The present application claims priority from Australian Provisional Patent Application No 2013903357 titled “WEARABLE INTRAVENOUS FLUID DELIVERY SYSTEM” and filed on 3 Sep. 2013, the content of which is incorporated by reference in its entirety.
Described embodiments relate generally to wearable aids for intravenous fluid delivery and systems and methods employing such aids. Some embodiments employ one or more sensors to sense at least one biological condition of the patient wearing the wearable aid.
Cancer is the leading cause of death worldwide, contributing to approximately 7.6 million deaths per annum (around 13% of all deaths). It is reported that in Australia, the likelihood of being diagnosed with cancer prior to the age of 85 is one in two for males and one in three for females. In 2011, over 43,700 deaths were directly attributed to cancer and its related illnesses, with associated health system costs exceeding more than $3.8 AUD billion. The number of newly diagnosed cancer cases every year in Australia alone is over 130,000, of which over 50% of patients receive chemotherapy as their primary treatment method.
Conventional chemotherapy treatment often presents complications, such as adverse physical side effects, and is an intrusive treatment delivery method, resulting not only in physical discomfort for the patient but also psychological distress. These issues considerably reduce a patient's ability to carry out daily activities commonly resulting in reduced independence and severity of their health condition, impinging on recovery rates. Furthermore, the primary side effect experienced by patients receiving chemotherapy is that their immune response is suppressed, which makes them susceptible to infection. In a study by Creutziug, an industry expert, it was found that infection is the primary cause of death for patients receiving chemotherapy treatment (eliminating disease progression fatalities).
Research has revealed that the use of a continuous low dose infusion of the chemotherapy drugs has proven to alleviate the side effects experienced during the treatment (Orlando L, et al. 2006). The slow infusion method increases the time in which the drug is administered from the current 4-6 hour intensive treatment to a 96 hour infusion cycle. In addition, it has been observed that the slow infusion method has generated a greater cellular response to the chemotherapy drugs, resulting in a more effective treatment method (Kerbel, R. S. et al. 2002).
Portable infusion pump devices may be used to deliver the chemotherapy drugs. Common complaints about current portable infusion pump devices vary from noise of the machine to the inability to comfortably wear the product during the day when carrying out daily tasks. Due to the noise and uncomfortable or clumsy product configuration of many current pump devices, sleeping with the device is undesirable. Patients have reported that the portable pump has improved their attitudes towards the treatment as it has provided them with greater autonomy; however the current pump designs limit the portability and comfort of the comfort of such pumps due to their large size. In addition, these existing devices weigh an average of 700 grams including drug fluid, further hindering patient comfort. Current pumps have also been reported to be difficult to programme as well as providing no feedback to the patient of the treatment's progress, which may affect pump efficacy and patient reassurance (Bergeson, B. 2010). Furthermore, the inability to wear these products comfortably whilst sleeping, results in a limitation on the time the chemotherapy drugs can be delivered into the body, consequently not maximizing the full potential of the continuous low dose release system (Orlando, L. et al. 2006).
It is desired to address or ameliorate one or more shortcomings or disadvantages of prior intravenous fluid delivery techniques, or to at least provide a useful alternative thereto.
In a first aspect the present invention accordingly provides a garment for providing intravenous fluid delivery to a patient, the garment operable to be worn adjacent to the skin of the patient and including:
a pump unit support portion to support a portable infusion pump; and
a fluid reservoir support portion to support a fluid reservoir carrying fluid for intravenous delivery to the patient via the infusion pump.
In another form, the garment is sized and shaped to be tight-fitting to be wearable under other garments.
In another form, the garment is configured to be worn on an upper body of the patient.
In another form, the garment is configured as a vest.
In another form, the pump unit support portion is located to be on a front of the upper body.
In another form, the fluid reservoir support portion is located on a front or back of the upper body.
In another form, if the fluid reservoir support portion is located on a back of the upper body, the fluid reservoir support portion is positioned to overlie one of the thoracic spine and the lumbar spine, and if the fluid reservoir support portion is located on a front of the upper body, the fluid reservoir support portion is positioned to overlie one or more of the abdomen and the thorax.
In another form, the garment includes at least one biological sensor carrying portion for carrying a biological sensor operative to measure a biological condition of the patient.
In another form, the at least one biological sensor carrying portion is for carrying a sensor to sense at least one of: temperature; heart rate; pulse; respiratory rate; electrocardiogram signals; respiratory noise; blood pressure and blood oxygen saturation.
In another form, the at least one biological sensor carrying portion includes a plurality of biological sensor carrying portions, the plurality of carrying portions arranged to carry respective temperatures sensors to in combination sense a core temperature of the patient.
In another form, the locations on the garment of the plurality of biological sensor carrying portions are selected from:
In another form, the garment is at least partly stretchable and comprises moisture transmissive materials in at least some parts of the garment that are to overlie the skin.
In a second aspect the present invention accordingly provides a system for providing intravenous fluid delivery to a patient, comprising:
a garment worn by the patient adjacent to the skin, the garment including:
In another form, the garment is sized and shaped to be tight-fitting to be wearable under other garments.
In another form, the garment is configured to worn on an upper body of the patient.
In another form, the garment is configured as a vest.
In another form, the fluid supply conduit is incorporated into the garment.
In another form, the system further comprises at least one biological sensor for sensing a biological condition of the patient, the at least one biological sensor carried by a respective biological sensor carrying portion forming part of the garment.
In another form, the at least one sensor is for sensing at least one of: temperature; heart rate; pulse; respiratory rate; electrocardiogram signals; respiratory noise; blood pressure and blood oxygen saturation.
In another form, the garment includes a plurality of biological sensor carrying portions, the plurality of biological sensor carrying portions arranged to carry respective temperatures sensors to in combination sense a core temperature of the patient.
In another form, the locations of the plurality of biological sensor carrying portions are selected from:
either side of the rib cage under the arm;
sternum or
upper thoracic region.
In another form, sensing and status information from the at least one biological sensor is wirelessly or directly communicated to any one of:
a controller for monitoring and controlling the operation of the portable infusion pump;
a transceiver device; or
a handheld computing device.
In another form, any one of the controllers for the portable infusion pump, the transceiver device or the handheld computing device, having received the sensing and status information from the at least one biological sensor, is configured to then determine an alarm condition based on this sensing and status information.
In another form, the alarm condition indicates any one of variation in body temperature, heart rate or respiratory noise level of the patient.
In another form, the alarm condition is further transmitted to another device or system.
In another form, the controller for the portable infusion pump is incorporated into a housing of the portable infusion pump.
In another form, the portable infusion pump is ergonomically designed to conform to a body shape of the patient.
In a third aspect the present invention accordingly provides a method of intravenous fluid delivery, comprising:
fitting a garment to lie adjacent to the skin of a patient to receive the intravenous fluid delivery, the garment carrying a portable infusion pump and a fluid reservoir comprising a volume of fluid to be delivered to the patient; and
controlling the fluid delivery pump to deliver fluid from the fluid reservoir to the patient via an intravenous delivery line.
In another form, the method further comprises:
monitoring at least one biological condition of the patient using at least one sensor coupled to or carried by the garment; and
wirelessly notifying medical personnel of the monitored at least one biological condition.
In another aspect there is provided an infusion pump unit for the measured delivery of fluid to a fluid delivery site, the pump unit comprising:
a pump mechanism arranged to convey fluid through a conduit toward the fluid delivery site;
a wireless communication subsystem to communicate with a computing device over a network; and
sensor output receiving circuitry to receive sensor output signals from at least one biological condition sensor in communication with the pump unit;
wherein the pump unit is configured to transmit data indicative of the sensor output signals to the computing device.
In another form, the wireless communication subsystem comprises a node in a personal area network (PAN) or a body area network (BAN) and is in communication with at least one device in the PAN or BAN.
In another form, the at least one sensor forms part of the PAN or BAN.
In another form, the computing device comprises a node of the PAN or BAN and the computing device is configured to transmit data indicative of the sensor output signals to a remote computing device over a local area network or a public wireless network.
In a further aspect there is provided a pumping assembly for pumping fluid through a continuous fluid supply conduit, the pumping assembly including:
a pump drive arrangement; and
a peristaltic pump mechanism driven by the pump drive arrangement to pump fluid through the continuous fluid supply conduit, wherein the peristaltic pump mechanism is removably coupled from the pump drive arrangement to attach the fluid supply conduit to the peristaltic pump mechanism to.
In another form, the pump drive arrangement includes a housing having a pump mechanism receiving region to receive the peristaltic pump mechanism.
In another form, the peristaltic pump mechanism includes a rotating member to peristaltically pump fluid through the continuous fluid supply conduit.
In another form, the pump drive arrangement rotationally drives a shaft, the shaft adapted to couple with the rotating member of the peristaltic pump mechanism.
In another form, wherein the peristaltic pump mechanism includes:
a first component to which the fluid supply conduit is attached; and
a complementary second component incorporating the rotating member which when combined with the first component will on rotation of the rotating member peristaltically move fluid through the fluid supply conduit.
In another form, on attachment of the fluid supply conduit to the first component, the fluid supply conduit traces an arcuate path.
In another form, the rotating member includes at least one roller that on rotation of the rotating member rolls along the fluid supply conduit to peristaltically move fluid along the fluid supply conduit.
In another form, the fluid supply conduit is clipped into the second component.
In another form, the housing includes a channel portion to receive the fluid supply conduit.
Illustrative embodiments will be discussed with reference to the accompanying drawings wherein:
Described embodiments relate generally to wearable aids for intravenous fluid delivery and systems and methods employing such aids. The fluid delivery may comprise chemotherapy drug delivery or antibiotic delivery, for example. Some embodiments employ one or more sensors to sense at least one biological condition of the patient wearing the wearable aid.
Described embodiments include a portable drug infusion system, including a garment that patients can wear comfortably while receiving treatments over a prolonged period of multiple hours or days. This system has been designed to assist in addressing physical side effects which result from treatments by providing a system that allows a slow, low dose delivery method. In addition, continual monitoring of a patient's vital signs with wireless data feedback to healthcare professionals will allow for early signs of infection to be detected, reducing the risk of death due to infection. The intent of this system is to provide the user with holistic patient care that improves the patients' quality of life by providing greater independence and mobility, improved recovery rates and overall treatment effectiveness.
This disclosure includes a description of various considerations appropriate to intravenous (IV) fluid delivery and in particular to the IV delivery of chemotherapy drugs, antibiotics and other treatment fluids for the treatment of cancer or other conditions. This disclosure focuses firstly on such considerations as context for the detailed description of embodiments and of the drawings, which follows.
Intravenous infusion of chemotherapy drugs is the most commonly used method of delivery. Its preference is due to its ability to provide rapid and reliable delivery of the drugs. However, intravenous delivery of such toxic drugs may irritate the veins, potentially causing venous spasm and pain. Despite this, the method has shown to be the most effective and reliable method of administration. Intravenous therapies may be given through a catheter placed in a vein in the arm or hand (peripheral line) using a cannula. In addition, intravenous drugs may also be given through a catheter placed into a larger vein in the chest or neck, these are known as a central venous catheter (CVC) or central line.
Chemotherapy treatments are most commonly given in regular intervals called cycles. Each cycle may involve a dose of one or more drugs followed by several days or weeks without treatment. In doing this, normal cells are given time to recover from the drug's side effects. In some cases, doses may be administered several days in a row, or every other day for multiple days, after which a period of rest days is allocated. Recent studies of the continuous slow release of the drug into the body over numerous days have shown to alleviate at least some side effects of the drugs as well as improve the body's cellular response to the treatment. When cancer patients are exposed to large doses of toxic chemotherapy drugs in a short period of time, patients must go through periodic lapses in treatment to allow their body time to regain strength. During this period of resting, the body is provided with time to regenerate the blood vessels which tumours require to live, resulting in a cycle of treatment which can be ineffective (Kerbel, R. S. et al. 2002.
Recent research into a treatment method that involves continuous chemotherapy doses administered in small quantities has had very promising results. The new treatment has shifted the focus of chemotherapy from the tumour to the blood vessels that feed the tumour. The low-dose chemotherapy aims to limit the growth of certain blood vessels which supply the tumour with needed nutrients in control, resulting in little or no tumour growth. When low dose chemotherapy is administered on a daily schedule, the continual death of endothelial cells occurs, preventing or limiting new blood vessel formation and substantially disrupting the angiogenic process, slowing down tumour growth rapidly.
Test trials of this new treatment were carried out by oncologists in Milan, who have published long-term responses of patients with breast cancer receiving this slow low dose release treatment (Orlando, L. et al. 2006). The results of the test were positive, with 32% patients achieving either a complete or partial remission. In a further 16% of patients, no tumour growth or progression was recorded in over a year. In cases where tumour progressions did occur, it was observed that the therapy was slowing the spread of the disease. In addition, as the therapy is targeted to attack the cancer's support structure, rather than the cancer itself, it has potential to be applicable for all types of cancer that requires angiogenesis for growth. Further research and patient surveying was conducted, revealing that due to the treatment's slow and low dose administration of the drugs, patients were experiencing minimal side effects, in comparison to conventional chemotherapy high dose/short time treatments. Side effects that were documented consisted of a small minority of patients experiencing a mild suppression of white blood cell count (Orlando, L. et al. 2006). As research continues, the development of new drugs will allow for this method of treatment to be an accessible and viable option for all. Reduced systemic toxicity means that such treatments can also be used in sicker patients, and that they can carry new chemotherapeutic agents that would have been far too toxic to deliver via traditional systemic approaches.
Described systems and methods may use biological monitoring equipment to monitor patients' vital signs, such as core body temperature, blood oxygen levels, pulse and blood pressure, for example. Other biological condition indicators that can be monitored using suitable sensors fitted within or coupled to the garment may allow respiratory rate, ECG signals, respiratory noise or other indicators of short term (acute) conditions. Such monitoring can advantageously increase the rate of infection detection and effectively track patients' treatments and their relative health.
Described embodiments are intended to be more human-centric and user friendly compared to previous intravenous fluid delivery techniques, allowing patients to comfortably execute daily activities as well as sleep while wearing the system and receiving treatment. A system that patients can wear continuously over longer periods of time allows for a slow infusion method of drug administration to be employed, which further reduces side effects and increases the effectiveness of the treatment.
The quality of life of a patient is defined as individual perception of life, values, objectives, standards, and interests in the framework of culture, according to the World Health Organisation (WHO). Quality of life is continuously used in studies as a primary measure in order to evaluate the effectiveness of treatments. In the case of cancer and chemotherapy treatment, the hope of cure is weighed against the certainty of death, resulting in both doctor and patient willingly accepting the toxicity associated with chemotherapy and its impact on the quality of life for the patient (Dehkordi A et al. 2009). The physical health and psychological side effects generated by chemotherapy can be severe, drastically reducing the patient's quality of life. In cases where the cancer is terminal and chemotherapy is prescribed only to prolong the patient's life for a limited amount of time, many patients make the decision to not partake in the treatment as their quality of life is drastically reduced and they would prefer to enjoy their remaining months rather than enduring the side effects that chemotherapy causes.
Recent studies were carried out in Switzerland, where researchers evaluated the impact that chemotherapy being administered in the patients' home, via a portable infusion pump, had on the patients' quality of life. The study showed that patients receiving treatment via a portable system at home experienced a greater quality of life compared to patients receiving treatments in hospital (as in-patients). This result was reflected in the patients' improved sociability, social role and reduced emotional distress. Individuals who received treatment via a portable pump at home reported to be highly satisfied with treatment and none of the patients requested to go into hospital for any of their treatments.
Additional concerns were associated with the potential technical problems of the pump in the case of failure and the side effects of the chemotherapy treatment. Caregivers and relatives were requested to take part in the questionnaires, showing 100% of the patients' support people being in favour of home treatment. Relatives stated they there was better tolerance due to fewer side effects, less distress (90%) and less asthenia—loss of strength (48%). Overall, the results concluded that the use of a portable, programmable pump provided complete autonomy to patients and enhanced satisfaction of the treatment. The major determinants of this conclusion were the higher comfort levels and reassurance of having a relative present (Lüthi F, et al. 2011).
Chemotherapy treatment results in the death of rapidly dividing cells, including tumour cells and healthy cells. Some of the most rapidly dividing cells are bone marrow cells which are responsible for the production of white blood cells, red blood cells and platelets. Thus, chemotherapies are generally considered to be immunosuppressive. In the treatment of cancer using chemotherapy drugs, there is a fine balance between tumour toxicity and general toxicity of the body, and as a result, the patient's blood must be closely monitored and in order to avoid creating a high level of general body toxicity (Weir, G er al., 2011). Consequently, regular blood tests are conducted for patients before every treatment to ensure that patients are being treated within safe parameters.
A Full Blood Count (FBC) is usually conducted the day before chemotherapy treatment; this is done to obtain current and accurate results. A FBC will be conducted to assess the patient's red blood cell count, white blood cell count and platelet count—this is to ensure that levels have not been lowered too much by the last treatment, otherwise future treatments must be held off until a healthy level is resumed. When white blood cell count is lowered there is an increased risk of infection for the patient. Neutrophils are a type of white blood cell which helps the body fight infection. Research has found that infection is the primary cause of death, other than disease progression fatalities, for patients receiving chemotherapy treatment (Creutzig U et al. 2003). Patients with a lowered level of neutrophils (neutropenia) are at high risk of developing a serious infection. Neutropenia is reported to occur in more than 50% of people with cancer who are receiving chemotherapy treatment (Managing side effects, 2012).
When a patient's white blood cell count is decreased due to chemotherapy, it lowers the individual's immune system and the reduced presence of neutrophils means that signs of inflammation can be extremely subtle. This presents a further risk for the patients, since the initial signs of an infection can consequently go unnoticed, making infection detection harder. As a result patients are encouraged to take their body temperature regularly in order to identify the early onset of a fever. Body temperature monitoring is consequently an important aspect to monitoring the patient's health.
Low blood pressure (Hypotension)—below 90/60—is a common side effect of some chemotherapy drugs. In addition, low blood pressure may be a result of low blood count (anemia) caused from chemotherapy treatment or cancer (Blood Pressure Changes, 2013). Blood pressure readings are taken before the commencement of every chemotherapy treatment session, using an electrical monitor and inflatable cuff.
The generally accepted method of detecting oxygen saturation in blood is known as Pulse oximetry, which relates the light absorption characteristics of saturated hacmoglobin to give an indication of oxygen saturation in blood. The resulting Pulse Wave Amplitude (PWA) deviations indicate increases and decreases in arterial oxygen saturation (SaO2), where healthy individuals characteristically have a SaO2 between 97% and 99%. Commonly, arterial oxygen saturation is measured at either the fingertip or the ear lobe using a pulse oximeter. This is particularly important to monitor in patients with respiratory tract cancer such as lung cancer where their respiration rate is compromised by the cancer.
The pulse rate is defined as the rate at which your heart beats. Pulse oximetry is also used to measure this vital sign. Measuring a patient's heart rate or pulse provides very important information about an individual's health. It is one of the most effective ways of identifying potentially abnormal heart rhythms, particularly in patients with cardiac tumours. In addition to killing cancer cells, chemotherapy can also kill other cell types in various organs. Most organs are able to regenerate cells after having been damaged; however heart muscle cells cannot be regenerated. The loss of these cells can weaken the heart muscle, leading to dilated cardiomyopathy, a condition where the heart's pumping action is reduced, potentially resulting in heart failure (Rattue. P, 2012).
An intravenous infusion system is the process by which an infusion device is used to deliver fluids or drugs in solution to the patient by the intravenous route. For optimal infusion, devices must reliably deliver drugs to the patient at pressures which overcome all baseline and intermittent resistance, but cause no harm to the patient. Resistance in an IV circuit exists in the internal diameter of connecting tubing, cannula, needles and the patient's vessel's, which results in a higher pressure required from the IV circuit in order to overcome the resistance and obtain prescribed flow. Consequently, these systems must be capable of delivering infusion pressures of 100-750 mmHg.
Infusion pumps are powered pumps which use a positive pumping action to administer fluid and drugs intravenously into a patient. These systems are able to provide an accurate flow rate of drugs over a specified period of time. There are two modes of pumping action used in these devices, volumetric and syringe drivers. Volumetric pumps use a linear peristaltic or piston pump to control the infusion flow rate and can administer up to 1000 ml of fluid at flow rates of 0.1 to 1000 ml/hr. Syringe drivers utilise an electrically controlled, electric motor to drive a plastic syringe plunger. These pumps administer up to 100 ml of fluids at flow rates of 0.1-100 ml/hr and can be a suitable pump for lower volume and low flow rate infusions.
Ambulatory (portable) infusion pumps can be smaller and lighter and may comprise battery powered syringe or cassette devices. Many of these types of pumps existing on the market have only minimal alarms, thus patients and carers must be vigilant in administration observations. Careful consideration of the portable device needs to be given when exposed to hazards such as knocks, fluids, electro-magnetic interference, etc. Currently, according to some views, critical drugs which require constant flow should not be administered using ambulatory pumps (Davis. W, 2010). Despite advancements in their size, the weight of many existing portable pumps is still reported to be an issue for patients as well as the noise generated by the electric pump. The pump generates a continuous humming sound at an average of 25 dB, causing irritation to the user especially when trying to sleep (Mitchell T 2007).
Non-electronic ambulatory infusion pumps have recently been created by Baxter™. The Baxter Elastomeric Pumps deliver medication to the patient through the use of an elastomeric “balloon” which consistently deflates and pushes solution through the IV tubing and into the patient. These pumps are designed to improve quality of life of the patient by allowing continuous infusion treatment without the inconvenience of programming, power sources and alarms. Drawbacks associated with the non-electronic pump are the inability to carefully control the rate of infusion and pressure. In addition, the absence of safety alarms is not ideal for the infusion of toxic drugs such as chemotherapy drugs. Due to the use of the elastomeric “balloon”, the pump's flow rate is most accurate at 21 C and is recommended to be kept at room temperature, ensuring the device is not exposed to extreme temperatures (Baxter Corporation, 2010). Despite the elimination of the electrical internals, the pump is still not able to be submerged in water or exposed to a direct stream of water. Furthermore, the pump must be carried at a particular height on the patient, making sure the top of the infuser is kept as close to the height where the IV line enters the patient's body.
In addition to chemotherapy treatment delivery, described embodiments can be used for intravenous antibiotics administration. Intravenous antibiotics are medications which are delivered directly into the bloodstream. Commonly, the medication is delivered slowly through a drip process, which helps to avoid introducing air into the blood. IV antibiotics are largely used for the treatment of bacterial infections. Through delivering the antibiotics into the bloodstream directly, they are carried to the site of infection with more speed and efficiently in order to promote an increased rate of healing.
IV antibiotics are usually utilised for severe infections which require fast treatment. Minor bacterial growths are treated using oral antibiotics, which possess fewer side effects and chances for complications. Furthermore, IV antibiotics have the added advantage of being able to be administered in much higher doses, depending on the severity and nature of infection being treated. In some cases, intravenous antibiotics may be used in the case of a less severe infection if oral medications cannot get to the appropriate location. Being able to provide patients with a portable drug delivery system with vitals monitoring will not only improve quality of life for the patient but can also reduce medical costs (Balaquer A, et al. 2012). Due to the elimination of overnight stays required in hospital over a period of days up to a few weeks, medical costs are significantly reduced. However, with described embodiments that employ sensors to monitor biological conditions of the patient, vital signs of the patient can be continuously monitored by professionals and the quality of health care can remain uncompromised.
The recent discovery of a new slow, low dose delivery method of chemotherapy has shown to not only alleviate physical side effects of the treatment but also increase the body's cellular response to the drugs, making it a more effective treatment method for cancer and additional chemotherapy treated diseases (Kerbel R S. et al. 2002). In order to allow for the administration of this newly discovered treatment method, the IV fluid delivery system of described embodiments need to provide infusion of drugs at a slow, controlled rate over a sustained period of time, such as at least 24 hours, possibly around 36 hours, 48 hours or possibly a duration of 96 hours or more.
The AS/NZS 3770:1993 Standard is mainly focused on the safe use of stationary infusion pumps in hospitals, although there are included requirements for portable (ambulatory) pumps used in the home. Many of the requirements for stationary infusions remain pertinent for portable applications. In summary:
The AS/NZS 3200.2.24:1999 Standard specifics the requirement for infusion pumps, infusion controllers, syringe pumps and pumps for ambulatory use. These devices are intended for use by medical staff and home patients as prescribed and medically indicated.
In summary:
Example pump units of described embodiments may meet the above requirements. While some embodiments are aimed at treating IV chemotherapy patients and at addressing their requirements and preferences, it is envisioned that certain aspects of the design could be used in other intravenous drug delivery applications. Such applications would include intravenous delivery of antibiotics, which involves continuous drug infusion over multiple days and necessary vitals monitoring. Embodiments may also be employed for portable continual vitals monitoring for patients at risk of infection or cardiovascular dysfunctions. In such embodiments, the intravenous fluid delivery device may be detached and the wearable aid (with integrated sensors and a wireless transceiver device) may then act primarily as a portable vitals monitoring system in communication with a handheld computing device within a personal area network of the patient wearing the wearable aid.
It is a common view amongst medical professionals that continual monitoring of chemotherapy patients' vitals, in particularly core body temperature, is important in providing optimal care for the patient. Currently, patients are required to monitor their own temperature daily (as a minimum) and due to the side effects of the chemotherapy drug on the users' cognitive ability, as many as 70% of patients forget to measure their temperature as often as required. Furthermore, it should be noted that the rate of infection contracted in patients whilst receiving treatment (due to lowered immunity from chemotherapy drugs) has been recorded as 80%. Patients who reported to not experience any infections or additional illnesses whilst receiving treatment stated that they did not leave their house very often and stayed home for the majority of the time they were receiving treatment. Infections that were readily contracted included, colds, influenza (flu), pneumonia, bronchitis and shingles. In addition, interviewed patients stated that having their vitals continuously monitored and relayed back to their healthcare professionals would not only give them greater trust in the success of their treatment and healthcare, but would also alleviate some of the stress associated with the treatment.
Interviews conducted with oncology nurses revealed unforeseen design complications with existing portable chemotherapy infusion devices. Whilst the average time to set up these products was 15 minutes, the time taken to programme and add additional safety features accounted for majority of the set up time. This may be mitigated with the design of a simpler product interface with intuitive controls and product display.
Current portable IV delivery systems have been reported to create a sense of embarrassment for patients due to the bulkiness, unappealing aesthetics and obviousness of the product when in public. Reducing the stigma associated with chemotherapy treatment can be achieved through a more discreet appearance of the chemotherapy drug delivery system.
Described embodiments include the use of a new portable intravenous (IV) infusion system for the delivery of Chemotherapy treatment (and possibly other treatments) with features incorporated to aid health monitoring and allow for slow low dose infusion delivery to the patient. However, described embodiments may be used for infusions that do not involve slow low dose treatments and instead provide treatment over one to several hours.
The design of the IV fluid delivery system and wearable aid take into account practical considerations, such as cleaning, reducing patient interference or maintenance, and material selection, including hypoallergenic characteristics. Materials usable to construct the wearable aid to substantially resemble a piece of clothing include, by way of example, e-textiles (electronic textiles), Gore-tex™ fabrics, NEXAR™ polymer fabrics, Spandex (elastane), nylon fabrics, polyester fabrics and cotton fabrics. Other fabrics usable as clothing fabrics can be employed as well, including suitable light-weight, breathable (ie moisture transmissive) and elastic fabrics.
Patients, many of which will be over the age of 45, may have degraded dexterity in their fingers and hands and user controls are designed with human factors to that effect in mind. Side effects due to tumour presence, such as pain and discomfort around cancer growths are existent in some users and wearable systems and harnessing devices should be designed according to these conditions. Furthermore, users whom have received surgery and radiation as addition treatments regularly possess painful or uncomfortable wounds on their body. The garment of described embodiments may therefore be configurable to adopt one of a number of possible different configurations in order to allow a configuration that is least irritating to be adopted for a specific patient.
As a medical product, the infusion system described herein is intended to conform to all relevant standards and regulations required for medical products in Australia. The system is intended to possess some or all of the following capabilities:
Due to the nature of the continuous chemotherapy treatment, particularly continuous low dose treatment, the described IV fluid delivery system ought to be able to be taken with the patient at all times and be suitable for use in commonly foreseeable environments. Taking into account Australian conditions, the proposed demographic and the required control electronics, the following operating conditions are preferably satisfied. These operating criteria comply with Australian and International standards for medical electrical equipment.
Sensitivity in the design is given to design elements that allow the garment fit to be tailored to each patient and so that weight is generally evenly distributed across the garment to achieve patient comfort.
The manufacturing of non-garment parts of the system may predominately consist of plastic injection moulding and injection blow moulding elements. The housing structure that will be required to house certain components—pump mechanism, LED modules, flow regulator etc.—may require the use of such methods.
Material selection criteria for the main components of the pump device include the following:
Component selection therefore focuses on the following options:
Described embodiments may have one or more of the following characteristics:
With reference firstly to
In example embodiments of the garment 110, most, or all of the garment 110 may be formed of one or more layers of a flexible and/or stretchable clothing material that can be worn next to the skin of the patient. The pump unit support portion 114 is thus preferably made of a suitable flexible material to accommodate receipt of pump unit 140 therein in a manner that would not readily allow it to accidently fall out or be withdrawn. The pump unit support portion 114 may have a window formed in a wall thereof in order to allow visual indicators or a display of the pump unit 140 to be inspected.
The garment 110 has a front side 112 and an opposite back side 116 which are sized and/or configured to overlie the anterior and posterior regions of a human upper body. The front section 112 may generally overlie the thorax and may in some versions be configured to be worn by a male and in other versions to be worn by a female. In configurations of garment 110 to be worn by a female, the front section 112 may be configured to allow for comfortable accommodation of the breasts and may function at least partly as a brassiere. As would be appreciated, garment 110 when formed of flexible or stretchable clothing material will be tight fitting and wearable under a patient's other garments.
The front section 112 is coupled to the back section 116 via side portions 121a, 121b on the left and the right sides of the front portion 112. Front portion 112 further comprises straps 113a, 113b that extend upward and over the shoulder to join with the back section 116. Straps 113a, 113b may have adjustable strap lengths, which can be manually adjusted by strap couplings 123a, 123b respectfully. In some embodiments, the front section 112 may have vent sections 119a, 119b on either lateral side of the pump unit support portion 114. These vent sections 119a, 119b may additionally or alternatively be formed of a material that has greater stretching capability than the surrounding material of the front section 112, for example to allow for anatomic variation among patients.
In the version of system 100 shown on
The fluid reservoir only forms part of the system 100 when it is received in the fluid reservoir support portion 130 and is fluidly coupled to an inlet conduit 134. In order to convey fluid from the fluid reservoir (when received in and supported by the support portion 130) to the delivery site 210, an inlet conduit 134, in the form of a small flexible tube, is carried by the garment 110 and fluidly connects the fluid reservoir (when present and coupled thereto) with an inlet of the pump unit 140. The inlet conduit 134 may extend from the back 16 of garment 110 to the front 112 by either the left side or right side of the garment and is preferably concealed and sandwiched in between layers of material of the garment 110.
The fluid reservoir support portion 130 may be positioned so as to have the fluid reservoir, when present, overlie at least pan of the spine of the patient and is preferably centrally aligned with respect to the spine. The fluid reservoir support portion 130 may hold the fluid reservoir, when present, close to the skin of the patient's back (although it may be separated therefrom by at least a thin layer of material) in a region around the thoracic and/or lumbar spine. In this way, the temperature of the fluid being delivered into the patient's body via delivery site 210 can be kept relatively close to the patient's body temperature, since the fluid reservoir will be close to the skin.
The wearable IV drug delivery system 100 of
Referring now to
Garment 1500 is configured as a vest and includes a front section 1512 and an opposite back section 1516 which are shaped and sized to closely fit the respective anterior and posterior regions of a human upper body so that garment 1500 may be worn under other garments. The front section 1512 is joined or coupled to back section 1516 by side portions 1521a, 1521b that extend under the arms of a patient wearing garment 1500. In addition, garment 1500 includes shoulder straps 1513a and 1513b that each extends over respective shoulders to be joined to the back section 1516.
In this example, pump unit support portion 1580 includes a centrally disposed pump unit receiving region 1581 and a pair of opposed pockets 1582a. 1582b which open to receive and hold the pump unit 1140 in place in receiving region 1581. Pump unit support portion 1580 further includes a cover 1583 in the form of a securement flap that extends from one side of the pump unit receiving region 1581 to overlie the pump unit 1140 and which attaches to the other side of the pump unit receiving region 1581 by conventional means such as by the use of Velcro tabs or equivalent. In this manner, pump unit is securely retained in both vertical and horizontal directions and an operator is able to view any warning or status indicators on the pump unit 1140 by opening securement flap 1583 and viewing pump unit 1140 through the gap between pockets 1582a and 1582b.
Referring now to
As shown in
Referring now to
The lower casing part 303 may comprise an inlet port 351 to receive a fluid coupling jack 353 at one end of the fluid inlet conduit 134. Similarly, at an opposite end of the lower casing part 303, an outlet port 352 may be formed to receive an outlet coupling jack 354 in communication with the fluid supply conduit 215. The pump mechanism 330 is arranged to convey fluid from the inlet port 351 to the outlet port 352 in a measured manner according to control parameters programmed into the control board 320 (at least some of which may be user-selectable.) In some embodiments, such as are exemplified by pump unit 1140 in
Although not shown, pump unit 140 may have a communication port, such as a universal serial bus (USB) port or other communication interface, to allow the pump unit 140 to be communicatively coupled to another device such as the computing device 710 (
Referring now to
As shown in block diagram form in
In some embodiments, the system 400 includes a handheld computing device 475, such as a smart phone, that is paired (ie communicatively coupled) to the pump unit 140 via the wireless transceiver 440. This handheld computing device 475 may have normal smart phone functions to allow the execution (by a processor 476 executing program code stored in a memory 477) of an application that interfaces with the pump unit and provides a user interface 478 for the patient to interact with. This user interface 478 may show sensor readings and trending over time for the sensor readings, as well as time elapsed or remaining for the treatment, how much fluid has been infused and optionally at what rate.
Additionally, the handheld computing device 475 may provide added detail, such as an alarm description, to a patient about any alarm indication or notification transmitted from the pump unit 140. Further, the handheld computing device may be configured to act as the smart communication and user interface for the pump unit 140 by automatically notifying (by email, text message or other electronic notification) one or more designated contacts, such as doctors, relatives or other concerned persons in the event that an alarm condition is triggered. This notification may vary, depending on the nature of the alarm condition. For example, a low body temperature alarm condition may be notified to the patient's doctor, while a sensor or pump fault alarm condition may be notified to a nurse and/or relative to take corrective action. In any case, the electronic notification is sent over a network interface 495 (which may include a GPRS network, the Internet, a local area or WiFi network or a combination of such networks) to a destination computing device 470 belonging to or associated with the designated contact. Additionally, the handheld computing device may have a user-selectable option to notify any of the designated contacts if the patient is feeling particularly unwell or has concerns about proper functioning of the treatment and monitoring system.
In some embodiments, the handheld computing device 475 may not be present and the pump unit 140 may determine relevant alarm conditions itself and transmit suitable notifications to the designated contacts (at respective destination computing devices 470) over the network interface 495. However, if present, the handheld computing device 475 may act as a communications gateway for the pump unit 140, so that the battery of the pump unit is not unduly drained.
The system 400 may comprise a number of sensors carried by the garment 110 or another part of the patient's body and in communication with the pump unit 140. Such sensors may be electrically coupled to a suitable input jack (not shown) on the pump unit 140 or may be configured to wirelessly communicate with the wireless transmitter 440 a pump unit 140 using a low power short range personal area network (PAN) or wireless PAN protocol. The personal area network may include a wireless body area network (WBAN), sometimes referred to as a body sensor network (BSN). Although it is desired that at least one temperature sensor be carried by the garment 110 and positioned so that it contacts the skin or is at least closely adjacent to the skin, and provides its output to the controller 410, other sensors 455 providing signals indicative of relevant biological conditions may be worn by the patient 102 in other ways. For example, a blood pressure sensor may be worn elsewhere on the body or a blood oxygen saturation sensor may be worn on an earlobe, for example.
Referring also now to
The garment 110 may also carry at least one further sensor 520 to sense heart rate, ECG (i.e. cardiac noise) and respiratory functions, such as respiratory noise and breathing rate. Such additional sensors 520 may be positioned at a lower central part of the front side 112 of the garment 110, for example as shown in
Referring now to
In alternative embodiments of configuration system 700, the pump unit 140 may be received in a suitable dock 750 that has a program interface 760 hosted by suitable hardware and/or software incorporated within or accessible to the dock 750. If the pump unit 140 is coupled to the dock 750 for configuration, then the pump unit 140 may have a suitable hardware docking interface to allow data transfer and/or battery charging.
Referring now to
Once the garment 110 has been fitted to the patient 102, the pump unit 140 is coupled at 910 to provide fluid to outlet conduit 215. This method 900 assumes that the delivery site 210 has already been suitably secured by medical personnel and the pump unit 140 has already been configured appropriately for delivery of a set amount of fluid over a set time.
At 915, the fluid reservoir is positioned within the fluid reservoir support portion 130 or 1030 and is coupled to the pump unit 140 to provide fluid for communication by the pump unit 140 to the delivery site 210. At 920, the pump unit 140 is activated to initiate fluid delivery in the manner configured and the pump unit 140 proceeds to pump fluid to the delivery site 210 until the fluid reservoir is exhausted or until a specified period expires.
At 925, the pump unit 140 or the paired handheld computing device 475 (which in some embodiments may receive the sensor outputs instead of or in addition to the pump unit 140) monitors the output of the various biometric sensors coupled to the garment 110 or otherwise forming part of the personal area network or body area network. If the pump unit 140 or the paired handheld computing device 475 determines at 930 that an alarm condition has been detected (based on predetermined alarm conditions relating body temperature variation, heart rate variation, respiratory noise level, for example), then at 935 an alarm notification is transmitted to the destination computing device 470, so that suitable medical personnel can take heed of the alarm condition and initiate appropriate action. Depending on the particular alarm conditioned detected, the pump mechanism of the pump unit 140 may cease operation or may continue operation. Irrespective of the continued operation (or not) of the pump mechanism of the pump unit 140, the pump unit 140 or the paired handheld computing device 475 continues to monitor the output of the biometric sensors at 925, in case further alarm conditions are detected and are required to be notified.
Where no alarm conditions are detected at 930, then the pump unit 140 continues to perform its fluid delivery function until it determines at 940 that the fluid delivery is complete or another predetermined condition (such as elapsed time) has been satisfied, and the pump unit 140 then terminates operation of the pump mechanism 330. During operation of the pump unit 140, the controller 410 may transmit frequent update messages (ie at an interval that can be set to range from every second to every minute or more) to the handheld computing device 475 (if it is present), so that the patient can track the status of the treatment.
Referring now to
The frame 1210 comprises a cassette receiving portion 1215 and a conduit receiving portion 1212. When the peristaltic pump cassette 1240 is matingly received in the frame 1210, the combination of the frame 1210 and cassette 1240 provides a peristaltic pump mechanism 1150.
As part of setting up the IV fluid delivery system 100 or 1000, the pump unit 1140 may be used in place of the pump unit 140 and the peristaltic pump mechanism 150 may be separately attached or coupled to the fluid supply line, which may be a single continuous flexible line as shown. The pump mechanism 1150 may then be positioned in the correspondingly shaped recess 1170 formed in a back section or pump mechanism receiving portion 1142 of the pump unit housing 1104. When the pump mechanism 1150 is inserted into the recess 1170 in the manner indicated by arrow 1110, the drive shaft 1172 is received within the corresponding aperture 1272 in the pump mechanism 1150 and the frame and cassette 1210, 1240 are snugly bounded by a lower surface and side walls defining the recess 1170. Additionally, the inlet fluid conduit 134 is received within a channel 1177 that has at least some retention structure 1178 tending to retain the conduit 134 in the channel 1177 once it has been pressed into the channel 1177 by mating with collar member 1254. Similarly, the outlet conduit 215 is received within a channel 1176 formed in the back section 1142 having a corresponding retention structure 1179 that mates with associated collar member 1255 (see also
The pump unit 1140 may have the same componentry and structure as pump unit 140, except that it uses a different pump mechanism and does not require fluid coupling jacks 351, 352 in the lower casing 303, since the inlet and outlet conduits 134, 215 are continuous with the conduit section 1202 that extends through the pump mechanism 1150. As would be appreciated, pump unit 1140 need not be fluid tight as the fluid supply conduit is continuous as it extends through the pump unit 1140.
Referring now to
In this example, the combination of pump housing 1104 and pump mechanism cover 1103 together provides a contoured geometry adapted for ergonomic fitting to the front thoracic region of a patient allowing it to be readily seated in garment 1500 as shown in
Referring now to
Control board 1195 implements the controller functionality allowing for set up of the pump unit and monitoring of sensor inputs as well as the provision of status indicators. For this embodiment, there is single visual status indicator attached to control board 1195 (not shown) that emits different coloured indicator signals through a thin walled portion of housing front section 1101. In this example, interface with the controller is by micro-USB port 1111 which also can function to charge the battery power supply as well as receive sensor inputs. In other embodiments, and as has been previously described, pump unit 1140 may incorporate a wireless transceiver to interface to other computing devices and/or to receive sensor inputs from other sensors carried by garment 1500. Optionally, pump unit 1140 may include an audible indicator such as a PCB mounted piezo electric speaker.
Pump unit 1140 includes an air-in-line sensor 1130 which in this example is an ultrasonic ceramic sensor having a semi-circular design to receive the fluid supply conduit. Sensor 1130 is interfaced with control board 1195 which monitors its status and generates a warning indicator if air is detected in the fluid supply conduit. Pump unit 1140 further includes a ceramic pressure sensor 1135 interfaced to control board 1195 which on assembly is located below the downwardly extending portion 1203 of the fluid supply conduit (as best seen in
Referring now to
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the above-described embodiments, without departing from the broad general scope of the present disclosure. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Throughout the specification and the claims that follow, unless the context requires otherwise, the words “comprise” and “include” and variations such as “comprising” and “including” will be understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any other integer or group of integers.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement of any form of suggestion that such prior art forms part of the common general knowledge.
It will be appreciated by those skilled in the art that the invention is not restricted in its use to the particular application described. Neither is the present invention restricted in its preferred embodiment with regard to the particular elements and/or features described or depicted herein. It will be appreciated that the invention is not limited to the embodiment or embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the invention as set forth and defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2013903357 | Sep 2013 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2014/000872 | 9/3/2014 | WO | 00 |