The invention relates to the field of wearable drug delivery devices.
While oral delivery is the most common standard for drug delivery, many drugs cannot easily be formulated in a format suitable for oral administration. For example, treatment of diabetes, genetic disorders, and novel cancer treatments are based on (poly)peptides, which are destroyed in the gastro-intestinal tract. For these drugs, the preferred way of administration is usually an injection, and appropriate formulations need to be developed or matched to optimize the therapeutic effects, which can be highly dependent on the patient and can additionally be time-dependent. Furthermore, compliance is considered a major issue for the effective treatment of diseases. Therefore, there is a need for an alternative administration of drugs which provides an application of the right amount of drugs at the right time without requiring any action by the patient.
U.S. Pat. No. 4,734,092 discloses a device for infusing a drug into an ambulatory patient, the drug being contained in a transparent spiral conduit which is embedded in a disposable flexible casting conformingly adhered to the patient's body, includes a reusable micro-pump module, which is detachably mounted in a collar on the casting and forces oxygen into the conduit under pressure to expel the drug into a semi-pivoting canula inserted into the patient's body. A colored oil drop between the oxygen and the drug in the conduit provides a visual indication of drug quantity, while a filter of hydrophobic and hydrophilic membranes keeps the oxygen and oil substantially out of the canula. A test button sounds an alarm when the device is ready for use and a pressure sensitive switch automatically sounds an alarm and shuts off the pump if the drug becomes completely discharged from the conduit or if the drug delivery system becomes occluded and an interlock switch completes the circuit between the pump and a power source when the reusable module and disposable casting are joined.
The usage of a canula or needle requires the penetration of the patient's skin by the needle in order to administer the drug through the skin barrier. However, any entering of the canula to the patient's skin restricts the mobility and comfort of the patient.
It would be advantageous to provide a wearable drug delivery device which would not require a canula for the application of the drug into the patient's body.
It would also be desirable to provide a wearable drug delivery device enhancing the mobility and comfort of the patient.
Furthermore it is desirable to provide a wearable drug delivery device according to an embodiment of the present invention does not require any surgical intervention for implantation of the device prior to the usage of the device.
It would also be desirable to provide a wearable drug delivery device operable when oriented in different directions, e.g. when the patient is standing up, lying down and having different orientations.
To better address one or more of these concerns, in a first aspect of the invention a wearable drug delivery device is provided comprising a tubular reservoir having an outlet end from which a drug may be expelled and a second end, a high-speed jet pump for transdermal, needle-less micro jet drug delivery, being connected to the outlet end of the tubular reservoir, a venting valve, being connected to the second end of the reservoir.
When compared on the other hand to needle-based drug delivery devices such as a syringe, the wearable drug delivery device according to an embodiment of the present invention does not require penetration of a needle or cannula into the patient.
Transdermal drug delivery, i.e. drug delivery directly through the skin, can be used for controlled and/or continuous delivery of drugs. Skin is an essential organ ensuring both protection from external pathogens and preventing water loss. In both cases, the barrier properties of skin, which are the result of millions of years of biological evolution, are essential to our survival. The top layer of the skin is the stratum corneum), the main layer ensuring barrier properties of the skin, which essentially consists of dead cells (corneocyte) surrounded by lipid bilayers. Due to their respective composition and structures, the stratum corneum is mostly hydrophobic and impermeable while the lower layers, epidermis and dermis, are mostly hydrophilic. As a consequence, molecules with low molecular weight of less than 5 kilo Dalton (kDa) and with a lipophilic character tend to permeate the skin rather than large, hydrophilic molecules.
According to an embodiment of the invention the high-speed jet pump for transdermal, needle-less micro jet drug delivery is a high-speed jet pump as disclosed in European patent application no. 06 119 215, the disclosure of which is incorporated herein in its full entirety by reference.
According to an embodiment of the invention, the high-speed jet pump comprises a casing with a fluid chamber, a membrane forming a wall of the fluid chamber, the fluid chamber further comprising at least one exit orifice and the membrane being piezo-electrically actuable for fluid ejection from the fluid chamber through the exit orifice, wherein a speed of the fluid ejection is adjustable by controlling the piezo-electric actuation of the membrane. Particularly in an embodiment of the present invention, the high-speed jet pump is an electrically driven needless injection device based on piezo-electric actuation.
In an alternative embodiment the high-speed jet pump may be based on an inductive coil actuating mechanism or any other high speed actuating mechanism. It is an advantage of a high-speed jet pump according to an embodiment of the present invention, that it allows the delivery of small amounts of the drug per injection.
It will be appreciated by a person skilled in the art, that the speed of the fluid ejection in an embodiment may advantageously be set to any desired value, for example depending on how deep into the patient's skin the fluid shall be delivered. The speed of the fluid ejection may as well be reduced below values at which the human skin is ruptured which advantageously allows ingestible or inplantable devices.
In a further embodiment, the speed of the fluid ejection is adjustable to a high-speed regime, and at least one dispensing regime, advantageously the high-speed jet pump according to an embodiment can be used both to pierce the epidermis, for example for transdermal drug delivery and to deliver controlled amounts of drug. The fluid ejection speed in the high speed regime is thus preferably at least sufficient for injecting the fluid through at least an outer layer of the skin of a patient. The top layer of the skin is the stratum corneum (sc), the main layer ensuring barrier properties of the skin. The fluid to be ejected is accelerated to an ejection speed high enough to disrupt the stratum corneum, to penetrate and diffuse in the epidermis and dermis, accessing peripheral blood vessels.
In an embodiment of the present invention, the fluid ejection speed in the high-speed regime is controllable, particularly between 60 m/s and 200 m/s. Therefore, the high-speed jet pump provides a broad range for utilization. The fluid ejection speed of 60 m/s is a typical speed for damage of soft tissue of biological nature such as bacterial films. A preferable fluid ejection speed by application in an embodiment according to the present invention in the high-speed regime for needle-less drug injection is about 20 m/s to 150 m/s.
In terms of the present invention, a wearable drug delivery device is a device which is arranged such that it can be carried by a patient in an operable condition on a long-term basis. Therefore, in a further embodiment of the wearable drug delivery device, it comprises mounting means for mounting the drug delivery device to a patient. Such mounting means could be self-adherent surfaces, bandages or strips to strap the device to the patient but are not restricted to such.
As the high-speed jet pump is used to eject the liquid drug through the patient's skin without puncturing the skin by a needle, it is essential that in the system consisting of the venting valve, the high-speed jet pump and the tubular reservoir being in fluid communication with each other, the jet pump is located as close as possible to the patient's skin, i.e. at the first of the tubular reservoir facing to the patient, from which the drug is expelled.
In comparison in the above reference the cannula or needle is connected to an outlet end of the spiral conduit, while the pump is connected to a second end of the conduit. When in operation the pump presses air into the first second end of the conduit, and therefore it expels the drug from the outlet end into the canula and into the patient's body.
A tubular reservoir in the terms of the present invention is a reservoir whose dimension in a first direction is at least twice as large as its dimension in the second direction.
The tubular reservoir according to an embodiment of the present invention at each filling level of the drug in the tubular reservoir has a minimal surface, i.e. the surface of the liquid level in the tube. Only the surface of the liquid in the tube forms the working surface for the external pressure.
In an embodiment of the invention the diameter and maximum radius of the tubular reservoir are adjusted to the properties drug solution to be injected so that the fluid is constrained in the tubular reservoir by capillary action. The parameters of interest are the surface tension γ of the fluid, the contact angle θ with the reservoir walls, the density ρ of the solution, the diameter of the reservoir, the maximum outer radius of the spiral manifold lmax.
It is preferable that in an embodiment the internal diameter of the reservoir be less than dmax, defined as:
This condition insures that the fluid does not leak out of the open nozzle or outlet orifice of the jet injector.
Furthermore, the tubular reservoir in an embodiment enables the usage of capillary forces keeping the fluid entirely between the filling level of an outlet orifice of the jet pump avoiding gas, e.g. air, to be pumped into the patient's body.
In an embodiment of the present invention, the medical grade tubing material should not interact chemically with the drug solution and should be sterilized prior to use. Tubing materials for the tubular reservoir include, but are not restricted to: polycarbonates, high-density polyethylene, nylon, retains, polypropylene, polyethylene, cyclic polyolefins, and the materials can be coated with inorganic compounds (e.g. silicon oxide) to reduce the contact angle θ for aqueous solutions. The tubing material in an embodiment can be transparent to allow for optical inspection, a fluid level monitoring and to detect the presence of air bubbles in the tubular reservoir.
The tubing inner diameter in an embodiment ranges from 0.4 mm to 2 mm. In an embodiment, the volumes available for the fluid storage are in the range from 1 to 5 ml.
The overall volume of the reservoir in an embodiment is smaller than 10 ml. Preferably, the construction of the tubular reservoir is flexible such that it can occupy the volume of a casing in an optimum manner.
In an embodiment of a present invention, the venting valve is located adjacent to the jet pump. “Adjacent” herein means that the venting valve is located close to the nozzle or outlet orifice of the high-speed jet pump, in order to reduce the possible hydrostatic pressure differences between the venting valve and the outlet orifice of the jet pump as much as possible. This way, the differences in hydrostatic pressure between the venting valve and the micro jet pump can be minimized.
In a further embodiment, the distance between the jet pump and the venting valve is smaller than 2 cm and preferably smaller or equal to 1 cm.
Desirably, there is an embodiment of the invention in which the tubular reservoir is spirally arranged. A spiral arrangement as understood in terms of the present invention requires that at least part of the tubular reservoir forms a spiral such that when being pressed through the tubular reservoir, the liquid drug moves inward or outward on a spiral track. This construction can minimize the differences in hydrostatic pressure between the reservoir and the jet pump and enables the application of the drug in every different physical orientation of the patient and thus of the wearable drug delivery device according to an embodiment of the present invention. In an alternative embodiment of the present invention, the spiral formed by the tubular reservoir is arranged essentially in a plane and the venting valve and the jet pump are arranged on an axis perpendicular to the plane.
Furthermore, an embodiment of the invention may be advantageous in which the jet pump and the venting valve are arranged in the center of the spirally arranged tubular reservoir.
In an embodiment, the venting valve comprises a semi-permeable membrane fastened at the second end of the tubular reservoir, wherein the membrane works as a sealing for any liquids and is permeable for gas, i.e. air.
In a further alternative embodiment of the present invention, the wearable drug delivery device comprises a filling system enabling a refilling of the reservoir while being attached to the patient's body.
In an embodiment, the reservoir may be refilled through the filling system using a standard syringe with a hypodermic needle. Therefore in an embodiment, the filling system comprises a septum forming one of its outer walls, in which the hypodermic needle of the syringe may be inserted.
In order to avoid the injection of air through the filling system into the tubular reservoir, the filling system in an embodiment may comprise an electrical or optical system enabling the detection of gas bubbles in the liquid drug being injected into the filling system.
Alternatively, in an embodiment of the wearable drug delivery device refilling may be achieved through the outlet orifice or nozzle of the jet pump.
According to a further embodiment of the invention, the filling system is in fluid communication with the tubular reservoir such that it divides the tubular reservoir in two sections. This design may enable a bubble-free ejection of the liquid drug from the high-speed jet pump during operation of the device.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
In
From the top view in
In the embodiment shown, the tubular reservoir is made of transparent Teflon having an inner diameter of 0.75 mm. The overall volume of the tubular reservoir 1 is 5 ml. Before reaching the second end 5 of the tubular reservoir 1 carrying the venting valve 3, the tubular reservoir reaches a point 9, from which onward the tubular reservoir no longer extends on a spiral track, but bends inwardly towards the center of the spiral. In the embodiment shown in
As the outlet end 4 and the second end 5 of the tubular reservoir 1 and the jet pump 2 and the venting valve 3, respectively, are arranged adjacent to each other in close proximity, hardly any differences in hydrostatic pressure between the jet pump 2 and the venting valve 3 of the tubular reservoir occur.
This arrangement of the venting valve 3 and the jet pump 2 being close proximity to each other can be further be understood from
During driving of the piezo-electric transducer 31, the piezo-electric transducer 31 expands and pushes on the flexible membrane 33. This compresses the fluid in the fluid chamber 35, resulting in a pressure built up and as a consequence, a fluid flow out of the exist orifice 36. The exit orifice 36 is formed as a nozzle with a diameter typically ranging from 10 μm to 200 μm and a length between 50 μm and 200 μm. As soon as the driving of the piezo-electric transducer 31 stops, both the piezo-electric transducer 31 and the membrane 33 return to their rest state and fluid will enter the fluid chamber 35 through the fluid supply line 37 by capillary force.
In order to generate a high-speed fluid ejection, the high-speed jet pump as used in the embodiments shown is mechanically stiff. If there was too much mechanical deformation of the device during driving of the piezo-electric transducer 31, the pressure in the fluid chamber would be too low to generate a high-speed fluid ejection. Further, the relation between the length and diameter of the fluid supply line 37 and the length and diameter of the nozzle 36 determine the functioning of the employed jet pump.
While the embodiment of the filling system 6′ shown in
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive, the invention is not limited to the disclosed embodiments.
Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that the combination of these measures cannot be used to an advantage. Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
07108594.8 | May 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB08/51974 | 5/20/2008 | WO | 00 | 11/13/2009 |