Wearable, Graphene-based Flexible Sensors for Chronic Monitoring of Venous Thromboembolism for High-Risk Patients

Information

  • Research Project
  • 10242942
  • ApplicationId
    10242942
  • Core Project Number
    R61HL154215
  • Full Project Number
    5R61HL154215-02
  • Serial Number
    154215
  • FOA Number
    RFA-HL-20-024
  • Sub Project Id
  • Project Start Date
    8/20/2020 - 3 years ago
  • Project End Date
    7/31/2022 - a year ago
  • Program Officer Name
    KINDZELSKI, ANDREI L
  • Budget Start Date
    8/1/2021 - 2 years ago
  • Budget End Date
    7/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    8/4/2021 - 2 years ago
Organizations

Wearable, Graphene-based Flexible Sensors for Chronic Monitoring of Venous Thromboembolism for High-Risk Patients

This R61/R33 project will move a novel laser-printed wearable sensor technology from laboratory toward commercialization with a first clinical application of improving monitoring options for high-risk Deep Vein Thrombosis (DVT). This proposal is in response to RFA-HL-20-024 Catalyze: Product Definition. The project is a collaboration between Actuated Medical Inc (AMI), the Huanyu Larry Cheng lab at The Pennsylvania State University (PSU), and Hershey Medical Center (HMC). AMI is ISO 13485 certified, FDA-Registered, and FDA GCP & GMP compliant. The sensors developed here will be manufactured in AMI?s Bellefonte, PA facility. Project Approach: The Cheng Lab (PSU) has developed a flexible sensor platform that is low-cost, does not require expensive equipment to manufacture, and can be worn directly on the skin or integrated into clothing. These sensors can be configured to measure temperature, strain, skin hydration, electrophysiologic, and other signals. This sensor set is built upon Dr. Cheng?s doctoral work creating stretchable sensors for health monitoring, antennas for near-field communication, and human-machine interfaces. Initial Clinical Goal: DVT is a condition in which blood clots form deep within peripheral veins, typically in the lower extremities. This disease can cause leg swelling and pain, but more importantly, the clots risk dislodgement and relocation in the lungs (pulmonary embolism), coronary arteries, or brain (stroke), possibly leading to death. Though many treatments exist to mitigate risk, such as anticoagulants, there are few options for chronic monitoring. This project develops a wearable, wireless approach for monitoring at-risk patients for DVT formation. Hypothesis. A graphene-based thermal sensor compression band can successfully monitor occlusion or DVT formation through subtle macrovascular and microvascular thermal effects on the skin. Specific Aims. Aim 1 ? Demonstrate Sensor Fabrication in Form Factor for Blood Flow Monitoring. Milestones/Acceptance Criteria: Thermal sensors demonstrate temperature resolution of ? 0.04ºC and accurately detect flow or no flow status in capillary tubes in vitro. Flexible RF antennas exhibit sufficient bandwidth to accommodate temperature- dependent frequency modulation corresponding of ? 0.25ºC. Aim 2 ? Transition to Manufacturing and Higher Volume Processing. Milestones/Acceptance Criteria: RF bandwidth and resolution of temperature- dependent frequency shift of manufacturing-level sensor antenna transmits < 0.04ºC sensor measurements for at least 8/10 devices, and 5 day repeatability of measurements shows no statistically significant differences (robustness/repeatability). Aim 3 ? Preclinical Peripheral Thrombosis Study. Milestones/Acceptance Criteria: Demonstrate controlled process sensor and device design/layout that successfully detects 50% and 100% occlusions of leg vein (N=4 for each blockage) in acute preclinical study. Aim 4 (R33) ? Transition to Design Freeze. Milestones/Acceptance Criteria: Sensors reaches Design Freeze controls critical for moving through Regulatory approval. Demonstrate wireless communication with >95% of sensors.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R61
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    286021
  • Indirect Cost Amount
    109361
  • Total Cost
    395382
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    839
  • Ed Inst. Type
  • Funding ICs
    NHLBI:395382\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZHL1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    ACTUATED MEDICAL, INC.
  • Organization Department
  • Organization DUNS
    791379030
  • Organization City
    BELLEFONTE
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    168238445
  • Organization District
    UNITED STATES