and during perturbations of the suspension.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe configured to at least partially accept a foot of a user of the wearable device, the shoe comprising a foot interface surface configured for selective contact with a bottom of the foot; a wheel assembly configured to selectively roll relative to a ground surface in response to rotation of at least a portion of the wheel assembly about an axle that is substantially coincident with an axis of rotation; a frame connected between the shoe and the wheel assembly, the frame being configured to selectively transfer forces between the shoe and the wheel assembly and the frame comprising a clearance plane vertically offset from the ground surface; and an attachment system for selectively attachment of the shoe to the frame. In some embodiments, the attachment system comprises a biased retainer. In some embodiments, at least a portion of the biased retainer is carried within the frame. In some embodiments, the attachment system comprises at least one stud aperture formed through a sole of the shoe. In some embodiments, the attachment system comprises at least one stud configured for selective insertion into the at least one stud aperture. In some embodiments, the attachment system further comprises a spring configured to bias the biased retainer. In some embodiments, at least a portion of the spring is carried within the frame. In some embodiments, the stud comprises a cam indention for rotation relative to the biased aperture. In some embodiments, the stud comprises a hook for selective interaction with the biased retainer. In some embodiments, the hook is configured for selective interaction with a crenellated projection of the biased retainer. In some embodiments, the stud is movable between an attached position relative to the biased retainer and a detached position relative to the retainer in response to a rotation of the stud by less than 360 degrees. In some embodiments, at least one attachment system is associated with each of a plurality of branches of the frame. In some embodiments, at least one attachment system is associated with each of a plurality of wheel assemblies.
In some embodiments, a method of roller transportation may comprise: attaching a wearable device configured to selectively provide roller transportation to a user; increasing a velocity of the user in response to ambulatory movement generated substantially to the exclusion of roller elements of the wearable device; and engaging a roller element with a ground surface after increasing the velocity of the user. In some embodiments, the ambulatory movement is generated at least partially by running using primarily a front sole of a shoe of the wearable device. In some embodiments, the ambulatory movement is generated at least partially by walking using primarily a front sole of a shoe of the wearable device. In some embodiments, the ambulatory movement is repeated after engaging the roller element with the ground surface. In some embodiments, the method may further comprise decreasing a velocity of the user by dragging a portion of the wearable device against the ground surface. In some embodiments, a wheel assembly of the wearable device is dragged against the ground surface. In some embodiments, a portion of a shoe of the wearable device is dragged against the ground surface.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe configured to at least partially accept a foot of a user of the wearable device, the shoe comprising a foot interface surface configured for selective contact with a bottom of the foot; a wheel assembly configured to selectively roll relative to a ground surface in response to rotation of at least a portion of the wheel assembly about an axle that is substantially coincident with an axis of rotation; and a frame connected between the shoe and the wheel assembly, the frame being configured to selectively transfer forces between the shoe and the wheel assembly and the frame comprising a clearance plane vertically offset from the ground surface. In some embodiments, at least one of (1) a distance between the ground surface and the foot interface surface and (2) a space between the ground surface and the foot interface surface is selected to provide a low center of gravity for at least one of the wearable device and the user when the wheel assembly is in contact with the ground surface and positioned to selectively roll relative to the ground surface. In some embodiments the wearable device is configured so that at least one of (1) a portion of the wheel assembly is located vertically higher than the foot interface surface, (2) the clearance plane is at least partially coincident with the foot interface surface, (3) the clearance plane is located vertically lower than the foot interface surface, (4) at least a portion of the axle is located vertically higher than the clearance plane, (5) at least a portion of the axle is located vertically higher than the foot interface surface, and (6) the distance by which the clearance plane is vertically offset from the ground surface is less than an overall diameter of the wheel assembly. In some embodiments the wearable device may further comprise a plurality of wheel assemblies wherein at least a portion of the foot interface surface is lower than at least a portion of at least one of the wheel assemblies. In some embodiments, the wearable device may further comprise a plurality of axles, the plurality of axles being substantially coincident with different axes of rotation so that none of the axles share an axis of rotation wherein at least a portion of the foot interface surface is lower than at least a portion of at least one of the axles. In some embodiments, at least one of the axles comprises an end that selectively orbits about a center of rotation of the axle. In some embodiments, the end of the axle is rotatable between a first position higher than the foot interface surface and a second position lower than the foot interface surface. In some embodiments, the center of rotation is higher than at least a portion of the foot interface surface. In some embodiments, the frame may comprise a suspension cavity configured to receive a portion of a suspension. In some embodiments, the center of rotation is located within the suspension cavity. In some embodiments, the center of rotation is located lower than the foot interface surface. In some embodiments, the center of rotation is located higher than the foot interface surface. In some embodiments, at least a portion of the foot interface surface is vertically movable relative to the suspension cavity. In some embodiments, both ends of at least one of the axles are rotatable about the center of rotation in a partially spherical sweep relative to the center of rotation. In some embodiments, each wheel assembly is associated with at least one suspension. In some embodiments, each of the suspensions is independently operable to allow movement of the associated wheel assemblies relative to the foot interface surface. In some embodiments, the frame is substantially X-shaped as viewed from above. In some embodiments, at least a portion of the frame is embedded within the shoe. In some embodiments, at least one of the suspensions comprises a urethane tophat at least partially carried within the suspension cavity. In some embodiments, at least a portion of the frame is formed integral with the shoe. In some embodiments, the frame comprises a trunk and four branches extending from the trunk, each of the four branches being associated with one suspension and one wheel assembly. In some embodiments, at least one of (1) each of the four branches comprises a different length and (2) each of the four branches extends from the trunk at a different angle as viewed from above.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe; a plurality of wheel assemblies, each wheel assembly being configured to selectively roll relative to a ground surface about an associated axis of rotation; and a frame connected between the wheel assemblies, the frame comprising a trunk and a plurality of branches extending from the trunk, each of the branches being configured for connection to at least one of the plurality of wheel assemblies. In some embodiments, at least a portion of the shoe is located vertically higher than at least a portion of the frame when at least one of the wheel assemblies is in contact with the ground surface and the at least one of the wheel assemblies is positioned to selectively roll relative to the ground surface. In some embodiments, at least a portion of the frame is embedded within the shoe. In some embodiments, the trunk comprises a trunk midline plane that is substantially orthogonal to the ground surface and that extends generally along a forward-rearward direction of the wearable device. In some embodiments, at least one of the plurality of branches is generally leftward of the trunk midline plane and at least one of the plurality of branches is generally located rightward of the trunk midline plane. In some embodiments, each branch comprises a branch midline plane that intersects the trunk midline plane at an outer angle. In some embodiments, the outer angles associated with at least two of the branches are unequal in value. In some embodiments, the wearable device may further comprise four branches, each of the four branches comprising a different overall length and each of the branches comprising a branch midline plane intersecting the trunk midline plane with different outer angle values. In some embodiments, the trunk vertically extends between a clearance plane coincident with a lowest portion of the frame and an upper interface surface of the frame that contacts the shoe in a vertically highest location. In some embodiments, the trunk comprises the lowest portion of the frame. In some embodiments, a branch comprises the lowest portion of the frame. In some embodiments, the trunk comprises the upper interface surface. In some embodiments, the upper interface surface is at least partially received within the shoe. In some embodiments, the upper interface surface is at least partially received within a sole cutout profile of the shoe. In some embodiments, each of the branches comprises a suspension block extending in a substantially vertical direction from the associated branch. In some embodiments, each of the suspension blocks comprises a suspension cavity for receiving at least a portion of a suspension. In some embodiments, each of the suspension cavities comprises a cavity axis that extends in a generally leftward-rightward direction of the wearable device. In some embodiments, at least two branches and at least two associated cavity axes are associated with a front sole of the shoe and wherein at least two branches and at least two associated cavity axes are associated with a rear sole of the shoe. In some embodiments, the wheel assemblies associated with the two branches associated with the rear sole of the shoe are separated in a leftward-rightward direction of the wearable device by a distance less than a distance that that the wheel assemblies associated with the two branches associated with the front sole of the shoe are separated in the leftward-rightward direction of the wearable device. In some embodiments, the wheel assembly associated with a front-left branch is offset in a frontward-rearward direction of the wearable device relative to the wheel assembly associated with a front-right branch, the wheel assembly associated with a rear-left branch is offset in the frontward-rearward direction of the wearable device relative to the wheel assembly associated with a rear-right branch, the wheel assembly associated with the front-left branch is offset in a leftward-rightward direction of the wearable device relative to the wheel assembly associated with the rear-left branch, and the wheel assembly associated with a front-right branch is offset in the leftward-rightward direction of the wearable device relative to the wheel assembly associated with the rear-right branch. In some embodiments, at least one of the trunk and the branches are adjustable in length.
In some embodiments, a suspension for a wearable device configured to selectively provide roller transportation may comprise: an axle configured to be at least partially circumferentially restrained along a length of the axle wherein the axle is movable about a center of rotation located along a suspension axis of the suspension that is substantially coincident with an axis of rotation of a wheel assembly carried by the axle. In some embodiments, at least a portion of the axle is received within a through hole. In some embodiments the suspension may further comprise at least one elastically deformable tophat. In some embodiments, the at least one tophat is at least partially received within the through hole. In some embodiments, the at least one tophat comprises urethane. In some embodiments, at least a portion of the tophat is located circumferentially around the axle and within the through hole. In some embodiments, the axle comprises a bolt head. In some embodiments, the bolt head is offset from the through hole and at least a portion of the tophat is located between the bolt head and the through hole. In some embodiments, the axle comprises ridges at least partially located within the through hole. In some embodiments, the bolt head comprises a diameter greater than a diameter of the through hole. In some embodiments, at least a portion of the tophat is located between the through hole and the wheel assembly. In some embodiments, a suspension spacer is located between the tophat and the wheel assembly. In some embodiments, the wheel assembly comprises a friction reducing coating adjacent the suspension spacer. In some embodiments, the axle comprises a female axle bolt and a complementary male axle bolt. In some embodiments, at least one of the female axle bolt and the male axle bolt comprise an integral relative position retainer feature. In some embodiments, the integral relative position retainer feature comprises a knurled face of at least one of the female axle bolt and the complementary male axle bolt. In some embodiments, the suspension may further comprise: an inner tophat at least partially received within the through hole and at least partially extending from an inner end of the through hole; and an outer tophat at least partially received within the through hole and at least partially extending from an outer end of the through hole. In some embodiments, the portion of the inner tophat extending from the inner end of the through hole is restrained by a bolt head of the axle. In some embodiments, the center of rotation is substantially coincident with the axis of rotation and wherein each of the suspension axis, the axis of rotation, and the center of rotation remain coincident during rotation of the wheel assembly about the axis of rotation and during perturbations of the suspension. In some embodiments, an end of the axle is configured to selectively rotate substantially in a partial spherical sweep relative to the center of rotation.
In some embodiments, a wearable device configured to selectively provide roller transportation may comprise: a shoe configured to at least partially accept a foot of a user of the wearable device, the shoe comprising a foot interface surface configured for selective contact with a bottom of the foot; a wheel assembly configured to selectively roll relative to a ground surface in response to rotation of at least a portion of the wheel assembly about an axle that is substantially coincident with an axis of rotation; a frame connected between the shoe and the wheel assembly, the frame being configured to selectively transfer forces between the shoe and the wheel assembly and the frame comprising a clearance plane vertically offset from the ground surface; and an attachment system for selective attachment of the shoe to the frame. In some embodiments, the attachment system comprises a biased retainer. In some embodiments, at least a portion of the biased retainer is carried within the frame. In some embodiments, the attachment system comprises at least one stud aperture formed through a sole of the shoe. In some embodiments, the attachment system comprises at least one stud configured for selective insertion into the at least one stud aperture. In some embodiments, the attachment system further comprises a spring configured to bias the biased retainer. In some embodiments, at least a portion of the spring is carried within the frame. In some embodiments, the stud comprises a cam indention for rotation relative to the biased aperture. In some embodiments, the stud comprises a hook for selective interaction with the biased retainer. In some embodiments, the hook is configured for selective interaction with a crenellated projection of the biased retainer. In some embodiments, the stud is movable between an attached position relative to the biased retainer and a detached position relative to the retainer in response to a rotation of the stud by less than 360 degrees. in some embodiments, the attachment system is associated with a central trunk of the frame. In some embodiments, a portion of the attachment system is carried within an interior cavity of the trunk. In some embodiments, an attachment system for a wearable device configured to selectively provide roller transportation may comprise: a first feature carried by a shoe; and a second feature carried by a frame. In some embodiments, the first feature and the second feature are complementarily shaped and wherein at least one of the first feature and the second feature are biased to selectively engage the other of the first feature and the second feature. In some embodiments, the first feature comprises an aperture formed in a sole of the shoe and wherein at least a portion of the second feature is configured to be received within the sole by at least partial insertion through the aperture. In some embodiments, a biasing mechanism configured to selectively engage the first feature and the second feature is carried by the shoe. In some embodiments, a biasing mechanism configured to selectively engage the first feature and the second feature is carried by the frame. In some embodiments, the attachment system may further comprise a component that selectively extends through a sole of the shoe and into an interior of the frame. In some embodiments, the attachment system may further comprise a passage formed in a sole of the shoe through which a tool may be passed to affect the selective engagement of the first feature and the second feature. In some embodiments, the first feature is a static structure and the second feature is a dynamic mechanism.
Referring now to
Referring now to
Referring now to
Referring back to
In some embodiments, a method of attaching a shoe 4002 to a frame 4004 may comprise, most generally, using the rods 4018 to capture a portion of the shoe 4002 between the rods 4018 and the frame 4004. In some embodiments, a shoe 4002 may be selectively joined to a frame 4004 by first causing the shoe 4002 to carry a receiver 4012 that is configured to receive a rod 4018. Next, the shoe 4002 and the receiver 4012 may be substantially coaxially aligned with a connection axis 4036 of the attachment system 4006. In some embodiments, the receiver 4012 may additionally be located between laterally opposing suspension blocks 4026 so that the receiver 4012 is additionally aligned with a receiver hole 4028 and a fastener hole 4030. Next, rod 4018 may be coaxially aligned with the connection axis 4036 and a connection interface 4022 of the rod 4018 may be inserted through the receiver hole 4028. Next, the rod 4018 may be advanced further through the receiver hole 4028 and into the receiver 4012. Upon sufficient entry into the receiver 4012, the connection interface 4022 may protrude from the receiver 4012 and interface with the fastener hole 4030. In embodiments where the fastener hole 4030 and the connection interface 4022 comprise complementary threads, a hex wrench 4038 may be inserted into the tool interface 4024 of the rod 4018 and the rod 4018 may be angularly rotated about the axis 4036 to selectively advance the threads of the connection interface 4022 into the threads of the fastener hole 4030. In other embodiments, the rod 4018 may comprise end features, such as, but not limited to, a reduced diameter neck portion associated with a return to a constant outer diameter that may be selectively engaged by a biased retaining mechanism associated with the fastener hole 4030. Accordingly, the rod 4018 may be inserted and removed in response to a retention mechanism substantially similar to the interaction between studs 2002 and associated retainers 2004. In some embodiments, the above process may be completed for each of the forward connection portion 4008 the rear connection portion 4010 to join the shoe 4002 to the frame 4004 using the attachment system 4006. While the axes 4036 and associated holes 4028, 4030 are shown as being located more central on the frame 4004 than suspension cavities 4040, in alternative embodiment, one or more axes 4036 of an attachment system 4006 may be located longitudinally outside the suspension cavities 4040. In the manner described above, the shoe 4002 may be captured between one or more rods 4018 and the frame 4004. In some embodiments, the attachment system 4000 may comprise no receiver 4012 and the rod 4018 may simply pass through a hole in the shoe 4002. In alternative embodiments, the attachment system 4000 may comprise one or more tubular and/or retentive components disposed at least partially in the shoe 4002 to receive the rod 4018 therethrough. Still further, in some embodiments, portions of the shoe 4002 may need to be compressed prior to completing the attachment procedure. In some embodiments, a length of rod 4018 may be selected so that rod 4018 must necessarily be fully assembled into the holes 4028, 4030 prior to the rod no longer interfering with rotation of the associated wheel assemblies. In other words, to prevent a user from using a wearable device 4000 without fully assembling attachment system 4006, the rod 4018 may obstruct at least one wheel assembly until such assembling is properly completed. In some embodiments, the rods 4018 may comprise stainless steel while the receiver 4012 may comprise a plastic or other material with a lower hardness and/or stiffness than stainless steel.
Referring now to
Referring now to
Referring now to
When the hubcap system 5000 is assembled and installed onto a wearable device such as, but not limited to, wearable devices 1000, 4000, the provision of the rotational bearing 5004 between the bolt 5002 and the hubcap 5006 substantially rotationally decouples the hubcap 5006 from the bolt 5002. Accordingly, in some embodiments, while the bolt 5002 may remain rotationally decoupled from the associated wheels, hubs, and/or tires so that the hubcaps 5006 are free to spin independent of the direction of rotation and/or lack of rotation of the wheels, hubs, and/or tires. The hubcap system 5000 may be referred to as a “spinner” system and the hubcaps 5006 may be referred to as “spinners.” In some embodiments, the hubcap 5006 may comprise a directional weight 5026 that tends to assist in maintaining the hubcap 5006 in a preselected angular position relative to the ground. In some embodiments, the weight 5026 may comprise a portion of the rear protrusion 5022. In some embodiments, the hubcap 5006 may be formed integrally as a singular machined component, for example, comprising aluminum.
In alternative embodiments, the hubcap system 5000 may be configurable between at least three different operating behaviors. A first of the three operating behaviors is described above and referred to here as a “free floating” operation. In the free floating operating behavior, the hubcap 5006 is free to rotate or spin relative to both the bolt 5002 and the hub/wheel/tire combination. In this free floating operation, the weight 5026 may operate to maintain a preselected angular position despite frictional bearing forces that may tend to disturb the hubcap 5006 from the preselected angular position. Alternatively, in an embodiment without a weight 5026, the hubcap 5006 may take advantage of the frictional bearing forces to rotate the hubcap 5006 at an angular speed of rotation different from the angular rotation of at least one of the bolt 5002 and the hub/wheel/tire combination. Further, in some embodiments, an adhesive may be applied between one or more of the above-described components to lock and/or synchronize rotation of the mutually adhered components.
A second operating behavior may be described as a “wheel-synced” operation. In the wheel-synced operation, the hubcap 5006 may be configured to be rotationally coupled to one or more of the hub/wheel/tire combination so that the hubcap 5006 rotates at the same angular speed as the hub/wheel/tire combination. In this manner, the hubcap 5006 may appear to operate in a traditional manner in which the hubcap 5006 rotates along with the hub/wheel/tire combination.
A third operating behavior may be described as an “axel-locked” operation. In the axel-locked operation, the hubcap 5006 may be configured to be rotationally decoupled from the hub/wheel/tire combination but rotationally coupled to the bolt 5002. In embodiments where the bolt 5002 is rotationally stationary, the hubcap 5006 may similarly remain rotationally stationary despite rotation of the hub/wheel/tire combination. In embodiments where the bolt 5002 may rotate, the hubcap 5006 may similarly rotate along with the bolt 5002, or, in embodiments where a bolt does not rotate may likewise not rotate.
In some embodiments, the hubcap system 5000 may be configured to allow selection between the above-described hubcap 5006 behaviors. In some embodiments, additional components and/or structural features may be provided to selectively angularly lock and unlock the hubcap 5006 and at least one of the bolt 5002 and the hub/wheel/tire combination. In some embodiment, providing for selective movement of the hubcap 5006 closer to or further away from the threads 5008 may be configured to selectively engage or disengage the hubcap 5006 from at least one of the bolt 5002 and the hub/wheel/tire combination. Alternatively, a removable C-shaped shim may be provided to be wedged between the hubcap 5006 and at least one of the bolt 5002 and the hub/wheel/tire combination. Accordingly, the hubcap system 5000 may be easily transitioned between providing a variety of hubcap 5006 rotational behaviors. In some embodiments, the hubcaps 5006 may range in size from near equal the diameter of a tire to smaller than a diameter of an axel bolt. In some cases, the hubcap 5006 may be referred to a as a “custom dust cover” for the bearings associated with the axel bolt and the custom dust cover may be sized to have a diameter substantially similar to the bearings associated with the axel bolt. In some cases, the hubcap 5006 may comprise decorative etchings, carvings, paintings, prints, and/or other insignia or decorations.
Referring now to
Referring now to
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, RI, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RI+k*(Ru−RI), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention. Further, while the claims herein are provided as comprising specific dependencies, it is contemplated that any claims may depend from any other claims and that to the extent that any alternative embodiments may result from combining, integrating, and/or omitting features of the various claims and/or changing dependencies of claims, any such alternative embodiments and their equivalents are also within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
96117 | Hubbard | Oct 1869 | A |
3112119 | Sweet | Nov 1963 | A |
3309098 | Parker | Mar 1967 | A |
4114295 | Schaefer | Sep 1978 | A |
4185847 | Johnson | Jan 1980 | A |
4932675 | Olson et al. | Jun 1990 | A |
5305496 | Gagnon et al. | Apr 1994 | A |
5394589 | Braeger et al. | Mar 1995 | A |
5524912 | Laub et al. | Jun 1996 | A |
5609455 | McKewan | Mar 1997 | A |
5662338 | Steinhauser, Jr. | Sep 1997 | A |
5975542 | Kaufman | Nov 1999 | A |
6120038 | Dong et al. | Sep 2000 | A |
6382638 | Lee | May 2002 | B1 |
D467290 | Chen | Dec 2002 | S |
6543791 | Lee | Apr 2003 | B1 |
6629913 | Chen | Oct 2003 | B2 |
6736411 | Wang et al. | May 2004 | B2 |
6805363 | Hernandez | Oct 2004 | B2 |
6874795 | Sung | Apr 2005 | B2 |
6913272 | Chang | Jul 2005 | B2 |
7306240 | Chen | Dec 2007 | B2 |
7341261 | Shing | Mar 2008 | B2 |
7377524 | Lok | May 2008 | B2 |
7478803 | Lee | Jan 2009 | B2 |
7597334 | Chen | Oct 2009 | B2 |
D610643 | Chen | Feb 2010 | S |
7681895 | Chen | Mar 2010 | B2 |
20010018385 | Chen | Aug 2001 | A1 |
20010055434 | Wershe | Dec 2001 | A1 |
20020105152 | Miller | Aug 2002 | A1 |
20030042058 | Chen | Mar 2003 | A1 |
20030209867 | Weitgasser et al. | Nov 2003 | A1 |
20040041359 | Im | Mar 2004 | A1 |
20040140634 | Chen et al. | Jul 2004 | A1 |
20040232633 | Chaput et al. | Nov 2004 | A1 |
20050116430 | Chen | Jun 2005 | A1 |
20050151332 | Chen | Jul 2005 | A1 |
20050236783 | Reid | Oct 2005 | A1 |
20070114743 | Chen | May 2007 | A1 |
20070170666 | Chen | Jul 2007 | A1 |
20070170686 | Chen | Jul 2007 | A1 |
20070296164 | Roderick | Dec 2007 | A1 |
20080029985 | Chen | Feb 2008 | A1 |
20080272567 | Chen | Nov 2008 | A1 |
20090079147 | Conners et al. | Mar 2009 | A1 |
20090184481 | Cole | Jul 2009 | A1 |
20090273150 | Kortschot | Nov 2009 | A1 |
20100044981 | Chen | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
2002241994 | Aug 2002 | AU |
2007358721 | Apr 2009 | AU |
2557187 | Jun 2003 | CN |
2825025 | Oct 2006 | CN |
200966900 | Oct 2007 | CN |
101670178 | Mar 2010 | CN |
3027682 | Feb 1982 | DE |
202005003188 | May 2005 | DE |
102006043070 | Apr 2008 | DE |
10164797 | Oct 2011 | DE |
1449569 | Aug 2004 | EP |
1584826 | May 2008 | EP |
2870135 | Nov 2005 | FR |
2333967 | Aug 1999 | GB |
2350305 | Nov 2000 | GB |
0027488 | May 2000 | WO |
02058797 | Aug 2002 | WO |
02058797 | Aug 2002 | WO |
03072205 | Sep 2003 | WO |
03087618 | Oct 2003 | WO |
2005009557 | Feb 2005 | WO |
2007030774 | Mar 2007 | WO |
2007030774 | Mar 2007 | WO |
2009005639 | Jan 2009 | WO |
2012009690 | Jan 2012 | WO |
Entry |
---|
Adams, Roger R.; U.S. Appl. No. 13/184,404, filed Jul. 15, 2011; “Wearable Device”. |
Adams, Roger R.; U.S. Appl. No. 13/184,407, filed Jul. 15, 2011; “Wearable Device”. |
Adams, Roger R.; U.S. Appl. No. 13/184,409, filed Jul. 15, 2011; “Wearable Device”. |
Adams, Roger R.; U.S. Appl. No. 13/184,412, filed Jul. 15, 2011; “Wearable Device”. |
Skorpion Sports, Ltd.; http://www.skorpion.com; 2007-2009; 1 page. |
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee, PCT Application No. PCT/US2011/044269; Oct. 7, 2011; 6 pgs. |
PCT International Search Report; PCT Application No. PCT/US2011/044269; Dec. 14, 2011; 12 pgs. |
PCT Written Opinion of the International Searching Authority; PCT Application No. PCT/US2011/044269; Dec. 14, 2011; 10 pgs. |
Office Action dated Mar. 1, 2013; U.S. Appl. No. 13/184,404, filed Jul. 15, 2011; 5 pages. |
Office Action dated Dec. 18, 2012; U.S. Appl. No. 13/184,407, filed Jul. 15, 2011; 28 pages. |
Office Action dated Dec. 12, 2012; U.S. Appl. No. 13/184,409, filed Jul. 15, 2011; 27 pages. |
Office Action dated Dec. 27, 2012; U.S. Appl. No. 13/184,412, filed Jul. 15, 2011; 27 pages. |
Final Office Action dated May 15, 2013; U.S. Appl. No. 13/184,407 filed Jul. 15, 2011; 17 pages. |
Office Action dated May 30, 2013; U.S. Appl. No. 13/184,404 filed Jul. 15, 2011; 23 pages. |
Advisory Action dated Jul. 17, 2013; U.S. Appl. No. 13/184,407 filed Jul. 15, 2011; 2 pages. |
Final Office Action dated Jul. 10, 2013; U.S. Appl. No. 13/184,409 filed Jul. 15, 2011; 24 pages. |
Final Office Action dated Jul. 3, 2013; U.S. Appl. No. 13/184,412 filed Jul. 15, 2011; 22 pages. |
Number | Date | Country | |
---|---|---|---|
20130147137 A1 | Jun 2013 | US |