This disclosure generally relates to measuring and reporting eye hydration levels via a contact lens.
Tears keep the delicate surface of an eyeball clean and wet. Tears are produced in glands above an outer corner of the eye, and they spread across the eye surface with each blink and form a layer of moisture, or tear film, that serves as a protective coat for lubricating the eye and washing away foreign bodies that might cause harm or obscure vision. Tears that wash across the eye naturally evaporate into air or drain into tear ducts. Normally, the eye constantly bathes itself in tears by producing tears at a slow and steady rate so that the eye remains moist and comfortable. However, many people that wear contact lenses or have dry eyes in general may need to apply tear drops to keep their eyes properly hydrated. Yet those individuals may go about the day without knowing that their eyes are too dry or not optimally hydrated with tear fluid.
Various aspects are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a more thorough understanding of one or more aspects. It is be evident, however, that such aspects can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to facilitate describing one or more aspects.
In one or more aspects, the disclosed subject matter relates to a contact lens. The contact lens can include a substrate that forms at least part of a body of the contact lens and a hydration component that generates information associated with a hydration level of an eye on/in which the contact lens is worn. In an aspect, the hydration component applies an electric current to the contact lens and measures conductivity between two points on the contact lens resulting from the electric current to generate information associated with eye hydration level.
In another aspect, a method is disclosed comprising generating information associated with hydration level of an eye in which a contact lens is worn using a hydration component within the contact lens. The method can further include employing the hydration component to apply an electric current to the contact lens, and measuring conductivity between N points (N is an integer greater than 1) on the contact lens resulting from the electric current to generate information associated with hydration level
In one or more additional aspects a device is presented comprising an interface component that interfaces with and receives from a contact lens, data relating to hydration level of an eye of a wearer of the contact lens. The device can further include an analysis component that analyzes the received data and determines the eye hydration level, and a display component that generates a display corresponding to the hydration level.
Apparatus, systems, and methods disclosed herein thus relate to a contact lens with means for sensing or generating information indicative of a hydration level of an eye in which the contact lens is worn. In turn, a processor associated with the contact lens can analyze the information and based on the analysis a determination or inference is made regarding eye hydration level. As used herein, hydration level of an eye refers to an amount of tear fluid, including tear film, located on the eye and/or within the eye cavity. The contact lens can further wirelessly transmit information pertaining to the hydration level of the eye to a remote device. In an aspect, the remote device can request eye hydration level information from the contact lens, and the contact lens can generate and send the information in response to the request.
The means for sensing or generating information indicative of eye hydration level by the contact lens can vary. In an aspect, the contact lens can employ a hydration component that can apply various means for generating or sensing the information indicative of eye hydration level. In one aspect, the hydration component can apply an electric current to the contact lens and measure conductivity between two or more points, such as electrodes, on the contact lens to generate a signal corresponding to the conductivity of the contact lens. For example, the hydration component can employ a four point probe to generate sheet resistance information of the contact lens. In another aspect, the hydration component can employ pressure sensors and/or piezoelectric sensors that measure pressure and/or a piezoelectric effect associated with swelling of a substrate of the contact lens to sense eye hydration. For example, the sensors can measure swelling of a hydrogel substrate from which the contact lens. The hydrogel can comprise a network of polymer chains that are hydrophilic and thus absorb tear fluid. Accordingly hydrogel swelling/shrinking information provides an indication of amount of tear fluid absorbed within the hydrogel and thus indirectly relates to eye hydration level.
The hydration component captures information indicative of eye hydration level (e.g. electrical conductivity information, sheet resistance information, and/or swelling information) and generates signals corresponding to the information. In an aspect, the signals generated by the hydration component of the contact lens can be captured by a local integrated circuit and reported out through a radio frequency (RF) interface. The reported signals can further be received at a reader device that analyzes the signals in connection with determining or inferring eye hydration level eye in which the contact lens is worn. In another aspect, signals generated by the hydration component can be captured by a local integrated circuit and analyzed by a microprocessor located on/within the contact lens itself to determine eye hydration level. The determined hydration level can further be reported out via an RF interface.
The contact lens circuit 106 including the hydration component can be located on and/or within a substrate of the contact lens. For example, the contact lens 102 can comprise a hydrogel substrate, such as a silicone hydrogel. One or more electrodes or sensors employed by the hydration component can further be located on and/or within a thickness of the hydrogel.
The hydration component can be integrated physically and/or communicatively with contact lens circuit 106. However, in some aspects, the contact lens circuit 106 can be separated physically and/or communicatively from the hydration component. For example,
As shown in
In another embodiment, as seen in
Referring back to
As shown in
With reference to
In another aspect, the hydration component 210 can measure sheet resistance of the contact lens (e.g. via two-terminal, three terminal, or M terminal sensing (M is an integer)). For example, the hydration component 210 can use four electrodes (e.g. first electrode 310, second electrode 320, third electrode 340, and fourth electrode 350), as a four point probe. A four point probe is used to avoid contact resistance, which can often be of same magnitude as the sheet resistance. In an aspect, the hydration component 210 applies a constant current to two probes (e.g. first electrode 310 and second electrode 320) and measures potential on the other two probes (e.g. third electrode 340 and fourth electrode 350). In order to facilitate calculating sheet resistance of the contact lens (e.g. via microprocessor 260 and/or an external processor), geometrical locations and relative geometric shape resulting from the geometrical locations of each of the respective electrodes with respect to the contact lens are preferably known. For example, for electrodes can be dispersed in a substantially straight line with substantially equal or know spacing there between.
It should be appreciated that the two or more electrodes employed by hydration component 210, such as electrodes 310, 320, 340, 350, can be integrated at various locations on and/or within the substrate of the contact lens. For example, electrodes may be provided on opposing surfaces of the contact lens. According to this example, a first electrode 310 may be provided on an inner surface of the contact lens, (where the inner surface of the contact lens is the surface of the contact lens touching the eyeball when the contact lens is inserted into the eye) while a second electrode 320 may be provided on an outer surface of the contact lens (where the outer surface of the contact lens is the surface of the contact lens opposite the inner surface and facing the external environment). In another example, respective electrodes may be located on opposing radial sides of the contact lens and within the thickness of the substrate of the contact lens.
In addition to or in the alternative of employing the electrode conductivity and sheet resistance sensing means discussed above, the hydration component 210 can employ sensor component 330 to sense properties indicative of hydration level of an eye in which the contact lens is worn. Sensor component 330 can include one or more sensors configured to sense swelling of the hydrogel substrate of the contact lens. The one or more sensors can be located on and/or within the hydrogel substrate. For instance, as the hydrogel substrate of the contact lens absorbs tear fluid, it will swell. Similarly, as the hydrogel substrate of the contact lens becomes less hydrated, it will shrink.
In an aspect, the one or more sensors include a pressure sensor. In another aspect, the one or more sensors include a piezoelectric sensor. In an embodiment, the hydration component 210 measures pressure within the contact lens and/or a piezoelectric effect within the contact lens in response to swelling or shrinking (e.g. in thickness) of the hydrogel substrate from which the contact lens is made. In an aspect, the hydration component 210 measures pressure of the hydrogel with respect to two sensors where the hydrogel is sandwiched between the two sensors. It should be appreciated that depending on whether the hydrogel is swelling or shrinking as well as location, type and integration manner of a sensor on/within the hydrogel, force sensed by the sensor will vary. For example, in some instances, swelling or shrinking of the hydrogel will cause a pressing force on one or more sensors provided on/within the hydrogel. In other instances, swelling or shrinking of the hydrogel will cause a pulling force on one or more sensors provided on/within the hydrogel. Accordingly, a decrease in hydration level of an eye may be associated with either an increase or decrease in pressure against a sensor employed by the hydration component 210.
Referring back to
In an aspect, transmitter 240 transmits sensed/generated information indicative of a hydration level of an eye in which the contact lens is worn (e.g. contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information) to a reader device remote from the contact lens. For example, the transmitter 240 may include an RF antenna in some aspects. In turn, the reader device may perform analysis and processing of the sensed/generated information indicative of a hydration level of an eye in which the contact lens is worn. In other aspects, the microprocessor 260 can receive information from the hydration component 210 indicative of a hydration level of an eye in which the contact lens is worn (e.g. contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information). The microprocessor 260 can further perform analysis and processing of the sensed/generated information.
Memory 250 can store information sensed/generated by the hydration component 210 (e.g. contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information). Memory 250 may also store information relating contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information to eye hydration levels. Further, memory 250 can store information necessary for microprocessor 260 to perform calculations and determinations of contact lens conductivity, contact lens resistivity, contact lens sheet resistance, and hydrogel swelling. For example, memory 250 can store algorithms and known values required for the algorithmic calculations (e.g. base values of the contact lens conductivity, contact lens resistivity, contact lens sheet resistance, hydrogel thickness, electrode potentials, and applied current values, geometric configuration and spacing of the electrodes, and etc.). Memory 250 can further store computer-executable instructions for execution by the microprocessor 260. The microprocessor 260 can execute computer-executable instructions to perform one or more functions of the contact lens circuit 200.
Microprocessor 260 can perform a variety of functions to conduct analysis and processing of information sensed/generated by the hydration component 210 to determine eye hydration level of a wearer of the contact lens. In an aspect, the microprocessor 260 can employ any suitable information sensed/generated by hydration component 210. For example, microprocessor 260 can employ combined contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information, to determine hydration level of an eye. In an aspect, the microprocessor can employ a look up table in memory 250 relating to information sensed/generated by the hydration component 210 to an output value associated with eye hydration level. In another aspect, the microprocessor 260 can employ various algorithms relating information sensed/generated by the hydration component 210 to an output value of an eye hydration level. For example, the microprocessor can determine sheet resistance of the contact lens based on sensed conductivity values from a multi-point probe employed by the hydration component 210 and in turn relate the determined sheet resistance to an eye hydration level using various algorithms or a look up table stored in memory 250. In another example the microprocessor 260 can convert an output current signal relating to a resistivity or conductivity of the contact lens to an eye hydration level. In turn, the transmitter 240 can transmit the determined eye hydration level information to a reader device.
In an embodiment, microprocessor can implement various classification (explicitly or implicitly trained) schemes or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, data fusion engines, etc.) in connection with performing analysis of sensed/generated information. A classifier can map an input attribute vector, x=(x1, x2, x3, x4, xn), to a confidence that the input belongs to a class, such as by f(x)=confidence(class). Such classification can employ a probabilistic or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hyper-surface in the space of possible inputs, where the hyper-surface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches include, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used in this disclosure also is inclusive of statistical regression that is utilized to develop models of priority.
In an aspect, the hydration component 210 performs sensing/generating of eye hydration level information on a continuous basis. For example, the hydration component 210 can perform sensing/generating of eye hydration level information according to a programmed schedule, such as every minute, every thirty minutes, every hour and etc. Memory 250 and microprocessor 260 can facilitate directing and controlling sensing/generating by hydration component 210. According to this aspect, transmitter 240 can further be configured to transmit sensed/generated information according to a same or similar programmed schedule as the hydration component 210. In another aspect, where microprocessor 260 analyzes sensed/generated information to determine an eye hydration level, the transmitter 240 can be configured to transmit determined eye hydration levels in response to the eye hydration level being below a predetermined threshold. For example, the hydration component 210 may routinely sense/generate information indicative of an eye hydration level and the microprocessor may routinely determine the eye hydration level based on the sensed/generated information. When the eye hydration level falls below a predetermined threshold, the transmitter 240 can send an alert to a reader device.
In another aspect, the hydration component 210 can perform sensing/generating of eye hydration level information in response to a request signal. For example, transmitter 240 can receive a request from a remote device for eye hydration level information. In turn, the hydration component 210 can sense/generate information indicative of eye hydration level information and the microprocessor can further determine or infer eye hydration level based on the sensed/generated information. The transmitter 240 can transmit sensed/generated and/or determined/inferred eye hydration level information back to the reader device.
With reference now to
Turning initially to
As seen in
The sensors 422 and 424 can further be connected to each other and/or circuit 106 via one or more wires. In an aspect, contact lens 420 is hydrated/filled with tear fluid and thus swollen. For example contact lens 420 can represent a contact lens that has been recently provided within an eye. On the other hand, contact lens 430 depicts a contact lens that has been shrunk as a result of depletion of tear fluid therein. For example, contact lens 430 can represent a contact lens that is worn over a period of time in a dehydrated eye. In an aspect, the pressure between sensors 424 and 422 of contact lens 420 is greater than the pressure against sensors 424 and 422 of contact lens 430 as a result of the swelling of the contact lens 420 and/or the shrinking of contact lens 430. According to this aspect, the lower pressure against contact lenses 424 and 422 of contact lens 430 can be indicative of a low hydration level of the eye 104 in which the contact lens 430 is worn.
As shown in
Interface component 510 interfaces with and receives from at least one contact lens, data relating an eye hydration level. In particular, interface component 510 can interface with contact lenses described herein that comprise a contact lens circuit such as contact lens circuit 106 and/or contact lens circuit 200. In an aspect, interface component 510 employs a receiver, such as an RF receiver, to receive sensed/generated and/or determined information from a contact lens comprising a contact lens circuit as described herein. In some aspects, interfacing component 510 can receive from a contact lens, a determined value indicating a hydration level of an eye in which the contact lens is worn. According to this aspect, the contact lens may include appropriate circuitry and components to process data provided by a hydration component thereon and/or therein.
In another aspect, the reader can receive raw data from a contact lens that is indicative of eye hydration levels. For example, the interface component 510 may receive contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling/shrinking information that is sensed/generated by a hydration component located within the contact lens. According to this embodiment, the reader 500 can comprise an analysis component 520 that can analyze the received raw data and to determine a hydration level of an eye in which the contact lens sending the information, is worn. In an aspect, the analysis component 520 can perform the same or similar analysis techniques as microprocessor 260. In particular, the analysis component 520 can employ any received information to determine a hydration level of an eye. For example, the analysis component 520 can employ combined contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information, to determine a hydration level of an eye. The analysis component 520 can further employ information in memory 340 that relates the received information to an eye hydration level. The analysis component 520 may employ various look up tables, algorithms, and/or classifiers relating sensed/generated information to an eye hydration level.
According to this aspect, memory 560 can store information relating contact lens resistivity and/or conductivity information, contact lens sheet resistance information, and/or hydrogel swelling information to eye hydration levels. Further, memory 360 can store information necessary for analysis component 520 to perform calculations and determinations of contact lens conductivity, contact lens resistivity, contact lens sheet resistance, and hydrogel swelling. For example, memory 560 can store algorithms and known values required for the algorithmic calculations (e.g. base values of the contact lens conductivity, the contact lens resistivity, the contact lens sheet resistance, the hydrogel thickness, electrode potentials, and applied current values, the geometric configuration of the electrodes, and etc.).
Request component 540 can transmit a request to a contact lens for data relating to a hydration level of an eye in which the contact lens is worn. For example, the request component can request an eye hydration level of an eye in which the contact lens is worn and/or sensed/detected information indicative of an eye hydration level. In an aspect, the request can prompt the contact lens to perform sensing/generation and/or analysis of eye hydration level information.
The reader device 500 can further include a display component 530 that generates a display corresponding to a hydration level of an eye in which a contact lens as described herein, is worn. Reader device 500 can include any suitable computing device capable of wirelessly transmitting and receiving information, displaying information, and/or processing eye hydration level information. For example, reader device 500 can include but is not limited to, a cellular phone, a smart phone, a personal digital assistant, a tablet PC, a laptop computer, or a desktop computer.
Referring now to
Turning now to
Exemplary Networked and Distributed Environments
Each computing object 810, 812, etc. and computing objects or devices 820, 822, 824, 826, 828, etc. can communicate with one or more other computing objects 810, 812, etc. and computing objects or devices 820, 822, 824, 826, 828, etc. by way of the communications network 840, either directly or indirectly. Even though illustrated as a single element in
In a network environment in which the communications network/bus 840 can be the Internet, the computing objects 810, 812, etc. can be Web servers, file servers, media servers, etc. with which the client computing objects or devices 820, 822, 824, 826, 828, etc. communicate via any of a number of known protocols, such as the hypertext transfer protocol (HTTP).
Exemplary Computing Device
As mentioned, advantageously, the techniques described in this disclosure can be associated with any suitable device. It is to be understood, therefore, that handheld, portable and other computing devices (including active contact lens having circuitry or components that compute and/or perform various functions). As described, in some aspects, the device can be the contact lens (or components of the contact lens) and/or the reader described herein. In various aspects, the data store can include or be included within, any of the memory described herein, any of the contact lenses described herein and/or the reader devices described herein. In various aspects, the data store can be any repository for storing information transmitted to or received from the contact lens.
Computer 910 typically includes a variety of computer readable media and can be any available media that can be accessed by computer 910. The system memory 930 can include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM). By way of example, and not limitation, memory 930 can also include an operating system, application programs, other program components, and program data.
A user can enter commands and information into the computer 910 through input devices 940 (e.g., keyboard, keypad, a pointing device, a mouse, stylus, touchpad, touch screen, motion detector, camera, microphone or any other device that allows the user to interact with the computer 910). A monitor or other type of display device can be also connected to the system bus 922 via an interface, such as output interface 950. In addition to a monitor, computers can also include other peripheral output devices such as speakers and a printer, which can be connected through output interface 950.
The computer 910 can operate in a networked or distributed environment using logical connections to one or more other remote computers, such as remote computer 960. The remote computer 960 can be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and can include any or all of the elements described above relative to the computer 910. The logical connections depicted in
Computing devices typically include a variety of media, which can include computer-readable storage media and/or communications media, in which these two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer, can be typically of a non-transitory nature, and can include both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program components, structured data, or unstructured data. Computer-readable storage media can include, but are not limited to, RAM, ROM, electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, or other tangible and/or non-transitory media which can be used to store desired information. Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium. In various aspects, the computer-readable storage media can be, or be included within, the memory, contact lens (or components thereof) or reader described herein.
On the other hand, communications media typically embody computer-readable instructions, data structures, program components or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and includes any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals.
It is to be understood that the aspects described in this disclosure can be implemented in hardware, software, firmware, middleware, microcode, or any combination thereof. For a hardware aspect, the processing units can be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors and/or other electronic units designed to perform the functions described in this disclosure, or a combination thereof.
For a software aspect, the techniques described in this disclosure can be implemented with components or components (e.g., procedures, functions, and so on) that perform the functions described in this disclosure. The software codes can be stored in memory units and executed by processors.
What has been described above includes examples of one or more aspects. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further combinations and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it is to be noted that one or more components can be combined into a single component providing aggregate functionality. Any components described in this disclosure can also interact with one or more other components not specifically described in this disclosure but generally known by those of skill in the art. Furthermore, it is to be appreciated that components, devices, systems, circuits, etc. described in the disclosure can be configured to perform as well as actually perform the functionalities respectively associated therewith.
In view of the exemplary systems described above methodologies that can be implemented in accordance with the described subject matter will be better appreciated with reference to the flowcharts of the various figures. While for purposes of simplicity of explanation, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks can occur in different orders and/or concurrently with other blocks from what is depicted and described in this disclosure. Where non-sequential, or branched, flow is illustrated via flowchart, it can be appreciated that various other branches, flow paths, and orders of the blocks, can be implemented which achieve the same or a similar result. Moreover, not all illustrated blocks may be required to implement the methodologies described in this disclosure after.
In addition to the various aspects described in this disclosure, it is to be understood that other similar aspects can be used or modifications and additions can be made to the described aspect(s) for performing the same or equivalent function of the corresponding aspect(s) without deviating there from. Still further, multiple processing chips or multiple devices can share the performance of one or more functions described in this disclosure, and similarly, storage can be provided across a plurality of devices. The invention is not to be limited to any single aspect, but rather can be construed in breadth, spirit and scope in accordance with the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3958560 | March | May 1976 | A |
4014321 | March | Mar 1977 | A |
4055378 | Feneberg et al. | Oct 1977 | A |
4122942 | Wolfson | Oct 1978 | A |
4136250 | Mueller et al. | Jan 1979 | A |
4143949 | Chen | Mar 1979 | A |
4153641 | Deichert et al. | May 1979 | A |
4214014 | Hofer et al. | Jul 1980 | A |
4309085 | Morrison | Jan 1982 | A |
4312575 | Peyman et al. | Jan 1982 | A |
4401371 | Neefe | Aug 1983 | A |
4463149 | Ellis | Jul 1984 | A |
4555372 | Kunzler et al. | Nov 1985 | A |
4604479 | Ellis | Aug 1986 | A |
4632844 | Yanagihara et al. | Dec 1986 | A |
4686267 | Ellis et al. | Aug 1987 | A |
4740533 | Su et al. | Apr 1988 | A |
4826936 | Ellis | May 1989 | A |
4996275 | Ellis et al. | Feb 1991 | A |
4997770 | Giles et al. | Mar 1991 | A |
5032658 | Baron et al. | Jul 1991 | A |
5034461 | Lai et al. | Jul 1991 | A |
5070215 | Bambury et al. | Dec 1991 | A |
5135297 | Valint | Aug 1992 | A |
5177165 | Valint et al. | Jan 1993 | A |
5177168 | Baron | Jan 1993 | A |
5219965 | Valint et al. | Jun 1993 | A |
5260000 | Nandu et al. | Nov 1993 | A |
5271875 | Appleton et al. | Dec 1993 | A |
5310779 | Lai | May 1994 | A |
5321108 | Kunzler et al. | Jun 1994 | A |
5326584 | Kamel et al. | Jul 1994 | A |
5336797 | McGee et al. | Aug 1994 | A |
5346976 | Ellis et al. | Sep 1994 | A |
5358995 | Lai et al. | Oct 1994 | A |
5364918 | Valint et al. | Nov 1994 | A |
5387662 | Kunzler et al. | Feb 1995 | A |
5449729 | Lai | Sep 1995 | A |
5472436 | Fremstad | Dec 1995 | A |
5512205 | Lai | Apr 1996 | A |
5585871 | Linden | Dec 1996 | A |
5610252 | Bambury et al. | Mar 1997 | A |
5616757 | Bambury et al. | Apr 1997 | A |
5682210 | Weirich | Oct 1997 | A |
5708094 | Lai et al. | Jan 1998 | A |
5710302 | Kunzler et al. | Jan 1998 | A |
5714557 | Kunzler et al. | Feb 1998 | A |
5726733 | Lai et al. | Mar 1998 | A |
5760100 | Nicolson et al. | Jun 1998 | A |
5908906 | Kunzler et al. | Jun 1999 | A |
5981669 | Valint et al. | Nov 1999 | A |
6087941 | Ferraz | Jul 2000 | A |
6131580 | Ratner et al. | Oct 2000 | A |
6145736 | Ours et al. | Nov 2000 | A |
6193369 | Valint et al. | Feb 2001 | B1 |
6200626 | Grobe et al. | Mar 2001 | B1 |
6213604 | Valint et al. | Apr 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6348507 | Heiler et al. | Feb 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6423001 | Abreu | Jul 2002 | B1 |
6428839 | Kunzler et al. | Aug 2002 | B1 |
6431705 | Linden | Aug 2002 | B1 |
6440571 | Valint et al. | Aug 2002 | B1 |
6450642 | Jethmalani et al. | Sep 2002 | B1 |
6532298 | Cambier et al. | Mar 2003 | B1 |
6550915 | Grobe | Apr 2003 | B1 |
6570386 | Goldstein | May 2003 | B2 |
6579235 | Abita et al. | Jun 2003 | B1 |
6599559 | McGee et al. | Jul 2003 | B1 |
6614408 | Mann | Sep 2003 | B1 |
6630243 | Valint et al. | Oct 2003 | B2 |
6638563 | McGee et al. | Oct 2003 | B2 |
6726322 | Andino et al. | Apr 2004 | B2 |
6735328 | Helbing et al. | May 2004 | B1 |
6779888 | Marmo | Aug 2004 | B2 |
6804560 | Nisch et al. | Oct 2004 | B2 |
6851805 | Blum et al. | Feb 2005 | B2 |
6885818 | Goldstein | Apr 2005 | B2 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6980842 | March et al. | Dec 2005 | B2 |
7018040 | Blum et al. | Mar 2006 | B2 |
7131945 | Fink et al. | Nov 2006 | B2 |
7169106 | Fleischman et al. | Jan 2007 | B2 |
7398119 | Lambert et al. | Jul 2008 | B2 |
7423801 | Kaufman et al. | Sep 2008 | B2 |
7429465 | Muller et al. | Sep 2008 | B2 |
7441892 | Hsu | Oct 2008 | B2 |
7443016 | Tsai et al. | Oct 2008 | B2 |
7450981 | Jeon | Nov 2008 | B2 |
7639845 | Utsunomiya | Dec 2009 | B2 |
7654671 | Glynn | Feb 2010 | B2 |
7699465 | Dootjes et al. | Apr 2010 | B2 |
7728949 | Clarke et al. | Jun 2010 | B2 |
7751896 | Graf et al. | Jul 2010 | B2 |
7799243 | Mather et al. | Sep 2010 | B2 |
7809417 | Abreu | Oct 2010 | B2 |
7878650 | Fritsch et al. | Feb 2011 | B2 |
7885698 | Feldman | Feb 2011 | B2 |
7907931 | Hartigan et al. | Mar 2011 | B2 |
7926940 | Blum et al. | Apr 2011 | B2 |
7931832 | Pugh et al. | Apr 2011 | B2 |
7964390 | Rozakis et al. | Jun 2011 | B2 |
8080187 | Tepedino, Jr. et al. | Dec 2011 | B2 |
8096654 | Amirparviz et al. | Jan 2012 | B2 |
8118752 | Hetling et al. | Feb 2012 | B2 |
8142016 | Legerton et al. | Mar 2012 | B2 |
8224415 | Budiman | Jul 2012 | B2 |
20020193674 | Fleischman et al. | Dec 2002 | A1 |
20030179094 | Abreu | Sep 2003 | A1 |
20040027536 | Blum et al. | Feb 2004 | A1 |
20040116794 | Fink et al. | Jun 2004 | A1 |
20050045589 | Rastogi et al. | Mar 2005 | A1 |
20050221276 | Rozakis et al. | Oct 2005 | A1 |
20070016074 | Abreu | Jan 2007 | A1 |
20070030443 | Chapoy et al. | Feb 2007 | A1 |
20070121065 | Cox et al. | May 2007 | A1 |
20070188710 | Hetling et al. | Aug 2007 | A1 |
20080208335 | Blum et al. | Aug 2008 | A1 |
20080218696 | Mir | Sep 2008 | A1 |
20090033863 | Blum et al. | Feb 2009 | A1 |
20090036761 | Abreu | Feb 2009 | A1 |
20090057164 | Minick et al. | Mar 2009 | A1 |
20090076367 | Sit et al. | Mar 2009 | A1 |
20090118604 | Phan et al. | May 2009 | A1 |
20090189830 | Deering et al. | Jul 2009 | A1 |
20090196460 | Jakobs et al. | Aug 2009 | A1 |
20100001926 | Amirparviz et al. | Jan 2010 | A1 |
20100013114 | Bowers et al. | Jan 2010 | A1 |
20100016704 | Naber et al. | Jan 2010 | A1 |
20100028559 | Yan et al. | Feb 2010 | A1 |
20100072643 | Pugh et al. | Mar 2010 | A1 |
20100103368 | Amirparviz et al. | Apr 2010 | A1 |
20100109175 | Pugh et al. | May 2010 | A1 |
20100110372 | Pugh et al. | May 2010 | A1 |
20100113901 | Zhang et al. | May 2010 | A1 |
20100133510 | Kim et al. | Jun 2010 | A1 |
20100249548 | Muller | Sep 2010 | A1 |
20110015512 | Pan et al. | Jan 2011 | A1 |
20110028807 | Abreu | Feb 2011 | A1 |
20110040161 | Abreu | Feb 2011 | A1 |
20110055317 | Vonog et al. | Mar 2011 | A1 |
20110063568 | Meng et al. | Mar 2011 | A1 |
20110084834 | Sabeta | Apr 2011 | A1 |
20110116035 | Fritsch et al. | May 2011 | A1 |
20110157541 | Peyman | Jun 2011 | A1 |
20110157544 | Pugh et al. | Jun 2011 | A1 |
20110184271 | Veciana et al. | Jul 2011 | A1 |
20110274680 | Mazed et al. | Nov 2011 | A1 |
20110286064 | Burles et al. | Nov 2011 | A1 |
20110298794 | Freedman | Dec 2011 | A1 |
20120026458 | Qiu et al. | Feb 2012 | A1 |
20120038881 | Amirparviz et al. | Feb 2012 | A1 |
20120041287 | Goodall et al. | Feb 2012 | A1 |
20120041552 | Chuck et al. | Feb 2012 | A1 |
20120069254 | Burton | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120075574 | Pugh et al. | Mar 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120088258 | Bishop et al. | Apr 2012 | A1 |
20120092612 | Binder | Apr 2012 | A1 |
20120109296 | Fan | May 2012 | A1 |
20120177576 | Hu | Jul 2012 | A1 |
20120201755 | Rozakis et al. | Aug 2012 | A1 |
20120206691 | Iwai | Aug 2012 | A1 |
20120245444 | Otis et al. | Sep 2012 | A1 |
20120259188 | Besling | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
0369942 | May 1990 | EP |
686372 | Dec 1995 | EP |
1061874 | Dec 2000 | EP |
1617757 | Jan 2006 | EP |
1818008 | Aug 2007 | EP |
1947501 | Jul 2008 | EP |
2457122 | May 2012 | EP |
2003-195230 | Jul 2003 | JP |
9504609 | Feb 1995 | WO |
0116641 | Mar 2001 | WO |
2001034312 | May 2001 | WO |
03065876 | Aug 2003 | WO |
2004060431 | Jul 2004 | WO |
2004064629 | Aug 2004 | WO |
2006015315 | Feb 2006 | WO |
2009094643 | Jul 2009 | WO |
2010105728 | Sep 2010 | WO |
2010133317 | Nov 2010 | WO |
2011011344 | Jan 2011 | WO |
2011034592 | Mar 2011 | WO |
2011035228 | Mar 2011 | WO |
2011035262 | Mar 2011 | WO |
2011083105 | Jul 2011 | WO |
2011163080 | Dec 2011 | WO |
2012035429 | Mar 2012 | WO |
2012037455 | Mar 2012 | WO |
2012051167 | Apr 2012 | WO |
2012051223 | Apr 2012 | WO |
2012052765 | Apr 2012 | WO |
Entry |
---|
Badugu et al., “A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring,” Journal of Fluorescence, Sep. 2003, pp. 371-374, vol. 13, No. 5. |
Carlson et al., “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid-State Circuits, Apr. 2010, pp. 741-750, vol. 45, No. 4. |
Chu et al., “Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents,” Biomed Microdevices, 2011, pp. 603-611, vol. 13. |
Chu et al., “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment,” Talanta, 2011, pp. 960-965, vol. 83. |
Ho et al., “Contact Lens With Integrated Inorganic Semiconductor Devices,” MEMS 2008. IEEE 21st International Conference on. IEEE, 2008., pp. 403-406. |
Lähdesmäki et al., “Possibilities for Continuous Glucose Monitoring by a Functional Contact Lens,” IEEE Instrumentation & Measurement Magazine, Jun. 2010, pp. 14-17. |
Lingley et al., “A contact lens with integrated micro solar cells,” Microsyst Technol, 2012, pp. 453-458, vol. 18. |
Parviz, Babak A., “For Your Eyes Only,” IEEE Spectrum, Sep. 2009, pp. 36-41. |
Saeedi, E. et al., “Self-assembled crystalline semiconductor optoelectronics on glass and plastic,” J. Micromech. Microeng., 2008, pp. 1-7, vol. 18. |
Saeedi et al., “Self-Assembled Inorganic Micro-Display on Plastic,” Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on. IEEE, 2007., pp. 755-758. |
Sensimed Triggerfish, Sensimed Brochure, 2010, 10 pages. |
Shih, Yi-Chun et al., “An Inductorless DC-DC Converter for Energy Harvesting With a 1.2-μW Bandgap-Referenced Output Controller,” IEEE Transactions on Circuits and Systems-II: Express Briefs, Dec. 2011, pp. 832-836, vol. 58, No. 12. |
Shum et al., “Functional modular contact lens,” Proc. of SPIE, 2009, pp. 73970K-1 to 73970K-8, vol. 7397. |
Stauth et al., “Self-assembled single-crystal silicon circuits on plastic,” PNAS, Sep. 19, 2006, pp. 13922-13927, vol. 103, No. 38. |
Yao, H. et al., “A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring,” J. Micromech. Microeng., 2012, pp. 1-10, vol. 22. |
Yao, H. et al., “A Dual Microscal Glucose Sensor on a Contact Lens, Tested in Conditions Mimicking the Eye,” Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. IEEE, 2011, pp. 25-28. |
Yao et al., “A contact lens with embedded sensor for monitoring tear glucose level,” Biosensors and Bioelectronics, 2011, pp. 3290-3296, vol. 26. |
Yao, H. et al., “A Soft Hydrogel Contact Lens with an Encapsulated Sensor for Tear Glucose Monitoring,” Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on. IEEE, 2012, pp. 769-772. |
Yeager et al., “A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquistion,” IEEE Journal of Solid-State Circuits, Oct. 2010, pp. 2198-2209, vol. 45, No. 10. |
Zhang et al., “Design for Ultra-Low Power Biopotential Amplifiers for Biosignal Acquistion Applications,” IEEE Transactions on Biomedical Circuits and Systems, 2012, pp. 344-355, vol. 6, No. 4. |
Wall, K., “Active contact lens that lets you see like the Terminator patented,” Feb. 10, 2012, http://www.patexia.com/feed/active-contact-lens-that-lets-you-see-like-the-terminator-patented-2407, Last accessed Mar. 28, 2012, 5 pages. |
Parviz, Babak A., “Augmented Reality in a Contact Lens,” IEEE Spectrum, Sep. 2009, http://spectrum.ieee.org/biomedical/bionics/augmented-reality-in-a-contact-lens/0, Last accessed Mar. 14, 2012, 6 pages. |
Bionic contact lens 'To project emails before eyes,' http://www.kurzweilai.net/forums/topic/bionic-contact-lens-to-project-emails-before-eyes, Last accessed Mar. 14, 2012, 2 pages. |
Tweedie, et al., “Contact creep compliance of viscoelastic materials via nanoindentation,” J. Mater. Res., Jun. 2006, vol. 21, No. 2, pp. 1576-1589, Materials Research Society. |
Brahim, et al., “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” 2002, Biosensors & Bioelectronics, vol. 17, pp. 53-59. |
Huang, et al., “Wrinkling of Ultrathin Polymer Films,” Mater. Res. Soc. Symp. Proc., 2006, vol. 924, 6 pages, Materials Research Society. |
Zarbin, et al., “Nanotechnology in ophthalmology,” Can J Ophthalmol, 2010, vol. 45, No. 5, pp. 457-476. |
Selner, et al., “Novel Contact Lens Electrode Array for Multi-electrode Electroretinography (meERG),” IEEE, 2011, 2 pages. |
Liao, et al., “A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE Journal of Solid-State Circuits, Jan. 2012, vol. 47, No. 1, pp. 335-344. |
Chen, et al., “Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors,” Journal of Microelectromechanical Systems, Dec. 2008, vol. 17, No. 6, pp. 1342-1351. |
Thomas, et al., “Functional Contact Lenses for Remote Health Monitoring in Developing Countries,” IEEE Global Humanitarian Technology Conference, 2011, pp. 212-217, IEEE Computer Society. |
Pandey, et al., “A Fully Integrated RF-Powered Contact Lens With a Single Element Display,” IEEE Transactions On Biomedical Circuits and Systems, Dec. 2010, vol. 4, No. 6, pages. |
Lingley, et al., “Multipurpose integrated active contact lenses,” SPIE, 2009, 2 pages. |
Chu, et al., “Soft Contact-lens Sensor for Monitoring Tear Sugar as Novel Wearable Device of Body Sensor Network,” http://www.ksi.edu/seke/dms11/DMS/2—Kohji—Mitsubayashi.pdf, Last accessed Jul. 27, 2012, 4 pages. |
Liao, et al., “A 3μW Wirelessly Powered CMOS Glucose Sensor for an Active Contact Lens,” 2011 IEEE International Solid-State Circuits Conference, Session 2, Feb. 21, 2011, 3 pages. |
Hurst, “How contact lenses could help save your life,” Mail Online, Apr. 19, 2010, http://www.dailymail.co.uk/health/article-1267345/How-contact-lenses-help-save-life.html, Last accessed Jul. 27, 2012. |
Lonĉar, et al., “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” Journal of Lightwave Technology, Oct. 2000, vol. 18, No. 10, pp. 1402-1411. |
Baxter, “Capacitive Sensors,” 2000, 17 pages. |
Lingley, et al., “A Single-Pixel Wireless Contact Lens Display,” Journal of Micromechanics and Microengineering, 2011, 9 pages. |
“Polyvinylidene fluoride,” Wikipedia, http://en.wikipedia.org/wiki/Polyvinylidene—fluoride, Last accessed Mar. 30, 2012, 4 pages. |
Murdan, “Electro-responsive drug delivery from hydrogels,” Journal of Controlled Release, 2003, vol. 92, pp. 1-17. |
Haders, “New Controlled Release Technologies Broaden Opportunities for Ophthalmic Therapies,” Drug Delivery Technology, Jul./Aug. 2009, vol. 8, No. 7, pp. 48-53. |
Singh, et al., “Novel Approaches in Formulation and Drug Delivery using Contact Lenses,” Journal of Basic and Clinical Pharmacy, May 2011, vol. 2, Issue 2, pp. 87-101. |
“Contact Lenses: Look Into My Eyes,” The Economist, Jun. 2, 2011, http://www.economist.com/node/18750624/print, Last accessed Mar. 13, 2012, 8 pages. |
Holloway, “Microsoft developing electronic contact lens to monitor blood sugar,” Gizmag, Jan. 5, 2012, http://www.gizmag.com/microsoft-electronic-diabetic-contact-lens/20987/, Last accessed Mar. 13, 2012, 5 pages. |
Unpublished U.S. Appl. No. 13/240,994, Titled “See-Through Display With Infrared Eye-Tracker,” Filed Sep. 22, 2011, 38 pages. |
Unpublished U.S. Appl. No. 13/209,706, Titled “Optical Display System and Method with Gaze Tracking,” filed Aug. 15, 2011, 30 pages. |
Adler, “What types of statistical analysis do scientists use most often?” O'Reilly Community, Jan. 15, 2010, 2 pages, http://broadcast.oreilly.com/2010/01/what-types-of-statistical-anal.html, Last accessed Sep. 4, 2012. |
Bull, “Different Types of Statistical Analysis,” Article Click, Feb. 4, 2008, 4 pages, http://www.articleclick.com/Article/Different-Types-Of-Statistical-Analysis/968252, Last accessed Sep. 4, 2012. |
“Understanding pH measurement,” Sensorland, 8 pages, http://www.sensorland.com/HowPage037.html, Last accessed Sep. 6, 2012. |
“Regression analysis,” Wikipedia, 11 pages, http://en.wikipedia.org/wiki/Regression—analysis, Last accessed Sep. 6, 2012. |
“Statistics,” Wikipedia, 10 pages, http://en.wikipedia.org/wiki/Statistics, Last accessed Sep. 6, 2012. |
“Nonlinear regression,” Wikipedia, 4 pages, http://en.wikipedia.org/wiki/Nonlinear—regression, Last accessed Sep. 10, 2012. |
“Linear regression,” Wikipedia, 15 pages, http://en.wikipedia.org/wiki/Linear—regression, Last accessed Sep. 10, 2012. |
“Integrated circuit,” Wikipedia, 9 pages, http://en.wikipedia.org/wiki/lntegrated—circuit, Last accessed Sep. 10, 2012. |
“Photolithography,” Wikipedia, 8 pages, http://en.wikipedia.org/wiki/Photolithography, Last accessed Sep. 10, 2012. |
Harding, et al., “Alcohol Toxicology for Prosecutors: Targeting Hardcore Impaired Drivers,” American Prosecutors Research Institute, Jul. 2003, 40 pages. |
Kim, et al., “Oral Alcohol Administration Disturbs Tear Film and Ocular Surface,” American Academy of Ophthalmology, 2012, 7 pages. |
Quick, “Color-changing electrochromic lens technology has fashion and military applications,” Gizmag, Jul. 12, 2011, http://www.gizmag.com/electrochromic-lens-technology/19191/, Last accessed Apr. 12, 2012, 4 pages. |
Chu, “Contact Lenses that Respond to Light,” Technology Review, Nov. 10, 2009, http://www.technologyreview.com/printer—friendly—article—aspx?id=23922, Last accessed Apr. 12, 2012, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140085602 A1 | Mar 2014 | US |