The invention relates to smart knitted fabrics and the use of such fabrics as a wearable power harvesting system.
Work on wearable electronics has been ongoing for many years now, and in recent years some textile and wearable electronics devices have been introduced on the market. Examples include the Nike Fit, Adidas MiCoach, Hi-Call Bluetooth “Phone-Glove” and soon to be available Google Glass and the Apple Smartwatch. Conductive yarns and fabrics are commercially available, and can be coated or made entirely of metals or conductive carbons. However, textile energy storage and harvesting systems are still under development.
Energy harvesting systems include piezo-electric materials that produce electrical energy from body movements, wearable solar panels, thermoelectrics that could collect energy from body heat, or wireless Wi-Fi energy harvesting. Wireless harvesting poses advantages over other technologies, as it is ambient and does not require the wearer to be moving or specifically outside, and today most people are surrounded by Wi-Fi and broadband signals both at home and work. Thus, most people will be constantly charging their smart clothes.
Additionally, pairing these systems with energy storage (i.e., batteries or supercapacitors), means extra energy can be collected and stored for later use. A variety of combined energy harvesting and storage systems have been proposed, including tribo-electric systems with batteries as coin cells and flexible fibers that can act as both a solar cell and supercapacitor as illustrated in
The three main electrochemical energy storing technologies used in wearable systems (ranging from high power to high energy respectively) include electrical double layer capacitors (EDLCs), pseudocapacitors, and batteries. Both double layer and pseudocapacitors are commonly called “supercapacitors.” All of these devices typically consist of an electrode material, current collector, separator and electrolyte.
Typical tests conducted to measure the capacitance and resistance in energy storage devices are cyclic voltammetry (CV), galvanostatic cycling (GC), and electrochemical impedance spectroscopy (EIS). Usually capacitance can be determined from CV and GC, and the equivalent series resistance (ESR) can be determined from GC and EIS.
Energy storing textiles can be categorized into 3 main groups: coated energy textiles, fiber and yarn electrodes, and custom woven and knitted textiles. Researchers began by coating pre-existing cotton or polyester textiles, either woven, knitted or non-woven, with various carbon or redox active electrode materials. Dip-coating, screen-printing, and painting were used to incorporate these materials into the fabric. However, multiple manufacturing challenges will need to be overcome for coated full fabrics as multiple layers of current collector, electrode, separator and encasement have to be incorporated into a single piece of fabric or a multi-layered garment.
The first reports of yarn or fiber-like supercapacitors and batteries came out between in 2011 and 2012. These planar materials could be transformed into 2-D and 3-D fabrics. From these reports, only a few groups report making their own woven or knitted textiles. The many reported textile supercapacitors which were tested at or around 0.2 A/g and 10 mV/s, the standard operating rates for conventional supercapacitors, are compared and contrasted below.
Capacitive fibers are the most promising materials for energy storing textiles because they can be knitted, woven or stitched into a fabric. If one knows the capacitance per length of the fiber/yarn, one can subsequently design a fabric with a specified total capacitance and resistance. Some examples of flexible energy storing fiber/yarn capacitors are shown in
A variety of textile supercapacitors have appeared in the scientific literature since 2009, including cotton or polyester textiles that have been coated in capacitive materials, fibers and yarns made entirely of capacitive materials, or full fabrics that incorporate all of the components of supercapacitors. However, the functionality of such devices is severely limited.
Also, with recent advancements in wireless communication, ultra-low-power electronics, and wearable technology, a new class of data networks has emerged for applications in which sensors are worn on the human body. A body sensor network (BSN), also known as a body area network (BAN), is a wireless system of low-power devices worn on or in the immediate proximity of the human body, capable of monitoring physiological functions or conditions in the surrounding environment. Body sensor networks have practical applications in a variety of industries including healthcare, entertainment, athletics, interactive gaming, consumer electronics, and the military. Body sensor networks (BSN) currently employ devices that are powered by battery sources, which pose a number of environmental and sustainability issues.
The field of body area networks evolved from technological advances in low-power integrated circuits and wireless communication, as well as a number of disadvantages presented by older technologies. For example, conventional electronics worn on the body are known to cause a great deal of discomfort to the user due to their rigidity and inability to conform to the contour of human anatomy. Additionally, many traditional biological sensors are powered using standard outlet and battery sources. Outlet power tethers the user and restricts movement, limiting the technology to mostly stationary applications. Battery sources present environmental issues due to waste created by their disposal.
In the healthcare industry, a preliminary study (published in November 2010) is being conducted at the Cardiology Unit of La Paz Hospital in Madrid, Spain to evaluate the combination of e-textiles and sensor devices for patient monitoring. This system utilizes two knit electrodes to measure bioelectric potential in the body, an accelerometer to measure patient movement, and thermometer to measure body temperature. The sensors and battery power source are enclosed in a case the size of a cassette tape. The battery occupies roughly 25% of this enclosure.
It is desired to develop an energy harvesting system on a textile substrate to wirelessly power body area network devices and eliminate the need for conventional batteries. Energy harvesting is a process in which energy collected from external sources, which can then be stored and converted into electrical energy. In radio-frequency applications, the source of harvested energy is electromagnetic radiation present in the ambient atmosphere or transmitted from an intentional radiator. If an intentional radiator is used, it must follow FCC regulations for maximum power radiated. Utilizing alternative energy sources will ensure that the system is sustainable and that operation will produce minimal negative impact on the environment as compared to solely battery powered devices.
It is particularly desired in accordance with the invention to develop an energy harvesting antenna and supercapacitor that are knitted within the same piece of fabric with little post production processing to produce electronic textiles that enable wireless and autonomous powering of body-worn sensors without the limitations of the prior art. The present invention addresses these and other needs in the art.
The invention addresses the above-mentioned needs in the art by providing a system for harvesting power from the ubiquitous Wireless Local Area Networks (WLAN) that surround us every day. While the design can be scaled and tuned to harvest power from other radio regions (satellite communications, cell phone channels, etc.), the exemplary embodiment is a wearable power harvesting system for WLAN frequencies. By conducting a wireless power survey, it has been shown that WLAN networks can provide a more frequent and stable source of radio energy. Since current WLAN standards use the frequency regions of 2.4 GHz and 5 GHz, the wearable power harvesting system described herein is designed to operate at the 2.4 GHz band, but it can be easily scaled to operate within the 5 GHz band as well.
The objective of the system described herein is to realize a low cost, textile-based power harvesting system for the 2.4 GHz WLAN band for integration into clothing. In contrast with previous wearable power harvesting systems, the inventors manufacture this technology by using conductive and non-conductive yarns through conventional knitting machines without the need of sewing or gluing conductive parts. In the system described herein, even the storage unit is made by a knitted supercapacitor, which results in a fully knitted power harvesting system.
The energy harvesting system of the invention includes a textile antenna, supporting circuitry, and a textile supercapacitor integrated on a single piece of fabric. The supporting circuitry provides impedance matching, rectification, filtering, and is implemented on a small printed circuit board (PCB) that is connected to the fabric using drill holes and a clasp. The design demonstrates a rectified voltage of 260 mV using a dedicated transmitter supplying a 100 mW signal at 2.45 GHz from a distance of 40 centimeters. The 1 mF textile supercapacitor was charged to 80 mV in approximately 15 minutes. The form factor of the system is 56 cm2, making it small enough to fit on the upper back of a garment.
In exemplary embodiments, the wearable power harvesting system of the invention includes a knitted fabric rectenna including an antenna adapted to receive radio-frequency energy within a desired frequency band (e.g., 2.4 GHz or 5 GHz) and a rectifier circuit that converts received radio-frequency energy into a DC current and voltage, and a knitted fabric load/storage unit such as a knitted supercapacitor that stores DC power from said rectifier circuit. In exemplary configurations, the antenna comprises a compact wideband folded dipole antenna having a single layer and including a non-conductive fabric surrounded by a conductive fabric. In an exemplary configuration, the non-conductive fabric forms a “T-shape” within the conductive fabric. Alternatively, the rectenna may also include a shorting capacitor and rectifying diode to transfer power to the supercapacitor.
The inventive power harvesting system may also include a knitted pocket that stores circuitry including a Schottky diode and surface-mount inductance (L) and capacitance (C) components that match an impedance of the antenna to the Schottky diode. The circuitry may be connected to the knitted fabric by a liquid epoxy adapted to provide an electrical connection between the circuitry and the fabric. Alternatively, the circuitry may contain tabs that extend into pockets of the conductive fabric to provide a compression fit, or a clasp may be used that it adapted to hold the conductive elements of the circuitry in contact with the conductive fabric. Additionally, conductive yarn may be threaded through a circuit board containing the circuitry so as to connect the circuit board to the fabric.
In order to increase the amount of harvested power, the a plurality of rectennas may be cascaded to add up their respective energy contributions and the resulting DC power output of each rectenna combined for storage in the load/storage unit. In the resulting array, each rectenna is spaced from each other rectenna so as to achieve a directive radiation pattern and to substantially eliminate coupling between each rectenna.
The foregoing and other beneficial features and advantages of the invention will become apparent from the following detailed description in connection with the attached figures, of which:
The present invention may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific products, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of any claimed invention. Similarly, any description as to a possible mechanism or mode of action or reason for improvement is meant to be illustrative only, and the invention herein is not to be constrained by the correctness or incorrectness of any such suggested mechanism or mode of action or reason for improvement. Throughout this text, it is recognized that the descriptions refer both to methods and software for implementing such methods.
A detailed description of illustrative embodiments of the present invention will now be described with reference to
The invention incorporates designs for creating a wearable power harvesting system from knitted fabrics and for other knitted electrical components used for energy storage that are embedded within the same sheet of fabric during manufacturing. Embodiments of such systems will be described below.
Power Harvesting System
As shown in
The antenna is first designed and simulated using a high frequency software simulator. The layout of the antenna can be realized in single or multiple planar layers. Next, the design is converted in a 2D CAD model for driving knitting machines. The actual antenna metallization is manufactured using conductive yarns while the non-conductive yarns will constitute the remaining part of the garment serving as support for the conductive antenna layout.
Power Harvesting Principle (Friis Equation)
Nowadays, radio-frequency (RF) power sources surround us very day both in indoor and outdoor environments. Examples of RF energy source are radio transceivers, wireless access points (WLAN networks), repeaters, and handheld devices. By considering a wireless link between a transmitter (RF source) and a receiver (rectenna), there are multiple parameters that determine the amount of received power from the receiver. The power transfer can be calculated through the Friis Equation:
where, Pr is the received power, Pt transmitted power, Gt transmitter gain, Gr receiver gain, λ frequency wavelength, and R the distance between transmitter and receiver.
The power required for communications depends on applications and receiver sensitivity. Typically, the level required to wake up a receiver is the order of −70/−15 dBm. However, for harvesting RF energy, the power level should be sufficient to generate an appreciable current flow at the load/storage side and it can be achieved for RF power levels above −25/−20 dBm. Naturally, a closer proximity of the rectenna with the radio source will result in a higher exposure to RF energy with consequent increase of the generated DC power.
Antenna Design
The radiator used for the rectenna is a compact wideband folded dipole antenna. As shown in
The design shown in
Stretch Testing
Stretch testing was done since stretching of the antenna is expected in a wearable application.
Nonetheless, stretching within range still allows for acceptable operation of the antenna for up to 15% elongation, making it suitable for wearable applications. For future textile antenna design efforts, a custom fabric can be used that will keep the fabric relatively inelastic. The antenna can also be placed on a region of the body where stretching will not likely exceed 10 mm, such as the upper back of a garment.
Testing of a Knitted Supercapacitor
Knitted supercapacitors were fabricated in an interdigitated geometry in a single sheet of fabric. The textile supercapacitor components were as follows: 1) the current collector is a commercially available stainless steel yarn, (Beakart, Germany); 2) the electrode is made of a conductive high surface area material, (such as activated carbon, carbon nanotubes, graphene or graphite a conducting polymer, or oxide material) and, in an exemplary embodiment, the current collecting steel yarn has sufficient surface area to store the charge collected by the harvesting antennas; 3) the separator to electrically insulate the electrodes/current collectors from each other, is just nonconductive yarns knitted between the conductive layers; 4) the electrolyte is a polymer gel that is coated onto the steel yarn either pre- or post-knitting and is composed of Polyvinyl alcohol (PVA), phosphoric acid (H3PO4), water and silicotungstic acid. The polymer is applied and heat treated at 90° C. for 20 minutes to solidify. Other commonly used polymer electrolytes only use PVA, H3PO4 and water of different ratios.
A DC power supply was used to determine the charge time of both supercapacitors to compare the charge times.
Energy Harvesting Circuit
Efficient rectification circuitry is essential for wireless energy harvesting and is widely discussed in the literature in the context of rectifying antenna (rectenna) applications. The rectification circuit herein described converts the RF energy captured from the fabric antenna into a DC signal that is used to charge a textile supercapacitor. In an exemplary embodiment, two Schottky surface-mount diodes, Avago HSMS8101 and HSMS2860, were examined since their electrical properties make them ideal rectifiers at higher frequencies. The benefit to using this chip design is that it can be inserted and removed from the pocket for washing or replacement without having to cut out small circuit components. Due to its small size, and how the pocket was designed, it is not easily discernable from the front of the fabric, and visually eliminates any evidence of additional solid components.
In an exemplary embodiment, two approaches were considered for connecting the electrical components to the fabric: connecting the components directly to conductive yarns from the textile antenna, or soldering components to a PCB then connecting the PCB to the textile antenna. Connecting the electronics directly to the fabric is challenging due to the physically small size of the rectifying diode and associated components. For this reason, the inventors focused on designing a PCB that may be directly connected into the fabric.
The physical PCB harvesting circuit of
This formula does not account for the return loss or polarization mismatch of the transmitter and receiver antennas, which are assumed to be negligible.
It will be appreciated that, when using the illustrated circuits, depending on the input power from the antenna, the device will have varying efficiencies and resulting voltages.
Four (4) Fabric-PCB Interconnection Methods
In order to attach the PCB containing the matching network and rectification diode to the conductive fabric, an interconnection method was necessary due to the difficulty of connecting the hard components (inductors, capacitors, and diode) directly to fabric. The connection methods that were examined during testing were as illustrated in
Compression—The PCB contains tabs that extend into pockets that provide a compression fit, forming an electrical connection by making contact between the copper of the PCB and the conductive fabric. The compression provides mechanical stability for the PCB.
Clasp—Similar to the compression method, a clasp is used to hold the copper of the PCB to the conductive fabric. Holes are drilled into the board for a mating post (such as an earring) to pass through both the PCB and the conductive fabric material. A clasp (such as an earring backing) is used opposite the mating post to secure the PCB and fabric together. The clasp serves as mechanical support.
Silver paint & epoxy—The next method uses silver paint as the electrical connection while adding a coating of epoxy over the connection for mechanical stability. This uses the same PCB as the compression method with the tabs extending from the board.
Conductive yarn—The final interconnection method utilizes conductive yarn threaded through conductive yarns to sew the board into the fabric. This uses the same PCB as the clasp method. The conductive yarn serves as both a mechanical and electrical connection between the PCB and fabric.
Insertion Loss Testing
Insertion loss testing characterizes the electrical loss through the interconnection method, where the more power lost through the connection, the less energy is converted and stored in the supercapacitor. As illustrated in
Rectifier Circuit, Lumped Components, Fabric Pockets
The three main components of the energy harvesting system of the invention are a fully textile antenna, impedance matching and rectification circuitry implemented on a printed circuit board (concealed in a custom pocket), and a fully textile supercapacitor, as shown in
As shown in
It is noted that products exist that implement wireless energy harvesting techniques, fabric antennas, or fabric supercapacitors. For example, Powercast Powerharvester is a surface mount integrated circuit (IC) that is powered via a designated high power transmitter. The Powercast IC is comprised of an RF-DC converter, switching control, and power regulation; a dedicated transmitter is provided for high incident and highly reliable power. However, the Powercast IC is implemented on a circuit board rather than on fabric and Powercast uses a non-planar antenna design rather than a low-profile antenna.
Demonstration of Whole Knitted Harvesting System in Fabric
As described above, the design using a rectenna has been successfully knitted along-side a knitted supercapacitor and successfully charged by connecting the in-pocket chip from the antenna to supercapacitor.
Array Configuration
In order to enhance the amount of harvested power, it is desirable to cascade more than one rectenna adding up each of their energy contributions by adding the DC output voltages of each rectenna. As a result, the higher gain of the whole receiving system will allow for faster charge of the knit supercapacitor.
Power Storage
Those skilled in the art will appreciate that the textile supercapacitor may be knitted using fibers and techniques described in U.S. Provisional Patent Application No. 61/858,358, filed Jul. 25, 2013, and assigned to the present applicant. The disclosure thereof is incorporated herein by reference. In the present embodiments, the textile supercapacitor components include: 1) a current collector made from a commercially available stainless steel yarn (Beakart, Germany), and 2) an electrode made of a conductive high surface area material such as activated carbon, carbon nanotubes, graphene or graphite, a conducting polymer, or oxide material. The current collecting steel yarn preferably has sufficient surface area to store the charge collected by the harvesting antennas. The textile supercapacitor components also include 3) a separator adapted to electrically insulate the electrodes/current collectors from each other, which may include nonconductive yarns knitted between the conductive layers; and 4) an electrolyte that is a polymer gel coated onto the steel yarn either pre- or post-knitting. The electrolyte is composed of polyvinyl alcohol (PVA), phosphoric acid (H3PO4), water and silicotungstic acid. The polymer is applied and heat treated at 90° C. for 20 minutes to solidify. Other commonly used polymer electrolytes only use PVA, H3PO4 and water of different ratios.
To charge the device with the harvesting antenna, a physical metallic connection is made, either by soldering wires, or adhering conductive yarns to each other.
Power Management
Exemplary embodiments of the textile supercapacitors described herein are limited to a 1V maximum voltage. Previously, power management circuitry was designed and fabricated on a PCB to boost the harvested voltage from the rectenna to a level that would enable powering of a Bluetooth low energy module. The power management board included an LTC3108 IC, a transformer, and a number of external capacitors. This circuit was initially tested with a power supply to verify functionality and to determine the minimum startup voltage and current required for operation. Testing indicated that the minimum startup voltage was approximately 100 mV at 40 mA, an input power requirement of 4 mW.
The inventors have developed a PCB rectenna prototype capable of providing 80 μW of power. While other methods of increasing the harvested energy and the RF-to-DC conversion efficiency may be used, the inventors decided to bypass the power management and to charge the supercapacitor with the rectenna directly in order to provide a functional, integrated textile energy harvesting system.
Alternate Rectenna Design
A new rectenna design has been investigated with the goal of implementing an antenna structure that provides more tunability of the input impedance.
Applications
Applications for the wearable power harvesting system described herein include at least the following:
Applications of the systems described herein include healthcare monitoring, location tracking, interactive gaming, athletics monitoring, and other wireless applications apparent to those skilled in the art.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/950,472 filed Mar. 10, 2014, and of U.S. Provisional Patent Application Ser. No. 62/005,531 filed May 30, 2014, the disclosures of which are hereby incorporated by reference as if set forth in their entireties herein.
Number | Name | Date | Kind |
---|---|---|---|
6356238 | Gainor | Mar 2002 | B1 |
6727197 | Wilson | Apr 2004 | B1 |
7486252 | Hiltmann | Feb 2009 | B2 |
7511621 | Duan | Mar 2009 | B1 |
8847824 | Kotter | Sep 2014 | B2 |
20030003359 | Banno | Jan 2003 | A1 |
20030011528 | Marchand | Jan 2003 | A1 |
20030160732 | Van Heerden | Aug 2003 | A1 |
20070087719 | Mandal | Apr 2007 | A1 |
20070251207 | Stobbe | Nov 2007 | A1 |
20080055092 | Burr | Mar 2008 | A1 |
20080287022 | Dhawan | Nov 2008 | A1 |
20090018428 | Dias | Jan 2009 | A1 |
20090295657 | Gakhar | Dec 2009 | A1 |
20090311587 | Best | Dec 2009 | A1 |
20100051699 | Speich | Mar 2010 | A1 |
20120224247 | Sotzing | Sep 2012 | A1 |
20130249771 | Kotter | Sep 2013 | A1 |
20130345695 | McPherson | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160261031 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61950472 | Mar 2014 | US | |
62005531 | May 2014 | US |