Personal headsets for audio systems have been in use for many years, and for a variety of different applications. Users that typically desire quality audio headsets can include, for example, musical or theater artists, broadcasters, public speakers, telephone operators, dispatchers, airplane pilots, video camera operators, studio mixers, and professional sound technicians, among other various others. In many such occupations and applications, it may be desirable for such audio headsets to have speakers (e.g., earphones) and/or microphones. In the case of theater or musical productions, it is desirable that headset being worn by an artist not be noticeable to viewers, which can be members in an audience or viewers of a digital recording thereof.
Besides headsets, audio systems can also use wearable mountings (e.g., ear mounts or ear hooks) separate audio components, such as speakers or microphones. In one application, a microphone, as a separate component, is configured to be attached to a user (e.g., artist). The microphone is typically connected by wires to a wireless transmitter (sometimes referred to as a body-pack) that is also attached to the user. One type of microphone that is typically worn by a user is known as a lavalier microphone (or lavalier), which is a small microphone used for television, theatre, and public speaking applications in order to allow for hands-free operation.
Typically, a professional using a microphone with an audio headset, wearable mounting, or individual component would have a single microphone. A sound technician would check audio pickup from the microphone before the user starts her activity (e.g., show, shift, event, etc.). The microphone can be secured to a headset or ear mount/hook, or even to the user's body or clothing. The microphone might be integral with the headset, or attached to an ear mount/hook or to the user's body or clothing. A microphone can be attached to a user's body or clothing, such as with adhesive tape or cable binding sleeves (e.g., Hellerman sleeves). Regardless, audio setup is an important process and requires a period of time. Sometimes high end users, e.g., professionals, also configure another separate microphone which can be independently secured to a headset or ear mount/hook, or even to the user's body or clothing. The professional then wears two audio setups, which can be cumbersome or visually unappealing. Alternatively, the professional can wear only one audio setup and have the second one readily available for use should there be a problem with the first audio setup.
While such microphones, regardless of whether used as a separate component or not, normally yield high performance, sometimes there is a performance problem with the microphone or its wireless transmitter. When such a performance problem occurs during a live event of the artist or broadcaster, the problem is serious and must be resolved quickly.
Hence, there is a need for improved designs in which audio components are able to be efficiently provided and rendered easily swappable.
The invention pertains to a wearable audio apparatus that is used to support multiple audio components. The audio apparatus can be worn separately or via another apparatus. The audio apparatus can have a housing that contains the multiple audio components. The housing can be easily worn by a user, such as by coupling to a headset, ear mount/hook, user's clothing, or user's body. The audio components can be acoustically matched for redundancy and rapid swapping without requiring a separate audio setup. The audio components can be mounted astride or near one another in the audio apparatus. The audio components can also be separately wired so that each audio component can be independently activated. The housing can also be colored or camouflaged to match the user's skin or clothing.
Embodiments of the invention can be implemented in numerous ways, including as a device, apparatus, system or method. Several embodiments of the invention are discussed below.
As a wearable audio apparatus, one embodiment can, for example, include at least: a housing having an internal cavity; a first microphone positioned and secured within the internal cavity, the first microphone having a first audio responsiveness; a second microphone positioned and secured within the internal cavity, the second microphone having a second audio responsiveness; and a cover provided on a top portion of the housing, the cover having first and second apertures therein, the first aperture being aligned over the first microphone and the second aperture being aligned over the second microphone.
As an audio apparatus, one embodiment can, for example, include at least: a cable having a plurality of wires; a housing having a top region, a middle region and a bottom region, the top region having an opening, the middle region having an internal cavity, the bottom region having an opening for receiving the cable; a first microphone positioned and secured within the internal cavity, the first microphone having a first audio responsiveness; a second microphone positioned and secured within the internal cavity, the second microphone having a second audio responsiveness; an internal support structure provided internal to the housing at the bottom region, the internal support structure being configured to at least secure the cable to the bottom region and/or middle region of the housing; and a cover provided on a top portion of the housing, the cover having first and second apertures therein, the first aperture being over the first microphone and the second aperture being over the second microphone.
As a method for assembling a lavalier microphone assembly, one embodiment can, for example, include at least: providing a wearable housing have a cavity; identifying a pair of matching audio components; positioning and securing the pair of matching audio components within the wearable housing; receiving and securing a cable to the wearable housing, the cable including a plurality of wires; and electrically connecting one or more different ones of the wires within the cable to different ones of the audio components of the pair of matching audio components.
Other aspects and advantages of embodiments of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The accompanying drawings illustrate one or more exemplary embodiments and, together with the description of exemplary embodiments, serve to explain principles and implementations. The drawings are for illustration purposes and are not necessarily drawn to scale. The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention pertains to a wearable audio apparatus that is used to support multiple audio components. The audio apparatus can be worn separately or via another apparatus. The audio apparatus can have a housing that contains the multiple audio components. The housing can be easily worn by a user, such as by coupling to a headset, ear mount/hook, user's clothing, or user's body. The audio components can be acoustically matched for redundancy and rapid swapping without requiring a separate audio setup. The audio components can be mounted astride or near one another in the audio apparatus. The audio components can also be separately wired so that each audio component can be independently activated. The housing can also be colored or camouflaged to match the user's skin or clothing.
One type of audio component is a microphone. One suitable microphone is referred to as a lavalier microphone. By having more than one acoustically matched microphone in a common, compact housing of the audio apparatus, the housing is easily worn and contains a redundant microphone that can be rapidly activated without have to engage in an audio setup (e.g., sound check, etc.). In addition, the microphones can be positioned in acoustically parallel positions within the housing to further provide acoustic equivalence. The housing can also include a separate aperture for audio output for each of the microphones within the housing.
Further, the housing can also be colored or camouflaged to match the user's skin or clothing.
The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.
Embodiments of various aspects of the invention are discussed below with reference to
As noted above, one type of audio component for use in the audio component 100 is a microphone for audio pickup. One suitable microphone is referred to as a lavalier microphone, which is a small electret or dynamic microphone, such as often use for theatre or and public speaking applications in order to allow for hands-free operation. Another type of audio component is an earphone. An earphone can, for example, also be or include an earbud.
The particular configuration of the audio apparatus shown in
The audio apparatus can be formed by a molding process, such as injection molding. The housing and top for the audio apparatus can be formed on a variety of materials, including plastic, metal, ceramic, silicone, wood, and the like, or some combination thereof. In one implementation, the housing and top of the audio apparatus can be formed of a plastic material that can be molded into the desired configuration. For example, the plastic material can be made of Polyvinyl Chloride (PVC).
More particularly, as illustrated in
The cover 804 includes a first opening (or aperture) 822 that is aligned with the first audio chamber 814. Audio output from the first microphone 818 travels through the first audio chamber 814 and exits through the first opening 822.
The cover 804 includes a second opening (or aperture) 824 that is aligned with the second audio chamber 816. Audio output from the second microphone 820 travels through the second audio chamber 816 and exits through the second opening 824.
The cable support structure 808 provided at the bottom portion of the housing 802 has an upper portion within the internal cavity 812, and has a lower portion external to the housing 802. An opening 826 extends though the cable support structure 808. The cable 810 extends through the opening 826 in the cable support structure 808. The cable 810 includes a plurality of wires 828. In one implementation, the cable 810 carries two wires 828 for the first microphone 818 and two wires 828 for the second microphone 820. As illustrated in
The cover 804 also includes an extended peripheral portion 830 provided at the periphery of the cover 804. The extended peripheral portion 830 extends over and couples against or mates with a top portion of the housing 802. In this embodiment, the cover 804 can be referred to as a cap.
It should be notes that the distance from a top surface of the first microphone 818 to the first opening (aperture) 822 in the extended peripheral portion 830 (or to the top of the cover 804) [more generally, to a acoustically reflective surface] is a distance d1, and wherein distance from a top surface of the second microphone 820 to the second opening (aperture) 824 in the extended peripheral portion 830 (or to the top of the cover 804) is a distance d2 [more generally, to a acoustically reflective surface], and wherein the distance d1 is the same (or at least substantially the same) as the distance d2. This ensures that both the first and second microphones 818, 820 have the same acoustic environment. Advantageously, the performance of the audio apparatus 800 is “matched” regardless of which of the first and second microphones 818, 820 is in use.
Alternatively, in another embodiment, the microphones 818 and 820 can be at least partially secured in position using the upper portion of cable support structure 808. In one implementation, although not shown in
The audio apparatus 1000 can have a top portion 1014, which can be an integral portion or a separate top structure. The top portion 1014 can include a first opening (or aperture) 1016 that is aligned with the first audio chamber 1006. Audio output from the first microphone travels through the first audio chamber 1006 and exits through the first opening 1016. The top portion 1014 can include a second opening (or aperture) 1018 that is aligned with the second audio chamber 1008. Audio output from the second microphone travels through the second audio chamber 1008 and exits through the second opening 1018. The depth of the first and second audio chambers 1006, 1008 is the same (or substantially the same) so that the acoustic environment seen by first and second microphones are acoustically equivalent.
The audio apparatus 1000 can also include a cable support structure 1020 provided at a bottom portion 1022 of the housing 1002. The cable support structure 1020 can have an upper portion within the internal cavity 1004, and can have a lower portion external to the housing 1002. An opening 1024 can extend though the cable support structure 1020. A cable (not shown) can extend through the opening 1024 in the cable support structure 1020. As discussed above with reference to
The audio apparatus 1100 can have a top portion 1112, which can be an integral portion or a separate top structure. The top portion 1112 can include a first opening (or aperture) 1114 that is aligned with the first audio chamber 1106. Audio output from the first microphone travels through the first audio chamber 1106 and exits through the first opening 1114. The top portion 1112 can include a second opening (or aperture) 1116 that is aligned with the second audio chamber 1108. Audio output from the second microphone travels through the second audio chamber 1108 and exits through the second opening 1116. In this embodiment, the internal cavity 1104 can include an internal support structure 1110. The internal support structure 1110 can be provided adjacent the bottom of the first and second audio chambers 1106, 1108 and can provide a support structure to which the first and second microphones can be secured.
The audio apparatus 1100 can also include a cable support structure 1118 provided at a bottom portion 1120 of the housing 1102. The cable support structure 1118 can have an upper portion within the internal cavity 1104, and can have a lower portion external to the housing 1102. An opening 1122 can extend though the cable support structure 1118. A cable (not shown) can extend through the opening 1122 in the cable support structure 1118. The cable can carry a plurality of wires for electrical coupling to the microphones that are received or retained in or adjacent the first and second audio chambers 1106, 1108, such as discussed above with reference to
In one embodiment, the housing for audio component can be capable of being formed in a particular color and/or painted to have a particular color. It is sometimes advantageous to camouflage the presence of the ear mount being worn by a user. In such cases, it is often desirable to camouflage the ear mount by coloring the ear mount to best match the color of the user's skin or clothing.
In one embodiment, the only audio components within a housing of an audio apparatus are microphones. In such case, the audio apparatus is a dedicated apparatus for the microphones.
Audio apparatus according to embodiments of the invention can be assembled according to a method.
The audio apparatus can be attached to a user's clothing or body. The audio apparatus can be attached to or part of a headset or an ear mount. In one embodiment, an ear mount is configured to fit over an ear of a user. The ear mount can include one or more wire grooves to secure wires and/or the one or more audio components. The ear mount can be malleable so its shape can be customized for a given user. The ear mount can also be length alterable for customization of its size as well as placement of audio components. The ear mount can also facilitate rapid setup and/or alteration for individual users whereby different audio components and/or their placement can be customized. The ear mount can also be colored or camouflaged to match the user's skin or clothing. The ear mount can also be referred to as an ear mounting device. Additional details on ear mounts are contained in U.S. Pat. No. 9,706,285, which is incorporated herein by reference for all purposes.
An audio apparatus is also described and illustrated in U.S. Design Application No. 29/621,415, filed Oct. 7, 2017, and entitled WEARABLE MICROPHONE, which is incorporated herein by reference for all purposes.
The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.
Numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
In the foregoing description, reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
The many features and advantages of the invention are apparent from the written description. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
800055 | Ayres | Sep 1905 | A |
1085916 | Hutchinson | Feb 1914 | A |
1587643 | Nathaniel | Jun 1926 | A |
D74984 | Myers | Apr 1928 | S |
2337953 | Wirsching | Dec 1943 | A |
2477046 | Davenport | Jul 1949 | A |
2513746 | Rohr | Jul 1950 | A |
2566313 | Cates | Sep 1951 | A |
2954442 | Mickenberg | Sep 1960 | A |
D196515 | Flystad | Oct 1963 | S |
3691319 | Bee | Sep 1972 | A |
D238178 | Kinnan | Dec 1975 | S |
4020297 | Brodie | Apr 1977 | A |
4090042 | Larkin | May 1978 | A |
D252024 | Fujita | Jun 1979 | S |
4257666 | Schauer | Mar 1981 | A |
4273969 | Foley | Jun 1981 | A |
4289938 | Zichy | Sep 1981 | A |
D274839 | Libby | Jul 1984 | S |
D280323 | Scheid | Aug 1985 | S |
D281420 | Rosental | Nov 1985 | S |
4617431 | Scott | Oct 1986 | A |
D295169 | Cho | Apr 1988 | S |
4911510 | Jenkins | Mar 1990 | A |
D309305 | von Hall | Jul 1990 | S |
D326268 | Le Tixerant | May 1992 | S |
5210792 | Kajihara | May 1993 | A |
5336849 | Whitney | Aug 1994 | A |
D356571 | Garmon | Mar 1995 | S |
D362008 | McCumber | Sep 1995 | S |
5729615 | Yang | Mar 1998 | A |
D394669 | Becker | May 1998 | S |
5761298 | Davis | Jun 1998 | A |
5793878 | Chang | Aug 1998 | A |
5828757 | Michalsen | Oct 1998 | A |
D418512 | Lin | Jan 2000 | S |
D421755 | Pitel | Mar 2000 | S |
6097827 | Yang | Aug 2000 | A |
6101258 | Killion | Aug 2000 | A |
D449038 | Andreini | Jan 2001 | S |
D441739 | Hayes | May 2001 | S |
6233344 | Clegg | May 2001 | B1 |
6396935 | Makkonen | May 2002 | B1 |
D463399 | Konomi | Sep 2002 | S |
6456721 | Fukuda | Sep 2002 | B1 |
6584984 | Kelly | Jul 2003 | B2 |
D478579 | Sade | Aug 2003 | S |
6603863 | Nagayoshi | Aug 2003 | B1 |
D479226 | Beauregard | Sep 2003 | S |
6616487 | Lai | Sep 2003 | B1 |
D484875 | Higgins | Jan 2004 | S |
D498251 | Invencio | Nov 2004 | S |
D518816 | Naito | Apr 2006 | S |
D519990 | Lazor | May 2006 | S |
7052281 | Meyberg | May 2006 | B1 |
7231056 | Chen | Jun 2007 | B2 |
D553567 | Kawanobe | Oct 2007 | S |
D563395 | Pitcher | Mar 2008 | S |
D566104 | Suzuki | Apr 2008 | S |
D573101 | Ng | Jul 2008 | S |
D575772 | Schultz | Aug 2008 | S |
D582902 | Crous | Dec 2008 | S |
7473098 | Poulos | Jan 2009 | B1 |
D585881 | Nam | Feb 2009 | S |
7520763 | Buse | Apr 2009 | B1 |
D593075 | Williams | May 2009 | S |
7613292 | te Riet | Nov 2009 | B2 |
7648005 | Leong | Jan 2010 | B2 |
D611933 | Burnham | Mar 2010 | S |
8009853 | Ito et al. | Aug 2011 | B2 |
D645028 | Pescetto | Sep 2011 | S |
8107664 | Mao | Jan 2012 | B2 |
D693773 | Chen | Nov 2013 | S |
D713385 | Burgett | Sep 2014 | S |
D720726 | Yu | Jan 2015 | S |
8985538 | Rapoport | Mar 2015 | B2 |
D733658 | Yang | Jul 2015 | S |
9271065 | Lamb | Feb 2016 | B2 |
D778877 | Lin | Feb 2017 | S |
9706285 | Lamb | Jul 2017 | B2 |
D815599 | Kobayashi | Apr 2018 | S |
D815600 | Matsuoka | Apr 2018 | S |
9942641 | Lamb | Apr 2018 | B2 |
D825468 | Zeng | Aug 2018 | S |
20020166691 | Yaworski | Nov 2002 | A1 |
20060073728 | Zaiken | Apr 2006 | A1 |
20060211293 | Li | Sep 2006 | A1 |
20080247590 | Sun | Oct 2008 | A1 |
20090285434 | Williams | Nov 2009 | A1 |
20100061581 | Soetejo | Mar 2010 | A1 |
20120076342 | Weber | Mar 2012 | A1 |
20120149229 | Kearsley | Jun 2012 | A1 |
20130075149 | Golka | Mar 2013 | A1 |
20140161295 | Huang | Jun 2014 | A1 |
20180317002 | Bernal Castillo | Nov 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20190110124 A1 | Apr 2019 | US |