Wearable medication delivery device

Information

  • Patent Grant
  • 11364341
  • Patent Number
    11,364,341
  • Date Filed
    Tuesday, July 23, 2019
    4 years ago
  • Date Issued
    Tuesday, June 21, 2022
    a year ago
Abstract
Systems and methods for delivering a medication to a person experiencing an emergency medical event without requiring intervention or action on the part of the person. A device encases a reservoir of medication and a delivery mechanism. Sensors in the housing sense a physical attribute of the person and circuitry monitors information collected by the sensors to determine if the person is experiencing a severe medical condition or event based on the information. An input device on or in the housing, such as a button, may be used or activated by the person if the detected condition or event is a false positive to cancel further action. If the system does not include the button or if the user does not press it in time, the system activates the delivery device and injects the medication into the person.
Description
TECHNICAL FIELD

Embodiments herein generally relate to medication delivery and, more particularly, to wearable medication delivery devices for providing medication to a user experiencing a severe medical event.


BACKGROUND

Some medical situations require rapid delivery of a medication to a person to avoid death or serious injury. For example, if a person is exposed to a chemical warfare agent, such as sarin gas, the person may require the administration of an antidote such as atropine within a very short period of time. Similarly, for someone having a bee-sting allergy, epinephrine must be administered soon after a bee sting occurs. Other such medical conditions or events that may require urgent attention can include episodes caused by food allergies or epileptic attacks. Often, there is not enough time to transport the afflicted person to a care facility or even to bring a medical professional to the person.


As a result, people required to be in zones in which chemical warfare is a possibility, such as soldiers, and people who are known to have medical conditions such as allergic reactions to substances or events such as bee stings or foods are encouraged to carry self-injector devices that permit the quick delivery of a needed medication. These devices are typically about five inches long, cylindrical, and resemble a large pen or magic marker. The user holds one end of the self-injector on an injection site (e.g., the thigh of a leg) and a predetermined amount of medication is automatically injected. One such device is sold under the trade name EPIPEN.


Use of these devices presents a number of drawbacks, however. The user is required to know both how to operate the device and when to operate the device. Improper operation may result in little or no medication actually injected and improper timing may result in injection occurring too late. Furthermore, the user must be conscious and capable of performing the self-injection. Because some chemical agents and allergic reactions cause seizures, the user may be incapable of performing the self-injection due to seizing before the person even realizes that an attack or allergen exposure has occurred. A need therefore exists for a system and method to deliver antidotes and other medication even if or when a user is incapable of doing so.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:



FIG. 1 illustrates a first exemplary wearable device for delivering medication.



FIGS. 2A and 2B illustrate a second exemplary wearable device for delivering medication.



FIGS. 3A and 3B illustrate a third exemplary wearable device for delivering medication.



FIGS. 4A and 4B illustrate first and second views of a first exemplary needle deployment system.



FIGS. 4C and 4D illustrate first and second views of a second exemplary needle deployment system.



FIG. 5 is a block diagram of an exemplary medication delivery device.



FIG. 6 illustrates a first method for delivering medication.



FIG. 7 illustrates a second method for delivering medication.





DETAILED DESCRIPTION

Various embodiments described herein include systems and methods for delivering a medication to a person exposed or subjected to an emergency medical event without requiring intervention or action on the part of the person. The event may be a chemical-weapon attack, bee sting, allergic reaction, epileptic attack, or any other event. In some embodiments, a pod or housing encases a reservoir of medication and a delivery device, such as a hypodermic needle. The housing is held in contact with or in close proximity to a body part of a person, such as the person's thigh, via an adhesive, strap, pouch, or any similar means. Sensors in the housing, such as motion sensors, accelerometers, biosensors, or any other type of sensor, sense a physical attribute of the person, such as the motion and/or biochemistry of the person, and a computer processor (and associated circuitry) monitor information collected by the sensors and determine if the person is experiencing a medical event, such as a seizure or allergic attack, based on the information. The housing may further include an output communications device, such as a loudspeaker, vibration generator, thermal indicator, or electric-shock dispenser, that signals to the person that a seizure or other severe medical condition or events has been detected. An input device on or in the housing, such as a button, may be used or activated by the person in response to the signal if the detected condition or event is a false positive to cancel further action. If the system does not include the button or if the user does not press it in time, the system activates the delivery device and injects the medication into the person.



FIG. 1 illustrates a wearable device 100 for delivering medication to a wearer or user of the wearable device 100. A housing 102 may be used to enclose a hypodermic needle, needle actuator, medication reservoir, motion sensor, medical condition sensor, environmental sensor, computer processor, and/or other elements, components, or devices described herein. The housing 102 may be made of metal, plastic, or any other material or any combination thereof. In some embodiments, the housing 102 can include a detachable portion 104 that includes one or more enclosed components, as described in greater detail below. The housing 102 may further, in some embodiments, be attached on one side to an adhesive member 106 that facilitates attachment to a person's body. The adhesive member 106 may be made of one or more flexible materials such as gauze, fabric, rubber, latex, or any other material, which may be arranged in one or more layers. An adhesive substance may be disposed on one side of the adhesive member 106. A person may, for example, first remove a non-adhesive layer affixed to the adhesive substance to thereby expose the adhesive substance and then adhere the adhesive member 106 to his or her body. In other embodiments, the housing 102 can be held in place touching or adjacent to a person's body via use of a strap, pouch, or similar means, and the adhesive member 106 may not be present or needed.



FIGS. 2A and 2B illustrate a wearable device 200 configured in two parts. The wearable device 200 can represent a particular implementation of the wearable device 100 of FIG. 1. The wearable device 200 can include a first portion 202 (shown in FIG. 2A) and a second portion 204 (shown in FIG. 2B). The first portion 202 can include a number of components such as, for example, a motion sensor and a computer processor. In various embodiments, the first portion 202 can further include a medical condition sensor and/or an environmental sensor. The second portion 204 can include an adhesive member 206, batteries 208, a needle unit 210, and a needle 212. The adhesive member 206 can represent an implementation of the adhesive member 106 depicted in FIG. 1. In some embodiments, however, the first portion 202 can be a cover to protect the components disposed in the second portion 204 and does not itself house any components. The components may be apportioned such that one portion (e.g., the first portion 202) is re-usable, while some or all of the perishable components (e.g., the medication and batteries) are in the second portion 204. The person using the system may therefore need to replace only the second portion 204 upon expiration of the medication and/or battery.


The first and second portions 202 and 204 may be configured to releasably attach to each other, as shown in FIG. 2. The first and second portions 202 and 204 may be held in place together by friction (e.g., friction fit), by tabs, by screws, or by any other means of attachment. In some embodiments, the first and second portions 202 and 204 are configured to allow any person to separate them. In other embodiments, the first and second portions 202 and 204 are configured to allow only qualified persons (e.g., medical professionals) to separate them by using, for example, a locking mechanism, screws or bolts with specially-shaped heads, or similar means. In some embodiments, the first and second portions 202 and 204 include a sticker, thread, or similar tell-tale that indicates whether the first and second portions 202 and 204 have been separated by snapping, breaking, or moving (e.g., one or more of the first and second portions 202 and 204 may include a tamper evident device or mechanism indicating when the first and second portions 202 and 204 have been separated). The first and second portions 202 and 204 may further include a self-destruct or disabling mechanism that can be triggered if the first and second portions 202 and 204 are separated or separated improperly.


The batteries 208 may be used to provide power to the needle unit 210 and may be AA or AAA cell batteries, watch batteries, rechargeable batteries, or any other type or number of batteries (including a single cell battery). In some embodiments, the batteries 208 also or instead provide power to components within the first portion 202. For example, the first portion 202 may have conducting metal elements that mate with corresponding metal elements in the second portion 204 when the first and second portions 202 and 204 are attached to each other, thereby enabling power from the batteries 208 to be provided to components in the first portion 202. The first portion 202 may also or instead have conducting metal elements that contact the batteries 208 themselves (e.g., directly) to thereby supply power to components therein. In other embodiments, the first portion 202 includes another power supply (e.g., one or more additional batteries).


The first and second portions 202 and 204 may similarly have data or signal connectors that form a data or signal path when the first and second portions 202 and 204 are attached together to thereby permit the transmission of data or signals there between. For example, the first portion 202 may have a connector with pins that mates with a socket on the second portion 204 when the first and second portions 202 and 204 are attached to each other. This data or signal path may be used to, for example, communicate between a processor disposed in the first portion 202 and the needle unit 210 in the second portion 204.


The needle unit 210 may include a fluid reservoir for storing and/or dispensing a quantity of liquid medication or drug. In some embodiments, the fluid reservoir can be a cylinder or similar shape having a cross-sectional shape of a circle, oval, rectangle, square, or any other shape. In these embodiments, the needle 212 can be fluidly connected to one end of the cylinder, and a plunger can be disposed at the other end of the cylinder. The medicine or drug may be dispensed through the needle 212 via mechanical or electro-mechanical means, such as an electric motor that turns a gear that advances the plunger. The plunger may alternatively be driven by electrochemical means, such as by causing the creation or expansion of a gas by applying an electric current to a substance to thereby exert a force on the plunger. In other embodiments, the fluid reservoir can exert a force on the liquid medicine disposed therein. For example, one or more inner walls of the fluid reservoir may include an elastic member that is stretched such that it exerts a force on the liquid (e.g., an elastic bladder). A propellant may alternatively be added to the fluid reservoir to exert force on the liquid. In these embodiments, instead of or in addition to a plunger, the needle unit 210 can include a valve that, once open, permits the liquid under pressure to exit the fluid reservoir and travel through the needle 212.



FIGS. 3A and 3B illustrate a wearable device 300. The wearable device 300 can represent another embodiment of a medication delivery device of the present invention. In this embodiment, as shown in FIG. 3A, a needle 302 can be part of a first portion 304 of the wearable device 300 (as opposed to being part of the second portion 204 as shown in the embodiment of FIG. 2B). A second portion 306 of the wearable device 300 can include batteries 308 and an adhesive member 310. The present invention is not limited to any particular division of components between the two portions 302 and 306 as any division or placement of any constituent components is within the scope of the wearable devices described. In addition, other embodiments of the present invention can include additional portions (e.g., more than two portions) or fewer portions (e.g., a single portion such that the housing/entire wearable device is provided as a single piece).



FIGS. 4A and 4B illustrate top and side views, respectively, of an exemplary system 400 for deploying a needle disposed within a wearable device of the present invention (such as one of the wearable devices 100, 200, or 300) into the body of a person for subsequent dispensing of a medication or drug there through. In this embodiment, a needle driver 402 is under load of a spring 404 that is compressed between the needle driver 402 and another surface 406. The surface 406 may be part of a housing, attached to a housing, or may be any other surface of a wearable device as described herein. One or more keys 408 can hold the needle driver 402 in place and prevent the spring 404 from expanding to propel the needle driver 402 forward. Protrusions 410 in the keys 408 can mate with corresponding notches 412 in the needle driver 402. The needle driver 402, the spring 404, the surface 406, and the keys 408 may be constructed using any material, such as metal or plastic. The needle driver 402 may be a medication reservoir or act as a fluid conduit between a separate medication reservoir and the needle.


The keys 408 may be moved to thereby release the needle driver 402 and allow the spring 404 to move it, thereby propelling a needle 414 attached to the needle driver 402 forward in response to a signal. Additional support members may be included to guide the needle driver 402 and/or keys 408 such that they move only in one dimension or direction (or otherwise restrict the movement of the needle driver 402 and/or keys 408). As explained in greater detail below, an actuation signal may be generated by a processor that, in response to data collected by a sensor (such as a motion sensor or biosensor), determines that the person wearing the device is experiencing a medical event such as a seizure or allergic attack. In various embodiments, an electrically deformable material 416, such as shape-memory wire made from, for example, copper-aluminum-nickel or nickel-titanium alloys, can be disposed around the needle driver 402 and through holes 418 in the one or more keys 408. Any other type of electrically deformable material, such as magnetic-shape memory, piezoelectric materials, or shape-memory polymer, is within the scope of the present invention. When the signal to release the keys 408 is received, an electric current can be provided to run through electrically deformable material 416, thereby causing it to change shape. For example, the diameter of the electrically deformable material 416 may increase when the current is applied, thereby causing the keys 408 to move away from the needle driver 402 such that the protrusions 410 no longer mate with the notches 412. In other embodiments, the electrically deformable material 416 may be configured to decrease in length when current is applied. In these embodiments, the electrically deformable material 416 can be positioned to pull the keys 408 away from the needle driver 402 to thereby release it. Any configuration of electrically deformable material and keys is within the scope of the present invention as will be understood by one of skill in the art. Further, any other system and method of mechanically actuating a needle to extend into the body of the person in response to a received electric or electronic signal is similarly within the scope of the present invention.



FIGS. 4C and 4D illustrate top and side views, respectively, of a second exemplary system 450 for deploying a needle disposed within a wearable device of the present invention (such as one of the wearable devices 100, 200, or 300) into the body of a person for subsequent dispensing of a medication or drug there through. In this embodiment, an electrically deformable material 452 can be connected to keys 454 and can run over pulleys 456. When the electrically deformable material 452 is shortened (e.g., in response to an actuation signal), the electrically deformable material 452 can exert a force on each key 454 in a radial outward direction with respect to needle driver 458. By doing so, the keys 454 can be moved away from the needle driver, thereby no longer restricting movement of the needle drive 458. As a result, the needle driver can move as described above in relation to needle driver 402. As shown in FIG. 4D, a hook 460 may be used to connect the electrically deformable material 452 to a power source. The hook 460 may also be used to anchor the electrically deformable material 452 such that, when power is applied to the electrically deformable material 452, both of the keys 454 separate away from the needle driver 458. If, for example, the electrically deformable material 452 were unanchored and if one key 454 were subject to a greater frictional force with respect to the needle driver 408 than the other key 454, contracting the electrically deformable material 452 might move only one key 454, and the needle driver 408 might not be free to move. In other embodiments, separate, unconnected electrically deformable materials 452 can be provided for each key 454. The systems 400 and 450 depicted in relation to FIGS. 4A-4D can include any number of keys (e.g., as few as a single key or two or more keys).



FIG. 5 is a block diagram of a medication delivery device 500 in accordance with embodiments of the present invention. The medication delivery device 500 can represent an implementation of the wearable devices 100, 200, and 300 described herein. A housing 502 can include a needle 504 that can be configured to extend into the body of a wearer and dispense medication from a reservoir 506. An adhesive material or substance 508 can be attached to one side of the housing 502. The adhesive 502 may be used to attach the housing 502 to the body of a person.


A computer processor 510 may execute software instructions stored in a memory 512. The processor 510 may be, for example, a general-purpose processor, a digital-signal processor, an application specific integrated circuit (ASIC), or any other type of digital logic. The processor 510 may also or instead include analog or mixed-signal circuitry that does not require the execution of software instructions to carry out the methods described herein. The memory 512 may volatile or non-volatile and may be a random access memory (RAM), read only memory (ROM), flash memory, solid-state storage, and/or magnetic storage. The software instructions may include assembly code written directly or compiled from a higher-level language, such as C or JAVA. The computer processor 510 can be considered to be a controller for directing operations and functionality of the medication delivery device 500 overall and the constituent components thereof.


A movement sensor 514 detects movement of the housing 502 and, by extension, movement of the person to whom the housing 502 is attached. Any type of movement sensor is within the scope of the present invention, and the movement sensor 514 may detect position, velocity, acceleration, jerk, orientation, rotation, or any other similar movement type. In some embodiments, the movement sensor 514 can include three microelectromechanical systems (MEMS) capacitors oriented to capture acceleration information on x, y, and z axes. The movement sensor 514 can be in electrical communication with the processor 510 via, for example, wires or a bus. The processor 510, memory 512, and the movement sensor 514 are depicted as separate components but are not so limited. The present invention is not limited to only this arrangement of components as two or more of these components may be combined, such as in a system-on-a-chip arrangement.


A power supply 516 supplies power to the processor 510, memory 512, movement sensor 514, and/or any other components in or on the housing 502 that require power. As mentioned above, the power supply 516 may include one or more cells or batteries, which may be single-use or rechargeable. The power supply 516 may be configured to supply power to the system 500 for a certain minimum amount of time, e.g., one day, two days, or three days. The adhesive 508 may be configured or selected such that it loses some or all of its adhesive properties before this minimum power-supply time, thus prompting the person to replace the system 500 with a new one.


As mentioned above, the processor 510 can determine whether the person is having a seizure by monitoring data received from the movement sensor 514. Any method of seizure detection is within the scope of the present invention. In some embodiments, the processor 510 executes software instructions that calculate the direction, velocity, duration, and/or frequency of the person's movements and compares these factors against thresholds. If the factors exceed one or more thresholds, the processor 510 determines that the person is having a seizure or experience some other serious medical event and sends a signal to a needle actuator 518 to deploy the needle 504 and dispense the medication in the reservoir 506. In some embodiments, for example, if the processor 510 detects a certain number of rapid, back-and-forth movements made by the person within a certain period of time, the processor can determine that the person is having a seizure. The processor 510 may further detect if the person falls to the ground before, during, or after the back-and-forth movements as further evidence of a seizure.


The housing may further include devices for the input of information, such as a button 520, or the output of information, such as speaker/vibrator 522. In some embodiments, if the processor 510 detects a seizure, before signaling the needle actuator 518 to activate, the processor can determine to alert the person using the output device 522 by sounding an alarm and/or causing vibrations. In other embodiments, the output device 522 delivers heat or an electric shock to the body of the person to thereby alert the person. If the person is not having a seizure and presses the button 520 within a certain amount of time (e.g., ten seconds), the processor 510 can cancel deployment of the needle 504. In such instances, the button 520 can operate as an override or false alarm input. In some embodiments, the processor 510 adjusts one or more thresholds in response to the pressing of the button to thereby reduce or prevent false positives in the future.


The needle actuator 518 may represent the system 400 or 450 described above with reference to FIGS. 4A-4D or may be any other system for deploying the needle 504 and/or dispensing the medication in the reservoir 506. The needle 504, reservoir 506, and needle actuator 518 are depicted as separate components in this embodiment, but in other embodiments two or more of these components may be integrated together as the present invention is not limited to any particular arrangement or combination of components.


Embodiments of the present invention are not limited to only the above-described components as other components and features are within its scope. For example, a network interface 524 may be used to communicate between the system 500 and other systems, such as remote computing devices, servers, or cellular phones. For example, a remote system may transmit a message to the device 500 via any wired or wireless networking protocol, such as WI-FI, ETHERNET, BLUETOOTH, NFC, GSM/CDMA or other cellular networks/standards, that is received using the network interface 524. The message may cause the processor 510 to automatically deploy the needle 504 and medication, cause an output device 522 to beep or vibrate, disable the device 500, or perform any other action.


An environment sensor 526 may be used instead of or in addition to the movement sensor 514. The environment sensor 526 may sample air, water, particles, or other characteristics in a surrounding environment of the device 500 for potentially harmful substances, such as sarin gas. If the environment sensor 526 detects such a substance, it sends a signal to the processor 510, which may deploy the needle 504 in response as described above.


The medication delivery device 500 may also include one or more medical condition sensors (not shown in FIG. 5). The medical condition sensors can measure characteristics of the user such as, for example, pulse rate, blood pressure, temperature, glucose levels, and oxygen levels. Separately, or in conjunction with movement sensor 514 and/or the environmental sensor 526, a medical condition sensor can send a signal to the processor 510, which may deploy the needle 504 in response to a severe medical condition being experienced by the user. In general, the medication delivery device 500 can include any number and any type of sensors including sensors for collecting information regarding one or more physical attributes of a user (e.g., motion of a user, etc.), one or more medical conditions of a user (e.g., heart rate, blood pressure, temperature, etc.), and/or one or more conditions of an environment of a user (e.g., presence of a gas or other toxin, temperature, oxygen level, etc.). Such sensors can be, for example, biosensors (e.g., for collecting biochemical data), environmental sensors, motions sensors, or a medical condition sensor.


The output device 522 can provide a visual or audible alarm to a user. For example, the output device 522 can include one or more visual device—e.g., light emitting diodes (LEDs)—for indicating an alarm. Under such a scenario, the output device 522 can flash one or more LEDs to indicate an alarm and/or can indicate an alarm by a particular color provided by one or more LEDs. The output device 522 can also include a speaker for providing an audible alarm. Further, the output device 522 can include a vibrator for vibrator all or a portion of the medication delivery device 500. As the medication delivery device 500 is directly in physical contact with a user, a vibrational alarm can be quickly detected by the user in a discrete manner. The output device 522 can be or include other components for providing an alarm including, for example, thermal actuator or electrical stimulator.


The reservoir 506 can contain one or more medications or drugs stored in one or more reservoir chambers such that the medication delivery device 500 can respond to one or more different medical events that can be experienced by a user. In various embodiments, the reservoir 506 can store is firazyr, icatibant, epinephrine, atropine, biperiden, and/or pralidoxime. In various embodiments, the medication delivery device 500 can determine a user is experiencing a severe medical event such as exposure to a chemical warfare weapon (e.g., a gas or other toxin), a seizure, an allergic reaction, and an epileptic attack (with any such condition or event caused by exposure to one or more conditions of an environment occupied by the user).


In various embodiments, the medication delivery device 500 can use one or more sensors (e.g., the sensors 514 and/or sensors 526) to sense or detect a physical attribute of a person (e.g., a motion of a user and/or a medical condition such as heart rate of a user) and/or a condition of an environment occupied by a user (e.g., a temperature of the environment and/or the presence of a chemical warfare weapon or gas or other toxin). A controller of the medication delivery device 500 (e.g., the processor 510) can use information collected and provided by the one or more sensors to determine if the user is experiencing a severe medical event. If so, the controller can direct or cause a medication to be automatically delivered to a user (e.g., by way of the needle actuator 518 in conjunction with the needle 504 and reservoir 506). The delivery of the responsive medication is intended to offset the medical event being experienced by the user. Further, the medication is provided automatically such that a user need not actively take steps to ensure delivery of the medication (e.g., to ensure delivery of the medication in situations where the user is unable or incapable of physically manipulating a medication delivery system).


Once a determination is made by the controller that a user is experiencing a medical event, the controller can provide an alarm as discussed above to the user. Within a predetermined amount of time after the determination is made and/or the alarm is provided, the controller can cause or direct the needle actuator 518 to inject the user. The predetermined amount of time (e.g., the wait time or delay time) can vary for different determined medical conditions and/or determined severity of any particular medical event. During this delay or wait time, a user can press a button 520 or other input device to cancel or prevent the automatic injection of the user. If no input is received by the medication delivery device 500 during the delay time, then injection of the user can occur at the end of the predetermined amount of time.


If a user overrides automatic injection and delivery of the medication (e.g., for a false alarm event), then the controller 510 can adjust one or more thresholds associated with detection and determination of medical events. That is, a relatively higher threshold can be required for medical events in order to trigger the automatic response. These higher thresholds could include more motion, more severe motion, more jerky motion, higher levels of detected toxins, and/or higher medical condition readings (e.g., higher heart rates, higher blood pressure) which would need to be met or exceeded before determining any subsequent medical event after false alarm reporting by the user. In essence, thresholds associated with determining instances of a medical event based on information collected by the sensors can be adjusted in response to a false reporting by a user (e.g., so as to reduce the likelihood of a false alarm event in the future). In various embodiments, any override by the user can itself be overridden based on a signal received remotely over the network interface 524. For example, an accidental cancellation of an automatic injection of the user can be overridden by remote observation and direction provide through the network interface 524.


Each of the components shown in the medication delivery device 500 can be physically and/or electrically coupled together. For example, the controller 510 can be coupled electrically to the sensors 514 and 526, the network interface 524, the button 520, the output device 522, the memory 512, and the needle actuator 518 to enable communication and/or control information, signals, and instructions to be provided therebetween. Further, the needle actuator 518 can be physically coupled to the needle 504 and the reservoir 506.



FIG. 6 illustrates a method 600 for delivering a medication in accordance with embodiments of the present invention. The method 600 can be implemented by the wearable devices 100, 200, and 300 described above or by the medication delivery device 500 described above. In a first step 602, input from a sensor representing a position, velocity, acceleration, or jerk of the person is received. In a second step 604, it is computationally determined that the patient is experiencing a seizure (or other severe medical event) based on the received input. In an optional third step 606, the person is prompted to identify a false positive prior to triggering mechanical actuation. In a fourth step 608, mechanical actuation of the medication delivery is triggered based on the determination.



FIG. 7 illustrates a method 700 for delivering a medication in accordance with embodiments of the present invention. The method 700 can be implemented by the wearable devices 100, 200, and 300 described above or by the medication delivery device 500 described above. In a first step 702, input from a sensor representing a physical attribute of the person is received. In a second step 704, it is computationally determined that the patient is experiencing a medical event based on the received input. As an example, the received input can include inputs received remotely, or inputs from an environment sensor, a movement sensor, and/or a medical condition sensor. In an optional third step 706, the person is prompted to identify a false positive prior to triggering mechanical actuation. In a fourth step 708, mechanical actuation of the medication delivery is triggered based on the determination.


Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.

Claims
  • 1. A wearable device, comprising: a controller configured to receive an input signal; anda needle actuator including: a spring;a needle driver coupled to the spring at a first end of the needle driver and coupled to a needle at a second end of the needle driver, opposite the first end of the needle driver;a first key having a first protrusion positioned in a first notch of the needle driver;a second key having a second protrusion positioned in a second notch of the needle driver; andan electrically deformable material coupled to the first key and the second key,wherein: the electrically deformable material is electrically coupled to the controller,the needle driver is configured to be under load by the spring,the first and second keys are configured to restrict movement of the needle driver when the first protrusion is positioned in the first notch of the needle driver and the second protrusion is positioned in the second notch of the needle driver, andthe controller is configured to output a signal causing the electrically deformable material to enable the first key to move away from the first notch and the second key to move away from the second notch to release the needle driver from the load of the spring.
  • 2. The wearable device of claim 1, wherein the first key and the first notch are positioned on a first part of the needle driver; and the second key and the second notch are positioned on a second side of the needle driver, wherein the first part of the needle driver is different from the second side of the needle driver.
  • 3. The wearable device of claim 1, further comprising a housing, wherein the housing has an interior surface in contact with the spring.
  • 4. The wearable device of claim 3, wherein the housing further comprises an outer surface coupled to an adhesive.
  • 5. The wearable device of claim 1, further comprising a reservoir configured to store medication, wherein the reservoir is fluidly coupled to the needle.
  • 6. The wearable device of claim 5, wherein the needle driver comprises a fluid conduit coupling the reservoir of medication to the needle.
  • 7. The wearable device of claim 1, wherein the controller is further configured to provide an alarm to the user prior to causing the needle actuator to inject the needle into the user.
  • 8. The wearable device of claim 1, wherein the needle actuator, when under load by the spring, is further configured to: in response to the electrically deformable material changing shape, release the first protrusion of the first key from the first notch of the needle driver and release the second protrusion of the second key from the second notch of the needle driver, thereby allowing the spring to expand and to propel the needle driver in a direction to cause the needle to penetrate skin of a user.
  • 9. The wearable device of claim 1, wherein the electrically deformable material changes shape by causing the electrically deformable material to elongate.
  • 10. The wearable device of claim 1, wherein the electrically deformable material changes shape by decreasing in length and exerting a pulling force on each of the first key and the second key.
  • 11. The wearable device of claim 10, further comprising a power source, pulleys and a hook, wherein: the hook is configured to connect the power source to the electrically deformable material, andthe pulleys are configured to enable an end of the electrically deformable material to pass through one pulley of the pulleys and couple to the first key and an opposite end of the electrically deformable material to pass through another pulley of the pulleys and couple to the second key.
  • 12. A method, comprising: maintaining a needle driver of a needle actuator under load of a spring by mating a first key with a first notch in the needle driver and mating a second key with a second notch in the needle driver;receiving, by a controller, an indication of an occurrence of a medical event;in response to the received indication, enabling the first key to move away from the first notch and the second key to move away from the second notch;in response to the moving away of the first key from the first notch and the second key moving away from the second notch, releasing the needle driver from the load of the spring; andupon releasing the needle driver, deploying a needle coupled to the needle driver into skin of a person.
  • 13. The method of claim 12, wherein enabling the first key to move away from the first notch and the second key to move away from the second notch, comprises: coupling an electrically deformable material to a power supply to cause the electrically deformable material to change in shape, wherein the change in shape enables the first key and the second key to move away from the first notch and second notch, respectively.
  • 14. The method of claim 13, further comprising: in response to the coupling of the electrically deformable material to the power supply, the electrically deformable material changes in length.
  • 15. The method of claim 14, wherein enabling the first key to move away from the first notch and the second key to move away from the second notch, comprises: in response to the change in length of the electrically deformable material, the first key no longer mates with the first notch and the second key no longer mates with the second notch.
  • 16. The method of claim 13, further comprising: in response to the electrically deformable material to the power supply, the electrically deformable material decreases in length.
  • 17. The method of claim 16, wherein enabling the first key to move away from the first notch and the second key to move away from the second notch, comprises: in response to the decrease in length of the electrically deformable material, the first key is pulled from the first notch and the second key is pulled from the second notch.
  • 18. The method of claim 16, further comprising: delivering medication from a reservoir to the needle coupled to the needle driver.
  • 19. An apparatus, comprising a spring;a needle driver coupled to the spring at a first end of the needle driver and coupled to a needle at a second end of the needle driver, opposite the first end of the needle driver;a first key having a first protrusion positioned in a first notch of the needle driver;a second key having a second protrusion positioned in a second notch of the needle driver; andan electrically deformable material coupled to the first key and the second key,wherein the electrically deformable material, in response to an indication, enables the first key to move from the first notch and the second key to move from the second notch to release the needle driver.
  • 20. The apparatus of claim 19, wherein the first and second keys are configured to restrict movement of the needle driver when the first protrusion is positioned in the first notch of the needle driver and the second protrusion is positioned in the second notch of the needle driver.
  • 21. A wearable device, comprising: a controller configured to receive an input signal; anda needle actuator including:a spring;a needle driver coupled to the spring at a first end of the needle driver and coupled to a needle at a second end of the needle driver, opposite the first end of the needle driver;a first key having a first protrusion positioned in a first notch of the needle driver;a second key having a second protrusion positioned in a second notch of the needle driver; andan electrically deformable material coupled to the first key and the second key,wherein: the electrically deformable material is electrically coupled to the controller,the needle driver is configured to be under load by the spring,the first and second keys are configured to restrict movement of the needle driver when the first protrusion is positioned in the first notch of the needle driver and the second protrusion is positioned in the second notch of the needle driver, andthe controller is configured to output a signal causing the electrically deformable material to elongate and release the needle driver from the load of the spring.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 15/358,945, filed on Nov. 22, 2016, which claims priority to U.S. Provisional Patent Application No. 62/259,706, filed on Nov. 25, 2015, the entire contents of both are incorporated herein by reference.

US Referenced Citations (250)
Number Name Date Kind
303013 Horton Aug 1884 A
306691 Johnson Oct 1884 A
315727 Church Apr 1885 A
405524 Benton Jun 1889 A
410817 Weeks, Jr. Sep 1889 A
2667986 Perelson Feb 1954 A
3792703 Moorehead Feb 1974 A
3812843 Wootten et al. May 1974 A
3841328 Jensen Oct 1974 A
3885662 Schaefer May 1975 A
4067000 Carlson Jan 1978 A
4151845 Clemens May 1979 A
4152098 Moody et al. May 1979 A
4193397 Tucker et al. Mar 1980 A
4211998 Junginger et al. Jul 1980 A
4231019 Junginger et al. Oct 1980 A
4261388 Shelton Apr 1981 A
4268150 Chen May 1981 A
4276170 Vaillancourt Jun 1981 A
4342311 Whitney et al. Aug 1982 A
4346385 Schiavone et al. Aug 1982 A
4364385 Lossef Dec 1982 A
4424720 Bucchianeri Jan 1984 A
4435173 Siposs et al. Mar 1984 A
4469481 Kobayashi Sep 1984 A
4475901 Kraegen et al. Oct 1984 A
4498843 Schneider et al. Feb 1985 A
4507115 Kambara et al. Mar 1985 A
4514732 Hayes, Jr. Apr 1985 A
4529401 Leslie et al. Jul 1985 A
4551134 Slavik et al. Nov 1985 A
4559033 Stephen et al. Dec 1985 A
4559037 Franetzki et al. Dec 1985 A
4560979 Rosskopf Dec 1985 A
4562751 Nason et al. Jan 1986 A
4585439 Michel Apr 1986 A
4601707 Albisser et al. Jul 1986 A
4624661 Arimond Nov 1986 A
4634427 Hannula et al. Jan 1987 A
4678408 Nason et al. Jul 1987 A
4684368 Kenyon Aug 1987 A
4685903 Cable et al. Aug 1987 A
4734092 Millerd Mar 1988 A
4743243 Vaillancourt May 1988 A
4755173 Konopka et al. Jul 1988 A
4781688 Thoma et al. Nov 1988 A
4781693 Martinez et al. Nov 1988 A
4801957 Vandemoere Jan 1989 A
4808161 Kamen Feb 1989 A
4836752 Burkett Jun 1989 A
4855746 Stacy Aug 1989 A
4858619 Toth Aug 1989 A
4871351 Feingold Oct 1989 A
4882600 Van de Moere Nov 1989 A
4886499 Cirelli et al. Dec 1989 A
4898578 Rubalcaba, Jr. Feb 1990 A
4898579 Groshong et al. Feb 1990 A
4944659 Labbe et al. Jul 1990 A
4969874 Michel et al. Nov 1990 A
4973998 Gates Nov 1990 A
4985016 Theeuwes et al. Jan 1991 A
5007458 Marcus et al. Apr 1991 A
5045871 Reinholdson Sep 1991 A
5062841 Siegel Nov 1991 A
5109850 Blanco et al. May 1992 A
5125415 Bell Jun 1992 A
5176662 Bartholomew et al. Jan 1993 A
5178609 Ishikawa Jan 1993 A
5189609 Tivig et al. Feb 1993 A
5205819 Ross et al. Apr 1993 A
5213483 Flaherty et al. May 1993 A
5232439 Campbell et al. Aug 1993 A
5239326 Takai Aug 1993 A
5244463 Cordner, Jr. et al. Sep 1993 A
5245447 Stemmle Sep 1993 A
5254096 Rondelet et al. Oct 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5261884 Stern et al. Nov 1993 A
5281202 Weber et al. Jan 1994 A
5308335 Ross et al. May 1994 A
5312337 Flaherty et al. May 1994 A
5318540 Athayde et al. Jun 1994 A
5342313 Campbell et al. Aug 1994 A
5346476 Elson Sep 1994 A
5364342 Beuchat et al. Nov 1994 A
5411480 Kriesel May 1995 A
5433710 VanAntwerp et al. Jul 1995 A
5452033 Balling et al. Sep 1995 A
5492534 Athayde et al. Feb 1996 A
5503628 Fetters et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5514096 Hiejima May 1996 A
5533389 Kamen et al. Jul 1996 A
5545152 Funderburk et al. Aug 1996 A
5573342 Patalano Nov 1996 A
5575770 Melsky et al. Nov 1996 A
5576781 Deleeuw Nov 1996 A
5582593 Hultman Dec 1996 A
5613956 Patterson et al. Mar 1997 A
5630710 Tune et al. May 1997 A
5637095 Nason et al. Jun 1997 A
5643213 McPhee Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5665065 Colman et al. Sep 1997 A
5665070 McPhee Sep 1997 A
5678539 Schubert et al. Oct 1997 A
5685859 Kornerup Nov 1997 A
5693018 Kriesel et al. Dec 1997 A
5695490 Flaherty et al. Dec 1997 A
5702363 Flaherty Dec 1997 A
5704520 Gross Jan 1998 A
5716343 Kriesel et al. Feb 1998 A
5726404 Brody Mar 1998 A
5726751 Altendorf et al. Mar 1998 A
5747350 Sattler May 1998 A
5748827 Holl et al. May 1998 A
5755682 Knudson et al. May 1998 A
5764159 Neftel Jun 1998 A
5776103 Kriesel et al. Jul 1998 A
5779676 Kriesel et al. Jul 1998 A
5785681 Indravudh Jul 1998 A
5785688 Joshi et al. Jul 1998 A
5797881 Gadot Aug 1998 A
5800397 Wilson et al. Sep 1998 A
5800405 McPhee Sep 1998 A
5800420 Gross et al. Sep 1998 A
5810015 Flaherty Sep 1998 A
5814020 Gross Sep 1998 A
5840063 Flaherty Nov 1998 A
5845218 Altschul Dec 1998 A
5848990 Cirelli et al. Dec 1998 A
5848991 Gross et al. Dec 1998 A
5858005 Kriesel Jan 1999 A
5858239 Kenley et al. Jan 1999 A
5865806 Howell Feb 1999 A
5875393 Altschul et al. Feb 1999 A
5885808 Spooner et al. Mar 1999 A
5886647 Badger et al. Mar 1999 A
5891097 Saito et al. Apr 1999 A
5897530 Jackson Apr 1999 A
5906597 McPhee May 1999 A
5911716 Rake et al. Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5921419 Niedospial, Jr. et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5954058 Flaherty Sep 1999 A
5954694 Sunseri Sep 1999 A
5957890 Mann et al. Sep 1999 A
5957895 Sage et al. Sep 1999 A
5961492 Kriesel et al. Oct 1999 A
5965848 Altschul et al. Oct 1999 A
5983094 Altschul et al. Nov 1999 A
5993423 Choi Nov 1999 A
5997501 Gross et al. Dec 1999 A
6019747 McPhee Feb 2000 A
6024539 Blomquist Feb 2000 A
6050978 Orr et al. Apr 2000 A
6071292 Makower et al. Jun 2000 A
6090080 Jost et al. Jul 2000 A
6126637 Kriesel et al. Oct 2000 A
6144847 Altschul et al. Nov 2000 A
6152898 Olsen Nov 2000 A
6174300 Kriesel et al. Jan 2001 B1
6190359 Heruth Feb 2001 B1
6200338 Solomon et al. Mar 2001 B1
6206850 ONeil Mar 2001 B1
6244776 Wiley Jun 2001 B1
6309370 Haim et al. Oct 2001 B1
6363609 Pickren Apr 2002 B1
6375638 Nason et al. Apr 2002 B2
6520936 Mann Feb 2003 B1
6527744 Kriesel et al. Mar 2003 B1
6572585 Choi Jun 2003 B2
6666852 Niedospial, Jr. Dec 2003 B2
6699221 Vaillancourt Mar 2004 B2
6740059 Flaherty May 2004 B2
6883778 Newton et al. Apr 2005 B1
7018360 Flaherty et al. Mar 2006 B2
7025744 Utterberg et al. Apr 2006 B2
7060059 Keith et al. Jun 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7144384 Gorman et al. Dec 2006 B2
7160272 Eyal et al. Jan 2007 B1
7267665 Steil et al. Sep 2007 B2
7291133 Kindler et al. Nov 2007 B1
7303549 Flaherty et al. Dec 2007 B2
7918825 OConnor et al. Apr 2011 B2
9402950 Dilanni et al. Aug 2016 B2
20010053895 Vaillancourt Dec 2001 A1
20020010423 Gross et al. Jan 2002 A1
20020032374 Holker et al. Mar 2002 A1
20020066715 Niedospial Jun 2002 A1
20030163097 Fleury et al. Aug 2003 A1
20040010207 Flaherty Jan 2004 A1
20040064088 Gorman et al. Apr 2004 A1
20040088224 Mukai May 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040116847 Wall Jun 2004 A1
20040158208 Hiejima Aug 2004 A1
20040203357 Nassimi Oct 2004 A1
20050187524 Willis et al. Aug 2005 A1
20050238507 Dilanni et al. Oct 2005 A1
20050258581 Tanaka Nov 2005 A1
20060134323 OBrien Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20070005018 Tekbuchava Jan 2007 A1
20070025811 Wilhelm Feb 2007 A1
20070112332 Harding et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070173974 Lin Jul 2007 A1
20070197163 Robertson Aug 2007 A1
20070282269 Carter et al. Dec 2007 A1
20080004515 Jennewine Jan 2008 A1
20080051738 Griffin Feb 2008 A1
20080065000 Bidinger et al. Mar 2008 A1
20080078400 Martens et al. Apr 2008 A1
20080132880 Buchman Jun 2008 A1
20080249508 Lopez et al. Oct 2008 A1
20080287906 Burkholz et al. Nov 2008 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062767 Van Antwerp et al. Mar 2009 A1
20090124979 Raymond et al. May 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090299300 Truitt et al. Dec 2009 A1
20100137784 Cefai et al. Jun 2010 A1
20100152658 Hanson et al. Jun 2010 A1
20110054390 Searle et al. Mar 2011 A1
20110054399 Chong et al. Mar 2011 A1
20110166512 Both et al. Jul 2011 A1
20110230833 Landman et al. Sep 2011 A1
20110316562 Cefai et al. Dec 2011 A1
20120003093 Lischer et al. Jan 2012 A1
20120003935 Lydon et al. Jan 2012 A1
20120010594 Holt Jan 2012 A1
20120078161 Masterson et al. Mar 2012 A1
20120238851 Kamen et al. Sep 2012 A1
20120277668 Chawla Nov 2012 A1
20130317753 Kamen et al. Nov 2013 A1
20140074033 Sonderegger et al. Mar 2014 A1
20140127048 Dilanni et al. May 2014 A1
20140128839 Dilanni et al. May 2014 A1
20140135880 Baumgartner et al. May 2014 A1
20160015891 Papiorek Jan 2016 A1
20160038689 Lee et al. Feb 2016 A1
20160302054 Kimura et al. Oct 2016 A1
20170128664 Diianni et al. May 2017 A1
Foreign Referenced Citations (39)
Number Date Country
4200595 Jul 1993 DE
19723648 Aug 1998 DE
19920896 Nov 2000 DE
342947 Nov 1989 EP
0763369 Mar 1997 EP
0867196 Sep 1998 EP
0937475 Aug 1999 EP
2397181 Dec 2011 EP
2830499 Feb 2015 EP
875034 Aug 1961 GB
2443261 Apr 2008 GB
200740148 Oct 2007 TW
8101658 Jun 1981 WO
8606796 Nov 1986 WO
9801071 Jan 1998 WO
9856293 Dec 1998 WO
9910040 Mar 1999 WO
9956803 Nov 1999 WO
9962576 Dec 1999 WO
0019887 Apr 2000 WO
0029047 May 2000 WO
0029049 May 2000 WO
0030705 Jun 2000 WO
0061215 Oct 2000 WO
0074752 Dec 2000 WO
0078210 Dec 2000 WO
0152727 Jul 2001 WO
0156633 Aug 2001 WO
0176684 Oct 2001 WO
0220073 Mar 2002 WO
0226282 Apr 2002 WO
0240083 May 2002 WO
2002068823 Sep 2002 WO
03090509 Nov 2003 WO
2008133702 Nov 2008 WO
2009098648 Aug 2009 WO
2012134589 Oct 2012 WO
2013134486 Sep 2013 WO
2013149186 Oct 2013 WO
Non-Patent Literature Citations (17)
Entry
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2018/018901, dated Sep. 6, 2019, 8 pages.
International Search Report and Written Opinion for application No. PCT/US2017/015601, dated May 16, 2017, 12 pages.
International Preliminary Report on Patentability dated Oct. 9, 2014, issued in PCT Patent Application No. PCT/US2013/034674, 15 pages.
EPO Search Report dated Nov. 11, 2015, received in corresponding Application No. 13768938.6, 7 pgs.
European Patent Office, “Notification of Transmittal of the ISR and the Written Opinion of the International Searching Authority, or the Declaration,” in PCT Application No. PCT/GB2015/050248, dated Jun. 23, 2015, 12 pages.
International Preliminary Report on Patentability dated Apr. 9, 2020, issued in PCT Patent Application No. PCT/US2018/052464, 7 pages.
International Search Report for the International Patent Application No. PCT/US03/16640, dated Oct. 3, 2003, 1 page.
User's Guide for Model 508 Insulin Pump, Mini Med, 8/00, 145 pages.
Web-Site Brochure dated Jan. 4, 2000. SOOIL-Homepage. “Portable Insulin Pump”. www.sooil.com/product2.htm.
Web-Site Brochure dated Jan. 4, 2000. SOOIL-Homepage. ““Portable Insulin Pump””.www.sooil.com/product3.htm.
Web-Site Brochure dated Jan. 4, 2000. SOOIL-Homepage. “Portable Insulin Pump”. www.sooil.com/product4.htm.
Web-Site Brochure dated Dec. 20, 1999. “The Animas R-1000 Insulin Pump”. www .animascorp.com/pump f _ s.html.
Web-Site Brochure dated Dec. 20, 1999. ““The Animas R-1000 Insulin Pump””www.animascorp.com/pump_f_f.html.
Web-Site Brochure dated Jan. 4, 2000. SOOIL-Homepage. “Ponable Insulin Pump”.www.sooil.com/intro2.htm.
Web-Site Brochure dated Jan. 4, 2000. MiniMed 508. “Doing its job. Naturally.” www.minimed.com/tiles/mm 113.htm.
Web-Site Brochure dated Dec. 20, 1999. Applied Medical Technology. “508 PumpInformation”. www.applied-medical.co.uk/508.htm.
Web-Site Brochure dated Jan. 4, 2000. “The Glucose Sensor”.www.animascorp.corn/sensor f.html.
Related Publications (1)
Number Date Country
20190374714 A1 Dec 2019 US
Provisional Applications (1)
Number Date Country
62259706 Nov 2015 US
Continuations (1)
Number Date Country
Parent 15358945 Nov 2016 US
Child 16519349 US