Wearable pulse oximeter and respiration monitor

Information

  • Patent Grant
  • 12070293
  • Patent Number
    12,070,293
  • Date Filed
    Friday, November 12, 2021
    3 years ago
  • Date Issued
    Tuesday, August 27, 2024
    5 months ago
Abstract
A wireless patient monitoring device can be fully functional stand-alone patient monitoring device capable of various physiological measurements. The patient monitoring device is small and light enough to be comfortably worn on the patient, such as on the patient's wrist or around the neck. The patient monitoring device can have a monitor instrument removably engaging a disposable base. The base can have outlets for connecting to an acoustic respiration sensor and an oximeter sensor. The patient monitoring device can have pogo pin connectors connecting the monitor instrument and the disposable base so that the monitor instrument can receive sensor data from the sensors connected to the disposable base.
Description
FIELD OF DISCLOSURE

In general, the present disclosure relates to a wearable patient monitoring device, and methods and apparatuses for monitoring a patient's physiological information using the device. More specifically, the present disclosure relates to the connection of physiological sensors to instruments responsive to signals from the sensors.


BACKGROUND

Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, pulse, and a myriad of other parameters, such as those monitored on commercially available patient monitors from Masimo Corporation of Irvine, California Clinicians, including doctors, nurses, and other medical personnel, use the physiological parameters and trends of those parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients.


In an embodiment, the patient monitoring devices include a pulse oximeter. Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply. A typical pulse oximetry system utilizes an optical sensor clipped onto a fingertip to measure a relative volume of oxygenated hemoglobin in pulsatile arterial blood flowing within, for example, the fingertip, foot, ear, forehead, or other measurement sites. The oximeter can, in various embodiments, calculate oxygen saturation (SpO2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or otherwise, and the oximeter can display on one or more monitors the foregoing parameters individually, in groups, in trends, as combinations, or as an overall wellness or other index. An example of such an oximeter, which can utilize an optical sensor described herein, are described in U.S. application Ser. No. 13/762,270, filed Feb. 7, 2013, titled “Wireless Patient Monitoring Device,” U.S. application Ser. No. 14/834,169, filed Aug. 24, 2015, titled “Wireless Patient Monitoring Device,” and U.S. application Ser. No. 14/511,974, filed Oct. 10, 2014, titled “Patient Position Detection System,” the disclosures of which are hereby incorporated by reference in their entirety.


The patient monitoring devices can also communicate with an acoustic sensor comprising an acoustic transducer, such as a piezoelectric element. The acoustic sensor can detect respiratory and other biological sounds of a patient and provide signals reflecting these sounds to a patient monitor. An example of such an acoustic sensor, which can implement any of the acoustic sensing functions described herein, is described in U.S. application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” and in U.S. Application No. 61/313,645, filed Mar. 12, 2010, titled “Acoustic Respiratory Monitoring Sensor Having Multiple Sensing Elements,” the disclosures of which are hereby incorporated by reference in their entirety. An example of such an acoustic sensor is also described in U.S. application Ser. Nos. 13/762,270, 14/834,169, and 14/511,974 referenced above.


SUMMARY OF THE DISCLOSURE

In the present disclosure, one or more sensors can be connected to a wireless monitor configured to receive the sensor data, process the data to determine any number of a myriad of physiological parameters, and wirelessly transmit the sensor data or the physiological parameters responsive to the sensor data to a bedside monitor. The bedside monitor can be configured to output the physiological parameters, communication channel, and/or communication status. An example of methods and apparatuses for wirelessly monitoring a patient's physiological information is described in U.S. application Ser. Nos. 13/762,270, 14/834,169, and 14/511,974 referenced above.


Durable and disposable sensors are often used for the patient monitoring devices. These sensors can have connectors which allow detachment from a monitor instrument or a cable. One example of the connectors can include the use of pogo pins on a pin end and a plurality of electrical contacts on a surface of a sensor end. The pin end can have a plurality of retractable electrical connectors or pogo pins extending through pin holes on a printed circuit board. The plurality of electrical contacts on the sensor end are configured to engage contact tips of the plurality of pogo pins when the pin end comes into close proximity with the sensor end. An example of the pogo pin connectors is described in U.S. application Ser. No. 15/017,349, filed Feb. 5, 2016, titled “Pogo Pin Connector,” which is expressly bodily incorporated in its entirety and is part of this disclosure.


One aspect of the disclosure is a wireless patient monitoring device for measuring one or more parameters that can be secured to a wrist of the patient. The wireless patient monitoring device can include a monitor instrument, a base, and a strap. The monitor instrument can removably mechanically and electrically engage the base. In some embodiments, the monitor instrument can have a display screen. The base can have a strap connector for engaging a strap that can be worn on the patient's wrist. The base can have an outlet on a first end configured to be connected to a first sensor. In some embodiments, the base can also have an outlet on a second end configured to be connected to a second sensor. The first end can be opposite the second end along a length of the base. The base can have a plurality of electrical contacts on an anterior surface. The plurality of electrical contacts can be configured to contact a plurality of pogo pins extending from a posterior surface of the monitor instrument. The contact between the electrical contacts and the pogo pins can electrically connect the monitor instrument to the sensors that are coupled to the base. The monitor instrument can then receive data from one or both sensors, it can process the data to determine responsive parameters/measurements and/or can transmit the data and calculated parameter information wirelessly to a bedside monitor. In some embodiments, one of the sensors is configured to be connected to the base and can comprise a noninvasive optical sensor of the type used in pulse oximetry. In some embodiments, one of the sensors is configured to be connected to the base and can comprise a non-invasive acoustic sensor of the type used in breath sounds monitoring to determine respiration rate and/or cardiac parameters.


A patient monitoring device configured to be removably secured to a patient and responsive to one or more physiological parameters of the patient can comprise a reusable monitor instrument configured to transmit wireless information to a remote patient monitor and having a plurality of electrical connectors extending from a surface of the monitor instrument; and a disposable portion including (a) at least one non-invasive physiological sensor comprising one of an optical sensor and an acoustic sensor, (b) a base having (i) an electrical connector configured to connect to the at least one physiological sensor, the at least one physiological sensor including its own sensor attachment mechanism separate from the disposable portion, said sensor attachment mechanism configured to removably secure said at least one physiological sensor to a measurement site on said patient, and (ii) a plurality of electrical contacts on a surface, the electrical connector including electronics operably connecting the at least one physiological sensor to the plurality of electrical contacts, the monitor instrument configured to removably mechanically engage the base, the electrical connectors configured to electrically contact the electrical contacts, and (c) an attachment mechanism configured for removably securing the base to the patient, wherein the monitor instrument can be responsive to signals from the at least one physiological sensor, said signals responsive to physiological parameters of the patient. The base can further comprise a second electrical connector configured to connect to a second non-invasive physiological sensor. The physiological sensor can comprise the optical sensor. The physiological sensor can comprise the acoustic sensor. The monitor instrument can comprise a display screen. The plurality of electrical connectors can comprise pogo pins. The device can further comprise one or more cable management mechanisms on the reusable monitor instrument or the base, the one or more cable management mechanisms configured to secure sensor cables.


A patient monitoring device configured to be removably secured to a patient and responsive to one or more physiological parameters of the patient can comprise a reusable monitor instrument configured to transmit wireless information to a remote patient monitor and having a plurality of electrical connectors extending from a surface of the monitor instrument; and a disposable portion including (a) at least two non-invasive physiological sensors, each sensor including a sensor positioner configured to position the sensor with respect to a measurement site on said patient, (b) a base having (i) at least first and second electrical connectors configured to connect to the at least two physiological sensors respectively, and (ii) a plurality of electrical contacts on a surface, the electrical connectors including electronics operably connecting the at least two physiological sensors to the plurality of electrical contacts, the monitor instrument configured to removably mechanically engage the base, the electrical connectors configured to electrically contact the electrical contacts, and (c) an attachment mechanism configured for removably securing the base to the patient, wherein the monitor instrument can be responsive to signals from the at least two physiological sensors, said signals responsive to physiological parameters of the patient. The attachment member can comprise a band configured to be removably secured onto the patient's arm, wrist, leg, or ankle. The attachment member can comprise a cord configured to be worn around the patient's neck. The at least first and second electrical connectors can be positioned on the same side of the base. At least first and second electrical connectors can be configured to removably connect the at least two physiological sensors such that the at least first and second electrical connectors can be exchanged. The plurality of electrical connectors can comprise pogo pins. The device can further comprise one or more cable management mechanisms on the reusable monitor instrument or the base, the one or more cable management mechanisms configured to secure sensor cables.


A patient monitoring device configured to be removably secured to a patient and responsive to one or more physiological parameters of the patient can comprise a reusable monitor instrument configured to transmit wireless information to a remote patient monitor and having at least one electrical connector extending from a surface of the monitor instrument, the at least one electrical connector including electronics configured for operably connecting to at least one physiological sensor; and a disposable portion including a base and an attachment mechanism configured for removably securing the base to the patient, the monitor instrument configured to removably mechanically engage the base, wherein the monitor instrument can be responsive to signals from the at least one physiological sensor, said signals responsive to physiological parameters of the patient. The attachment member can comprise a band configured to be removably secured onto the patient's arm, wrist, leg, or ankle. The attachment member can comprise a cord configured to be worn around the patient's neck. The device can further comprise one or more cable management mechanisms on the reusable monitor instrument or the base, the one or more cable management mechanisms configured to secure sensor cables.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure. In the drawings, similar elements have similar reference numerals.



FIGS. 1A-C illustrate perspective and front views of an embodiment of a wireless patient monitoring device connected to two physiological sensors.



FIGS. 1D-1F illustrate various perspective views of an embodiment of a wireless patient monitoring device connected to two physiological sensors.



FIGS. 1G-1I various perspective views of illustrate an embodiment of a wireless patient monitoring device connected to two physiological sensors.



FIGS. 2A-C illustrate partially exploded views of the embodiment of the wireless patient monitoring device of FIGS. 1A-B connected to two physiological sensors.



FIGS. 2D-E illustrates front and back views of embodiments of pads or printed circuit boards (“PCBs”) having a plurality of electrical contacts for use in an embodiment of the wireless patient monitoring device.



FIG. 2F illustrates back views of a base and a strap of an embodiment of the wireless patient monitoring device.



FIGS. 3A-C illustrate left, front and bottom views of an embodiment of the wireless patient monitoring device.



FIGS. 4A-C illustrate left, front and bottom views of the embodiment of the wireless patient monitoring device of FIGS. 3A-C with internal structures shown in broken lines.



FIGS. 5A-D illustrate perspective, left, front, and bottom views of another embodiment of the wireless patient monitoring device.



FIG. 5E illustrates the embodiment of the wireless patient monitoring device of FIGS. 5A-D connecting to a physiological sensor.



FIG. 5F illustrates another embodiment of the wireless patient monitoring device connecting to a physiological sensor.



FIG. 6A illustrates a partial exploded view of the embodiment of the wireless patient monitoring device of FIGS. 5A-D.



FIGS. 6B-E illustrate steps for disassembling a monitor instrument from a base of the embodiment of the wireless patient monitoring device of FIGS. 5A-D.



FIG. 6F illustrates front views of a base, a strap and a sensor cable of another embodiment of the wireless patient monitoring device.



FIGS. 7A-E illustrate embodiments of the wireless patient monitoring device suitable for wearing on both the patient's left and right wrists.



FIGS. 8A-B illustrate another embodiment of the wireless patient monitoring device that can be worn around a patient's neck.



FIGS. 9A-B illustrate another embodiment of the wireless patient monitoring device that can be worn on the patient's wrist.



FIGS. 10A-B illustrate the embodiments of the wireless patient monitoring device of FIGS. 8A-B and 9A-B attached to a physiological sensor, with the monitor instrument detached from the bases.



FIGS. 11A-D illustrate another embodiment of the wireless patient monitoring device.



FIG. 12 illustrates a patient wearing an example wireless patient monitoring device.



FIG. 13 illustrates a patient wearing an example wireless patient monitoring device.





DETAILED DESCRIPTION

Although certain embodiments and examples are described below, those of skill in the art will appreciate that the disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the disclosure herein disclosed should not be limited by any particular embodiments described below.


In clinical settings, medical sensors are often attached to patients to monitor physiological parameters of the patients. Some examples of medical sensors include, but are not limited to, blood oxygen sensors, such as pulse oximetry sensors, acoustic respiratory sensors, EEGs, ECGs, blood pressure sensors, sedation state sensors, etc. Typically, each sensor attached to a patient is connected to a bedside monitoring device with a cable. The cables limit the patient's freedom of movement and impede a care provider's access to the patient. The cables connecting the patient to the bedside monitoring device also make it more difficult to move the patient from room to room or switch to different bedside monitors.


This disclosure describes embodiments of wireless patient monitoring devices that are coupled to one or more sensors and worn by a patient. FIGS. 1A-B illustrate an embodiment of the wireless patient monitoring device 10. The wireless patient monitoring device 10 can have a monitor instrument 110, a base 140, and a strap 160. The monitor instrument 110 can be reusable. The base 140 and/or the strap 160 can be disposable.


The monitor instrument 110 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. The monitor instrument 110 can also include processing capabilities. The monitor instrument 110 can include a hardware processor. The monitor instrument can include a printed circuit board (PCB). In some embodiments, the monitor instrument 100 can have a battery. In some embodiments, the battery can be built inside the monitor instrument 110 and rechargeable. For example, the battery can be recharged when the monitor instrument 100 is placed on a charging dock. In other embodiments, the battery can be replaceable. The monitor instrument 100 can transmit sensor data obtained from sensors to a remote patient monitor (not shown). For example, the remote patient monitor can be a bedside monitor. By transmitting the sensor data wirelessly, the patient monitoring device 10 can advantageously replace some or all cables that connect patients to the bedside monitor. Detailed methods and apparatuses of wirelessly transmitting sensor data to bedside monitoring devices are described in U.S. application Ser. Nos. 13/762,270, 14/834,169, and 14/511,974 referenced above.


An artisan will recognize from the disclosure herein that the device 10 can include additional and/or alternative features and functions. For example, the device 10 can advantageously upload its data to a cloud-based computing platform or data storage platform where the device manufacturer can manage the data, a caregiver, caregiver facility or insurance provider can access the data, or the like. Also, while shown as a device for attachment to the wrist or appendages of non-infants, the device can attach to an ankle of an infant or neonate where the optical sensor is attached to the foot. Other embodiments can use an ear or nose optical sensor, or can combine a nose optical sensor and an acoustic sensor. Still additional embodiments can secure to the head or other site on the body, can include position sensors, fall detection algorithms, patient turn protocols and algorithms or the like.


As shown in FIGS. 2A-B, the monitor instrument 110 can be detachable from the base 140. The monitor instrument 110 can have a substantially rectangular shape with an anterior surface 112 and a posterior surface 114. The anterior surface 112 faces away from the base 140. The posterior surface 114 faces toward the base 140. In some embodiments, the monitor instrument 110 can have a length of about 50-70 cm. In some embodiments, the monitor instrument 110 can have a width of about 40-60 cm. The anterior and posterior surfaces 112, 114 can be substantially flat and have a small thickness between the anterior and posterior surfaces 112, 114. The shape, size, and/or weight of the monitor instrument 110 can advantageously resemble a shape size, and/or weight of a watch and be suitable for being worn on the wrist of the patient. The shape size, and/or weight of the monitor instrument 110 are not limiting; however, in an embodiment, the size and weight are approximate that of a wrist watch. For example and not by way of limitation, the monitor instrument can have a circular outer shape as shown in FIGS. 5A-D, or a square outer shape as shown in FIG. 5F. In the illustrated embodiments, the anterior surface 112 can have a display screen 113 for displaying messages and/or physiological parameters for the patient and/or care providers.


As shown in FIG. 2A, the posterior surface 114 of the monitor instrument 110 can include a cover 116 having a group of pogo pin holes. One end of a plurality of pogo pins 117 can protrude from the pogo pin holes of the cover 116. Another end of the pogo pins can form an electrical connection with the PCB inside the monitor instrument 110 to establish an electrical connection between the PCB inside the monitor instrument 110 and one or more sensors, which will be described in more details below. More details of the pogo pins are described in U.S. application Ser. No. 15/017,349 referenced above. In the illustrated embodiment, the plurality of pogo pins 117 is arranged in two rows. A person of ordinary skill in the art will appreciate from the disclosure herein that the configuration of the plurality of pogo pins is not limiting. Additionally, although FIG. 2A shows one cover 116 with a plurality of pogo pins 117 in a center of the posterior surface 114, the number and/or locations of covers with a plurality of pogo pins are not limiting. For example and not by way of limitation, the posterior surface 114 of the monitor instrument 110 can have two covers with pogo pins on opposite ends of the posterior surface 114 along its length or width. In another example, the posterior surface 114 of the monitor instrument 110 can have one cover with pogo pins on each of four corners of the substantially rectangular posterior surface 114.


With continued reference to FIGS. 2A-2B, the base 140 can be made from disposable material(s). Disposability advantageously provides a more sterile environment for patients. That is, in an embodiment, the portions of the device that can come in contact with a patient, such as sensors 170, 172, the strap 160, and the base 140, can be single use items, while the relatively expensive processing components of the monitor instrument 110 can be sanitized, sterilized or the like, and reused. For example and not by way of limitation, the base 140 can be made from plastic materials. The base 140 can have an outer shape corresponding to the outer shape of the monitor instrument 110. As shown in FIGS. 2A-B, the base 140 has a substantially rectangular shape with an anterior surface 142 and a posterior surface 144 (shown in FIG. 2F). The anterior surface 142 faces toward the monitor instrument 110. The posterior surface 144 faces away from the monitor instrument 110 and toward the patient wearing the device. The anterior 142 and posterior 144 surfaces can be substantially flat and have a small thickness between the anterior 142 and posterior 144 surfaces. The shape and size of the base 140 are not limiting. The anterior surface 142 of the base 140 can have a recessed flat surface 143 configured to accommodate the posterior surface 114 of the monitor instrument 110. As shown in FIGS. 1A-B and 2A-B, the monitor instrument 110 can removably engage the anterior surface 142 of the base 140. In the illustrated embodiment, the base 140 can have two tabs 148 configured to clip onto or otherwise mechanically and removably mate with two recesses 118 on the monitor instrument 110. The tab 148 can have a protrusion 149 configured to fit into an indent 119 on the recess 118 of the monitor instrument 110. Other methods of removably coupling the monitor instrument 110 and the base 140 can include a magnet, a clip, a band, a snap fit, a friction fit, twist and secure, slide and secure, or otherwise, and are not limiting.


The base 140 can include one or more outlets for accommodating one or more sensor cables extending out of and away from the base 140. As shown in FIGS. 1A-C and 2A-B, the base 140 can include a first outlet 150 on a first end of the base 140 and a second outlet 152 on a second end of the base 140. In the illustrated embodiment, the second end can be opposite the first end along a length of the base 140. A first cable 174 of first sensor 170 can extend away from the base 140 via the first outlet 150. A second cable 176 of a second sensor 172 can extend away from the base 140 via the second outlet 152. Disposing outlets on opposite ends of the base 140 can advantageously prevent cluttering and tangling of the sensor cables. In the illustrated embodiment, the first sensor 170 can comprise an SpO2 sensor and the second sensor 172 can comprise a respiratory rate sensor. Types of sensor that can connect to the base 140 are not limiting. In some embodiments, the base 140 can include only one outlet configured for any type of physiological sensor. In some embodiments, the cable(s) of the one or two sensors can be permanently connected to the outlets of the base. The base and the sensors can be both disposable. As shown in FIGS. 1B and 1C, locations of the first and second sensors 170, 172 can be exchangeable so that the first sensor 170 is connected from the side of the second outlet 152 and the second sensor 172 is connected from the side of the first outlet 150.



FIGS. 1D-1I illustrate embodiments of the wireless patient monitoring device 10 having the first and second outlets 150, 152 on the same end of the base 140. Some or all of remaining features of the wireless patient monitoring device 10 in FIG. 1D-1I can have the same structural details as the wireless patient monitoring device described above. In addition, features of the patient monitoring device 10 in FIGS. 1D-1I can be incorporated into features of patient monitoring device illustrated in the subsequent figures and described below and features of the patient monitoring device illustrated in the subsequent figures and described below can be incorporated into features of patient monitoring device 10 as illustrated in FIGS. 1D-1I. In these embodiments, the first and second cables 174, 176 of the first and second sensors 170, 172, respectively, can extend from the first and second outlets, 150, 152 on the same end of the base 140. As shown in FIGS. 1D-1I, the first cable 174 can be positioned approximately 180° relative to a direction the outlet 150 faces so that when the device 10 is worn by the user, the first and second sensors 170, 172 can be located on opposite ends of the base 140. A skilled artisan will recognize that either one of the first and second cables 174, 176 can be positioned approximately 180° relative to a direction that the outlets 150, 152 face to make the first and second sensors 170, 172 on the opposite ends of the base 140. A skilled artisan will also recognize that either one or both of the first and second cables 174, 176 can be positioned in a direction about 90°, about 180°, or about 270°, or any other angles, relative to a direction that the outlets 150, 152 face, depending on the desired locations of the sensors. A skilled artisan will appreciate from the disclosure herein that one or more outlets can be positioned anywhere along a perimeter of the wireless patient monitoring device, or on any surface of the wireless patient monitoring device, or on any surface or sides of the base 140. If two or more outlets are positioned on one side or surface of the patient monitoring device 10 or base 140, the two or more outlets can be spread out based on, for example, desired positioning of the sensors. In some embodiments, the base 140 and the one or more sensors can be unitary such that the base and the one or more sensors can be a single disposable part.


To maintain the first sensor 170 on the opposite side of the base 140 from the second sensor 172, a cable management system, for example, a cord snapping feature 195 can be used to retain the cable 174 after it is positioned approximately 180° relative to the direction the outlet 150 faces. In the illustrated embodiment, the cable management system 195 can retain a portion of the first cable 174 by a snap fit, although methods of retaining the cable are not limiting. In addition to maintaining the position of the first sensor 170, the cable management system 195 can allow a length of the first cable 174 relative to the base 140 to be adjusted to prevent the first cable 174 from dangling about the patient's wrist or arm. A skilled artisan will recognize from the disclosure herein a wide range of mechanical mating or other mechanisms for positioning and managing the positions of the cables. FIG. 12 illustrates a patient wearing an example wireless patient monitoring device 1200 on the patient's wrist. In the illustrated embodiment, the device 1200 is connected to one sensor 1270. The sensor 1270 can be a pulse oximeter sensor and the patient can wear the sensor 1270 on the patient's fingertip, with the sensor cable or flex-circuit 1274 extending between the device 1200 and the sensor 1270. The device 1200 can include a cable management system described herein to retain a portion of the cable or flex-circuit 1274 and allow a length of the cable or flex-circuit 1274 to be adjustable. FIG. 13 illustrates a patient wearing an example wireless patient monitoring device 1300 on the patient's wrist. In the illustrated embodiment, the device 1300 is connected to a first sensor 1370 and a second sensor 1372. The first sensor 1370 can be a pulse oximeter sensor and the patient can wear the first sensor 1370 on the patient's fingertip. The second sensor 1372 can be an acoustic sensor and the patient can wear the second sensor 1372 near or around the patient's neck. As shown in FIG. 13, a cable management system 1395 can retain a portion of the sensor cable 1376 connecting the second sensor 1372 and the device 1300 and allow a length of the cable 1376 to be adjustable. The device 1300 can further include a cable management system described herein to retain a portion of the cable or flex-circuit 1374 connecting the first sensor 1370 and the device 1300, and allow a length of the cable or flex-circuit 1374 to be adjustable.


As shown in FIGS. 1D-1F, the cable management system 195 can be a slidable cord-snap component configured to slide along the first cable 174 and be snapped onto a slot 196 on the monitor instrument 110 to retain the first cable 174 relative to the monitor instrument 110. As shown in FIGS. 1G-1H, the cable management system 195 can be one or more cord snap features attached to, or be an integral part of the monitor instrument 110 or the base 140. In some embodiments, two or more cable management systems 195 can be located on the monitor instrument 110 or the base 140 to retain the first cable 174. In some embodiments, additional cable management systems can be available to retain both of the first and second cables 174, 176 and make the cable lengths between the patient monitoring device 10 and both the first and second sensors 170, 172 adjustable. A skilled artisan will recognize that the cable management systems can be located on any suitable locations of the wireless patient monitoring device 10.


Electrical connections of the sensor(s) to the monitor instrument 110 will now be described. With continued reference to FIGS. 2A-2B, the anterior surface 142 of the base 140 can include a pad 146 having a plurality of electrical contacts 147 on one side of the pad 146. The pad 146 can be a PCB. In some embodiments, the pad 146 can have one or more EEPROMs or other electronic components. Each EEPROM can store identification information of a sensor, schemes for validating the authenticity of the sensor, and other information relating to the sensor. The one or more EEPROMs or other electronic components can be on the same side or reverse side of the pad 146 that has the plurality of electrical contacts 147. FIGS. 2D-E illustrate some non-limiting examples of the pads. The pad 146 can be molded onto the anterior surface 142 of the base 140. The pad 146 can be disposable with the rest of the base 140. The electrical contacts 147 can be electrically connected to at least one electrical connector. The electrical connector(s) can include electronics configured for connecting to one or more of the sensors 170, 172. Specifically, the electrical contacts 147 can be electrically connected to the cables 174, 176 by soldering one or more wires of each cable to a group of soldering points on the pad 146. The group of soldering points can be on the same side or reverse side of the pad 146 that has the plurality of electrical contacts 147. Thus, the PCB advantageously facilitates electrical communication between conductors of the cables 174, 174 and the processing device(s) of the instrument 110. Specifically, in an embodiment, the processor communicates with pogo style electrical pins housed in the instrument 110. When seated or otherwise fixed to the base 140, the pogo pins form an electrical connection with the electrical contacts 147. The electrical contacts 147 are in electrical communication with soldering points 254, 256 (shown in FIG. 2E), and in some embodiments, one or more information elements like an EEPROM, which are in turn in electrical communication with conductors of one or more of the cables 174, 176. In an embodiment, this electrical pathway electrically bridges the instrument 110 to one or more of the sensors through the base 140.



FIG. 2D shows a pad 200 having one group of soldering points 204 on a first side 208 of the pad 200. The pad 200 can have a second side 212 opposite the first side 208 The second side 212 can include a plurality of electrical contacts 216 configured to contact the pins 117, for example, as shown in FIG. 2A. The second side 212 can have one or more EEPROMs or other electronic components 220. The plurality of electrical contacts 216 can be on a recessed surface due to a thickness of the one or more EEPROMs or other electronic components 220. The pins 117 can be configured to have a length suitable for contacted the electrical contacts 216 on the recessed surface. The pins 117 and the electrical contacts 216 can be surrounded by common projections to establish electrical connection between the pins 117 and the electrical contacts 216. In some embodiments, the one or more EEPROMs or other electronic components 220 can be located on the first side 208 so that the electrical contacts 216 can be flush with a surface of the second side 212 of the pad 200. Having the electrical contacts 216 flush with the surface of the second side 212 of the pad 200 can ensure adequate contacts between the pins 117 and the electrical contacts 216. In addition, soldering of the one or more EEPROMs or other electronic components 220 and the cable wires to the pad 200 can be done on the same side of the pad 200



FIG. 2E shows another pad 250 having two groups of soldering points 254, 256 on a first side 258 of the pad 250. The two groups of soldering points 254, 256 can be configured to each accommodate wires from a sensor cable. The first side 258 can have at least two EEPROMs or other electronic components 270 located between the two groups of soldering points 254, 256. The pad 250 can have a second side 262 opposite the first side 258. The second side 262 can include a plurality of electrical contacts 266 configured to contact the pins 117, for example, as shown in FIG. 2A. The electrical contacts 266 are flush with a surface of the second side 262 of the pad. As described above, having the electrical contacts 266 flush with the surface of the second side 262 of the pad 250 can ensure adequate contacts between the pins 117 and the electrical contacts 266. One advantage of soldering two sensor cables to the pad 250 to establish electrical connection between the sensor(s) and the monitor instrument is that the cable wires can flex in all directions, making it easy to position the sensor(s) relative to the monitoring device.


In some embodiments, the electrical connection of the sensors and the monitor instrument can include a hybrid connector to accommodate one sensor cable and one flex-circuit. One of the sensors, such as the sensor 170, can include a flex-circuit instead of being connected to conducting wires of a sensor cable. The plurality of electrical contacts for contacting the pins can be located on or an integral part of the flex circuit, which incorporates, for example, conductive traces instead of conductive wires. The flex circuit can include a stiffening part, such as a flat board, behind the electrical contacts. Stiffening the electrical contacts portion of the flex circuit can increase the rigidity of the electrical contacts, thereby ensuring adequate contact between the pins and the electrical contacts. The flex-circuit can include an extension having a group of soldering points. Cable wires of the sensor cable for connecting to a second sensor, such as the sensor 172, can be soldered onto the group of soldering points. The extension can optionally be supported by a stiffening board. Because of the flexibility of the flex-circuit, the extension having the group of soldering points can be folded under the electrical contacts or at other locations to expose the electrical contacts for contacting the pins. Additional details of the flex-circuit are described in U.S. application Ser. No. 13/951,313, filed on Jul. 25, 2013 and entitled “AUTOMATED ASSEMBLY SENSOR CABLE,” which is expressly bodily incorporated in its entirety and is part of this disclosure. An artisan will recognize from the disclosure herein that one or more cables, individual cables, or all cables could advantageously include one or more flex circuits.


In the illustrated embodiment, the plurality of electrical contacts 147 can be arranged in two rows and located in a center of the anterior surface 142 of the base 140 so as to be able to overlap with the pad 116 on the posterior surface 114 of the monitor instrument 110 as shown in FIG. 2A. One of ordinary skill in the art will appreciate from the disclosure herein that the number and arrangement of the pad 146 with the plurality of electrical contacts 147 are not limiting. For example and not by way of limiting, the anterior surface 142 of the base 140 can have four pads 146 with a plurality of electrical contacts 147, one on each corner of the substantially rectangular anterior surface 142 of the base 140, and the posterior surface 114 of the monitor instrument 110 can have four corresponding covers 116 with a plurality of pogo pins 117 on the four corners of the posterior surface 114 of the monitor instrument 110.


As described above, the cables 174, 176 can extend outside the base 140 at the outlets 150, 152, respectively. In some embodiments, the outlets 150, 152 can include the electrical connectors, such as mechanical plugs that are electrically connected to the electrical contacts 147. The first and second sensor cables 174, 176 can be plugged into the mechanical plugs. In some embodiments, the mechanical plug can include a phone plug or the like. Although two separate outlets are shown in the illustrative example, the wireless patient monitoring device 10 can include a single outlet with two plugs, or a multi-port connector configured for connecting to a plurality of sensors of different types and/or sizes.


When the monitor instrument 110 is removably engaged with the base 140, the posterior surface 114 of the monitor instrument 110 can overlap with the anterior surface 142 of the base 140. The pogo pins 117 on the monitor instrument 110 can come into contact with the electrical contacts 147 on the base 140, thereby establishing electrical connections between the printed circuit boards inside the monitor instrument 110 and the sensors 170, 172. In some embodiments, when the posterior surface 114 of the monitor instrument 110 comes into close proximity with the anterior surface 142 of the base 140, the pogo pins 117 can retract into the pogo pin holes while still maintaining electrical connection with the electrical contacts 147. The electrical connection between the monitor instrument 110 and the sensors 170, 172 can allow the sensors 170, 172 connected to the base 140 to communicate with and send sensor data to the monitor instrument 110. Having the electrical contacts for the pogo pins on the base can advantageously reduce a size of a connector between a sensor and a monitor, or between a sensor and a sensor cable, and make the connecting structures less bulky. The less bulky connecting structures can advantageously provide more comfort to the patient. One of ordinary skill in the art will also appreciate from the disclosure herein that types of electrical connectors other than pogo pin connectors can be used to electrically connect monitor instrument 110 and the base 140.


As shown in FIGS. 1F, 2F, and 3A, the base 140 can include one or more strap connectors 156 for engaging the strap 160. The strap connector 156 can be an integral portion of the base 140 or a separately formed component secured to the base 140 mechanically, or via adhesives or welding, or the like. The strap connector 156 can form an opening 157 with the posterior surface of the base 140. The strap 160 can pass through the opening 157 to be secured to the base 140. As shown in FIGS. 1F and 2F, the base 140 can have two strap connectors 156 on opposite ends across a width of the base 140.


The strap 160 can include any fabric, elastic, or otherwise flexible material. In certain embodiments, the strap 160 can be waterproof. One or both ends of the strap 160 can be tapered. One or both ends of the strap 160 can include a covering to protect the strap ends. The strap 160 can be secured to the patient's wrist as a wristband, or in any other configuration. A portion of the strap 160 can be secured to another portion of the strap 160 using Velcro, clasps, adhesive, snap-fits, or any other connector. The strap 160 can include any or all of the features of the strap described in U.S. application Ser. No. 13/762,270, filed Feb. 7, 2013, titled “Wireless Patient Monitoring Device,” the disclosure of which is hereby incorporated by reference in its entirety. In an embodiment, the strap can include a foam or posy wrap type material common in securing mechanisms for patient sensor, such as neonate or infant sensors. Each physiological sensor, such as one of the sensors 170, 172, can include its own sensor attachment mechanism separate from the base 140 and the strap 160. The sensor attachment mechanism can be configured to removably secure the physiological sensor to a measurement site on the patient. Each sensor can include a sensor positioner configured to position the sensor with respect to the measurement site on the patient. In an embodiment, the sensor attaches using an adhesive layer. Other embodiments will be known to an artisan from the disclosure herein, including, for example, a Posey wrap, Velcro, tape, mechanical couplings generally having a closed bias to grip or otherwise stick to a measurement site, or other commercially available attachments.


Providing the patient monitoring device 10 wearable on the wrist can advantageously allow the patient to easily check the patient's physiological state or parameters by looking at the display screen of the monitor. Other advantages of the wearable patient monitoring device 10 include reducing clutter of cables, improving patient mobility by eliminating some or all of the cables.


In some embodiments, the patient monitoring device can removably connect to a sensor via a sensor cable connector. Examples of such patient monitoring devices are shown in FIGS. 5A-11D. In these embodiments, the sensor cable connector can extend from the reusable monitor instrument and the disposable base can include no electrical components. As shown in FIGS. 5A-7E, the patient monitoring device 50 can have features of the patient monitoring device 10 of FIGS. 1A-2B except as described below. Accordingly, features of the patient monitoring device 50 can be incorporated into features of patient monitoring device 10 and features of the patient monitoring device 10 can be incorporated into features of patient monitoring device 50. The monitor instrument 510, the base 540, and the strap 560 can operate in the same or similar manner to the operation of the monitor instrument 110, the base 140, and the strap 160 described above.


As shown in FIGS. 5A and 6A, the monitor instrument 510 and the base 540 can both have round outer shapes. The base can have a corresponding round outer shape. In some embodiments, such as shown in FIG. 6F, the base can have a corresponding round outer shape with two flat sides along a length of the strap. The two flat sides can reduce a foot print of the base when the device is worn by the patient, thereby making the device more comfortable to wear. In other embodiments, such as shown in FIGS. 5F and 7E, the monitor instrument 510 and the base 540 can have a square or rectangular outer shape. The monitor instrument 510 can have a cable outlet 580 on a side wall of the monitor instrument 510. A sensor connector cable 582 can extend from the cable outlet 580. In some embodiments, the sensor connector cable 582 can be permanently coupled to the cable outlet 580. The sensor connector cable 582 can be electrically connected to an electrical circuit in the monitor instrument 510. The sensor connector cable 582 can terminate on a free end at a sensor cable connector 584. In some embodiments, the sensor cable connector 584 can comprise pogo pin connectors. Types and methods of electrically connecting the sensor cable connector 584 and a sensor are not limiting. A sensor (shown in FIGS. 10A-B) removably connected to the sensor cable connector 584 can send sensor data to the monitor instrument 510.


Also as shown in FIGS. 5A and 6A, the base 540 can have an opening 590 for engaging, and mechanically and removably mating with a complementary protruding portion on the posterior surface of the monitor instrument 510. The opening 590 can have an irregular shape configured for rotationally retaining the monitor instrument 510. In the illustrated embodiment, the opening 590 can have an outer shape of two substantially rectangular shapes overlapping with each other, one of the substantially rectangular shapes being generally perpendicular with the other one of the substantially rectangular shapes. The base 540 can optionally have one or more open slots 592 to aid the positioning and engagement between the base 540 and the monitor instrument 510. The complementary protruding portion on the monitor instrument 510 can pass through the opening 590 when a length of the protruding portion aligns with the length of the open 590 and a width of the protruding portion aligns with the width of the opening 590. The monitor instrument 510 can then be turned clockwise or anticlockwise about a quarter of a turn to secure the monitor instrument 510 to the base 540. As shown in FIG. 5A, when the monitor instrument 510 is engaged with the base 540, the cable outlet 580 can be pointing away from the strap 560 and substantially parallel to a width of the strap 560. This configuration of the cable outlet 580 can advantageously prevent the sensor connector cable 582 from contacting the strap 560 near the cable outlet 580, which can cause stress to and early failure of the sensor connector cable 582. This configuration can also allow the patient's wrist to move freely without being hindered by the sensor connector cable 582 extending from the cable outlet 580. FIGS. 6B-E illustrate reverse steps for removing the monitor instrument 510 from the base 540, such as by rotating the monitor instrument 510 anticlockwise or clockwise about a quarter of a turn so that a length of the protruding portion can align with the length of the open 590 and a width of the protruding portion can align with the width of the opening 590.


With continued reference to FIGS. 5A-6E, the base 540 can have a cord snap feature 595 similar to the cord snap feature 195 described above. The cord snap feature can be on a circumference of the base 540. The cord snap feature 595 can retain a portion of the sensor connector cable 582 and prevent the sensor connector cable 582 from dangling about the patient's wrist or arm. In the illustrated embodiment, the cord snap feature 595 can retain a portion of the sensor connector cable 582 by a snap fit, although methods of retaining the sensor connector cable 582 are not limiting. As shown in FIGS. 5A-6E, the cord snap feature 595 can be located along the width of the strap 560. The cord snap feature 595 can also be located substantially 90° from the cable outlet 580 when the monitor instrument 510 engages the base 540. The configuration of the cord snap feature 595 can advantageously allow the sensor connector cable 582 to be snapped on the cord snap feature 595 without having to make sharp turns. The configuration of the cord snap feature 595 can also advantageously allow the sensor connector cable 582 to run substantially parallel to the patient's arm when the patient wears the patient monitoring device 50 on her wrist.


As shown in FIGS. 7A-E, the cord snap feature 595 can be about 90° clockwise from the cable outlet 580 or about 90° counterclockwise from the cable outlet 580 when the monitor instrument 510 engages the base 540. These alternative configurations of the cord snap feature 595 can advantageously aid in the ergonomics of the device and cable management, and can accommodate both patients who prefer to wear the monitoring device 50 on the left wrist and patients who prefer to wear the monitoring device 50 on the right wrist. However, an artisan will recognize from the disclosure herein that the snap feature 595 can be in virtually any position with respect to the outlet 580 that provides for reduced clutter, better positioning of the sensor, reduced mechanical stress on the cable or cable connectors, or reduces pinching of the cable, or any other advantageous.



FIGS. 8A-9B illustrate embodiments of the patient monitoring device 80A, 80B. The patient monitoring devices 80A, 80B can have features of the patient monitoring device 50 except as described below. Accordingly, features of the patient monitoring devices 80A, 80B can be incorporated into features of patient monitoring device 50 and features of the patient monitoring device 50 can be incorporated into features of patient monitoring devices 80A, 80B. The monitor instrument 810, the bases 840B, and the strap 560B as shown in FIGS. 9A-B can operate in the same or similar manner to the operation of the monitor instrument 510, the base 540, and the strap 560 described above. The monitor instrument 810 can be configured to be compatible with both the bases 840A, 840B such that the patient can choose between wearing the device 80A around the neck, or wearing the device 80B on a wrist or arm.


As shown in FIGS. 8A-B, the base 840A of the patient monitoring device 80A can be connected to a cord 860A instead of the strap 860B. The cord 860A can be worn around the patient's neck. The cord 860A can advantageously allow the patient monitoring device 80A to be coupled with an in-ear and/or nose sensor (not shown) without requiring a long cable connecting the in-ear and/or nose sensor and the base 860A. Although the cord is described in connection with embodiments of the monitor instrument including a sensor cable connector, the cord can also be incorporated into embodiments of the patient monitoring device 10 described above such that the base 140 can be connected to a cord instead of being connected to the strap 160.


As shown in FIG. 10A-B, the bases 840A, 840B can both be compatible with the monitor instrument 810. For example, the bases 840A, 840B can have the same coupling features for engaging the monitor instrument 810 as described above. Accordingly, the same monitor instrument 810 can removably engage either the base 840B for wearing the patient monitoring device 80B on the wrist or the base 840A for wearing the patient monitoring device 80A around the neck. Interchangeability between the bases 840A, 840B can advantageously allow the monitor instrument 810 to be used with various types of the sensors depending on where the sensors need to be located on the patient's body.


Turning to FIGS. 11A-D, another embodiment of the patient monitoring device 100 is shown. The patient monitoring device 100 can have features of the patient monitoring device 50 except as described below. Accordingly, features of the patient monitoring device 100 can be incorporated into features of patient monitoring device 50 and features of the patient monitoring device 50 can be incorporated into features of patient monitoring device 100. The monitor instrument 1010, the bases 1040, and the strap 1060 as shown in FIGS. 11A-D can operate in the same or similar manner to the operation of the monitor instrument 510, the base 540, and the strap 560 described above.


As shown in FIG. 11A, the monitor instrument 1010 of the patient monitoring device 100 can have four sides. There can be two sliding channels 1090 on two opposing sides. In the illustrated embodiment, the sliding channels 1090 can be located on the sides that do not have a cable outlet or other types of connection features. The base 1040 can have corresponding protrusions (not shown) along two opposing sides of the base 1040. The sliding channels 1090 can accommodate the protrusions on the base 1040 so that the monitor instrument 1010 can slide onto the base 1040. FIGS. 11B-D show that the monitor instrument 1010 and the base 1040 can slide relative to each other in two directions as indicated by the arrows. In some embodiments, the sliding channels 1090 and the protrusions can have a friction fit or other types of tolerances so that the monitor instrument 1010 stays on the base 1040 without an external force along the directions of sliding shown in FIGS. 11B-D. This sliding configuration can advantageously prevent inadvertent rotation of the monitor instrument 1010 during use. In some embodiments, the protrusions on the base 1040 can be snap-fitted into the sliding channels and the sliding channels 1090 can have two closed ends to prevent the protrusions on the base 1040 from disengaging the sliding channels 1090. The protrusions can be configured to slide along the sliding channels 1090 during use such that when the patient rotates her wrist or arm, the monitor instrument 1010 can slide back and forth along the sliding channels. The slidable monitor instrument 1010 can increase the ergonomics of the device. A skilled artisan will recognize from the disclosure herein that other types of sliding mechanisms can be used, such as a sliding rail/channel on the monitor instrument 1010 or the base 1040 with two closed ends and one or more corresponding mushroom tabs on the base 1040 or the monitor instrument 1010.


Although this disclosure has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the disclosure and obvious modifications and equivalents thereof. In addition, while a number of variations of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. Additionally, as used herein, “gradually” has its ordinary meaning (e.g., differs from a non-continuous, such as a step-like, change).


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, the scope of the present disclosure is not limited to parameters measurable by a pulse oximeter sensor and an acoustic sensor. The wireless patient monitoring system described herein can include sensor additions or substitutions to these sensors. The sensor additions or substitutions can be configured to monitor one or more of capnography, blood pressure, ECG, EEG, electrolytes, brain function/activity, patient turning, patient fall detection, patient location, and the like. The wireless patient monitoring system can also output to a multi-parameter monitor, or a regular patient monitor, or be configured to control signals for other devices, such as infusion pumps, oxygen supply, respiratory apparatuses, and the like. Connection between the wireless patient monitoring system and the multi-parameter monitor, regular patient monitor, or other devices can be via cable, via wireless technology, or both.

Claims
  • 1. A patient monitoring device configured to be removably secured to a patient, the patient monitoring device comprising: a physiological sensor configured to be removably coupled to a finger of the patient;a cable comprising a first end coupled to the physiological sensor and a second end opposite the first end;a strap configured to secure to a wrist of the patient;a base coupled to the strap, the base comprising: a first side, a second side opposite the first side, a third side, a fourth side opposite the third side, a bottom surface positioned adjacent said strap and configured to face toward the patient's wrist, and a top surface configured to face away from the patient's wrist, wherein the first side is positioned closer to the patient's finger than the second side when the base and strap are secured to the patient's wrist, and wherein the second end of the cable is integrally formed with and extends outward from the second side of the base;one or more electrical contacts operably positioned by or near the top surface of the base; anda cable retainer arranged along the third side of the base and configured to at least partially surround and secure a portion of the cable; anda monitor instrument configured to removably couple to the base and receive one or more signals from the physiological sensor via the base;wherein, when the monitor instrument is coupled to the base, the strap and base are secured to the patient's wrist, the cable is secured within the cable retainer, and the physiological sensor is coupled to the patient's finger, the cable: extends away from the second side towards an elbow of the patient; loops 180 degrees towards the patient's finger; and extends to the physiological sensor coupled to the patient's finger.
  • 2. The patient monitoring device of claim 1, wherein the physiological sensor is configured to measure a plurality of physiological parameters.
  • 3. The patient monitoring device of claim 1, wherein the physiological sensor is configured to measure a blood oxygen saturation of the patient.
  • 4. The patient monitoring device of claim 1, wherein the monitor instrument is configured to wirelessly communicate with a display device.
  • 5. The patient monitoring device of claim 1, wherein the monitor instrument comprises a display screen.
  • 6. The patient monitoring device of claim 1, wherein the monitor instrument is configured to process said one or more signals received from the physiological sensor to determine a blood oxygen saturation value of the patient.
  • 7. The patient monitoring device of claim 1, wherein the physiological sensor includes an optical sensor comprising: one or more emitters configured to emit optical radiation into tissue of the patient's finger; andone or more detectors configured to detect at least a portion of the optical radiation emitted from the one or more emitters after passing through the tissue of the patient's finger and output at least one signal responsive to the detected optical radiation;wherein said one or more signals received from the physiological sensor include said at least one signal responsive to the detected optical radiation outputted by said one or more detectors.
  • 8. The patient monitoring device of claim 7, wherein the physiological sensor is configured to operably position said one or more emitters and said one or more detectors at opposite sides of the patient's finger.
  • 9. The patient monitoring device of claim 1, wherein the monitor instrument is configured to wirelessly communicate with an external device.
  • 10. The patient monitoring device of claim 1, wherein the physiological sensor comprises an adhesive layer configured to removably couple the physiological sensor to the finger of the patient.
  • 11. The patient monitoring device of claim 1, wherein the base comprises one or more strap connectors configured to couple the base to the strap.
  • 12. The patient monitoring device of claim 11, wherein each of said one or more strap connectors forms an opening with the bottom surface of the base, said opening configured to receive a portion of the strap therethrough.
  • 13. The patient monitoring device of claim 1, wherein the monitor instrument comprises one or more recesses and the base comprises one or more tabs, said one or more recesses configured to removably engage said one or more tabs when the monitor instrument removably couples to the base.
  • 14. The patient monitoring device of claim 13, wherein each of said one or more recesses comprises an indent and each of said one or more tabs comprises a protrusion, said indent configured to receive said protrusion when said one or more recesses removably engage said one or more tabs.
  • 15. The patient monitoring device of claim 1, wherein the monitor instrument comprises one or more electrical contacts operably positioned by or near a bottom surface thereof, said bottom surface of the monitor instrument configured to face toward the top surface of the base.
  • 16. The patient monitoring device of claim 15, wherein the one or more electrical contacts of the monitor instrument comprise a plurality of pogo pins configured to electrically couple with the one or more electrical contacts of the base when the monitor instrument is coupled to the base.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/813,551, filed Mar. 9, 2020, titled WEARABLE PULSE OXIMETER AND RESPIRATION MONITOR, which is a continuation of U.S. patent application Ser. No. 15/644,152, filed Jul. 7, 2017, titled WEARABLE PULSE OXIMETER AND RESPIRATION MONITOR, now issued as U.S. Pat. No. 10,617,302, which claims the benefit of U.S. Provisional Application No. 62/359,589, filed Jul. 7, 2016, titled WEARABLE PULSE OXIMETER AND RESPIRATION MONITOR; and U.S. Provisional Application No. 62/463,331, filed Feb. 24, 2017, titled WEARABLE PULSE OXIMETER AND RESPIRATION MONITOR. Each of the foregoing applications is hereby incorporated by reference herein in its entirety.

US Referenced Citations (2121)
Number Name Date Kind
3646606 Buxton et al. Feb 1972 A
3690313 Weber et al. Sep 1972 A
3810102 Parks, III et al. May 1974 A
3815583 Scheidt Jun 1974 A
3972320 Kalman Aug 1976 A
3978849 Geneen Sep 1976 A
4108166 Schmid Aug 1978 A
4129125 Lester et al. Dec 1978 A
4226006 Toyama Oct 1980 A
4231354 Kurtz et al. Nov 1980 A
D265508 Rusteberg Jul 1982 S
D268300 Richards Mar 1983 S
4589415 Haaga May 1986 A
4662378 Thomis May 1987 A
4815172 Ward et al. Mar 1989 A
4838275 Lee Jun 1989 A
4852570 Levine Aug 1989 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4966154 Cooper et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5092340 Yamaguchi et al. Mar 1992 A
5140519 Friesdorf et al. Aug 1992 A
5159932 Zanetti et al. Nov 1992 A
5161539 Evans et al. Nov 1992 A
5163438 Gordon et al. Nov 1992 A
5262944 Weisner et al. Nov 1993 A
5277189 Jacobs Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5282474 Valdes Sosa et al. Feb 1994 A
5296688 Hamilton et al. Mar 1994 A
5318037 Evans et al. Jun 1994 A
5319355 Russek Jun 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5348008 Bornn et al. Sep 1994 A
5358519 Grandjean Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5375599 Schimizu Dec 1994 A
5375604 Kelly Dec 1994 A
5377676 Vari et al. Jan 1995 A
D356441 Scheller Mar 1995 S
5400794 Gorman Mar 1995 A
D357982 Dahl et al. May 1995 S
5416695 Stutman et al. May 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5434611 Tamura Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483968 Adam et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494041 Wilk Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503149 Beavin Apr 1996 A
5505202 Mogi et al. Apr 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5537289 Dahl Jul 1996 A
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5566676 Rosenfeldt et al. Oct 1996 A
5566678 Rosenfeldt et al. Oct 1996 A
5576952 Stutman et al. Nov 1996 A
5579001 Dempsey et al. Nov 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619991 Sloane Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5640967 Fine et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5685314 Geheb et al. Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5694020 Lang Dec 1997 A
5724580 Levin et al. Mar 1998 A
5724983 Selker et al. Mar 1998 A
5725308 Smith et al. Mar 1998 A
5726440 Kalkhoran et al. Mar 1998 A
5734739 Sheehan et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758079 Ludwig et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5782805 Meinzer Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5801637 Lomholt Ole Sep 1998 A
5810734 Caro et al. Sep 1998 A
5813403 Soller et al. Sep 1998 A
5822544 Chaco et al. Oct 1998 A
5822546 George Oct 1998 A
5823950 Diab et al. Oct 1998 A
5829723 Brunner Nov 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5855550 Lai et al. Jan 1999 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
D406001 Nemeth Feb 1999 S
5876351 Rohde Mar 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5910139 Cochran et al. Jun 1999 A
5919134 Diab Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5924074 Evans Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931791 Saltzstein et al. Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5941836 Friedman Aug 1999 A
5942986 Shabot et al. Aug 1999 A
D415892 Angus et al. Nov 1999 S
5987343 Kinast Nov 1999 A
5987519 Peifer et al. Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6006119 Soller et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014346 Malone Jan 2000 A
6018673 Chin et al. Jan 2000 A
6024699 Surwit et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6032678 Rottem Mar 2000 A
6035230 Kang et al. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6036718 Ledford et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6045527 Appelbaum et al. Apr 2000 A
6057758 Dempsey et al. May 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6101478 Brown Aug 2000 A
6106463 Wilk Aug 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6129686 Friedman Oct 2000 A
6132218 Benja-Athon Oct 2000 A
6139494 Cairnes Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6167258 Schmidt et al. Dec 2000 A
D437058 Gozani Jan 2001 S
6168563 Brown Jan 2001 B1
6171237 Avitall et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6183417 Gehab et al. Feb 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6185448 Borovsky Feb 2001 B1
6195576 John Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6221012 Maschke et al. Apr 2001 B1
6224553 Nevo May 2001 B1
6229856 Diab et al. May 2001 B1
6230142 Benigno et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6251113 Appelbaum Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6267723 Matsumura et al. Jul 2001 B1
6269262 Kandori et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
D449304 Herath Oct 2001 S
D449617 Herath Oct 2001 S
6301493 Marro et al. Oct 2001 B1
6304767 Soller et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6317627 Ennen et al. Nov 2001 B1
6319205 Goor et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6322515 Goor et al. Nov 2001 B1
D452495 Murnaghan et al. Dec 2001 S
D452496 Murnaghan et al. Dec 2001 S
6325761 Jay Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6338039 Lonski et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6352504 Ise Mar 2002 B1
6354235 Davies Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
D456074 McCurry Apr 2002 S
6364834 Reuss et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6385476 Osadchy et al. May 2002 B1
6385589 Trusheim et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6407335 Franklin-Lees Jun 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6461305 Schnall Oct 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470893 Boesen Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6488633 Schnall Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6517967 Shrim et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6524240 Thede Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
D471354 Daniels Mar 2003 S
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6578428 Dromms et al. Jun 2003 B1
6580086 Schulz et al. Jun 2003 B1
6582393 Sage, Jr. Jun 2003 B2
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6616606 Peterson et al. Sep 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
D481537 Vaughn Nov 2003 S
6641533 Causey et al. Nov 2003 B2
6643530 Diab et al. Nov 2003 B2
6646556 Smith et al. Nov 2003 B1
6650917 Diab et al. Nov 2003 B2
6650939 Takpke, II et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
D483872 Cruz et al. Dec 2003 S
D483939 Kountz et al. Dec 2003 S
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6663570 Mott et al. Dec 2003 B2
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694180 Boesen Feb 2004 B1
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719694 Weng et al. Apr 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6725086 Marinello Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6746406 Lia et al. Jun 2004 B2
6750463 Riley Jun 2004 B1
6751492 Ben-haim Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6766188 Soller Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6783492 Dominguez Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6790178 Mault et al. Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6795724 Hogan Sep 2004 B2
6796186 Lia et al. Sep 2004 B2
6804656 Rosenfeld Oct 2004 B1
6807050 Whitehorn et al. Oct 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6817979 Nihtila et al. Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6841535 Divita et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6855112 Kao et al. Feb 2005 B2
6860266 Blike Mar 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6897788 Khair et al. May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6907237 Dorenbosch et al. Jun 2005 B1
6915149 Ben-haim Jul 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939304 Schnall et al. Sep 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
D510186 Bell Oct 2005 S
6952340 Son Oct 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6980419 Smith et al. Dec 2005 B2
6983179 Ben-haim Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6997884 Ulmsten Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7004907 Banet et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7025729 De Chazal et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7033761 Shafer Apr 2006 B2
7035686 Hogan Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7044930 Stromberg May 2006 B2
7048687 Reuss et al. May 2006 B1
7063666 Weng et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7079035 Bock et al. Jul 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529029 Sekine Sep 2006 S
D529283 Vivar et al. Oct 2006 S
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7179228 Banet Feb 2007 B2
7186966 Al-Ali Mar 2007 B2
7188621 DeVries et al. Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7208119 Kurtock et al. Apr 2007 B1
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7229415 Schwartz Jun 2007 B2
7238159 Banet et al. Jul 2007 B2
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7241287 Shehada et al. Jul 2007 B2
7244251 Shehada et al. Jul 2007 B2
7245373 Soller et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7252659 Shehada et al. Aug 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7256708 Rosenfeld Aug 2007 B2
7261697 Berstein Aug 2007 B2
7264616 Shehada et al. Sep 2007 B2
7267671 Shehada et al. Sep 2007 B2
7268859 Sage, Jr. et al. Sep 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7285090 Stivoric Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7298938 Johnston Nov 2007 B2
7307543 Rosenfeld Dec 2007 B2
7313423 Griffin et al. Dec 2007 B2
7314446 Byrd et al. Jan 2008 B2
7315825 Rosenfeld Jan 2008 B2
7321862 Rosenfeld Jan 2008 B2
7322971 Shehada et al. Jan 2008 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7336187 Hubbard, Jr. et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356178 Ziel et al. Apr 2008 B2
7356365 Schurman Apr 2008 B2
7361155 Sage, Jr. et al. Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7378975 Smith et al. May 2008 B1
7382247 Welch et al. Jun 2008 B2
7383070 Diab et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7395216 Rosenfeld Jul 2008 B2
7396330 Banet et al. Jul 2008 B2
7411509 Rosenfeld Aug 2008 B2
7413546 Agutter et al. Aug 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7419483 Shehada Sep 2008 B2
7428432 Ali et al. Sep 2008 B2
7433827 Rosenfeld Oct 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7439856 Weiner et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7454359 Rosenfeld Nov 2008 B2
7454360 Rosenfeld Nov 2008 B2
D582043 Koike et al. Dec 2008 S
7462151 Childre et al. Dec 2008 B2
7467002 Weber et al. Dec 2008 B2
7467094 Rosenfeld Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7475019 Rosenfeld Jan 2009 B2
7481772 Banet Jan 2009 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489250 Bock et al. Feb 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7497828 Wilk et al. Mar 2009 B1
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7515043 Welch et al. Apr 2009 B2
7515044 Welch et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7532919 Soyemi et al. May 2009 B2
7549961 Hwang Jun 2009 B1
7551717 Tome et al. Jun 2009 B2
D596635 Owens et al. Jul 2009 S
D597093 Neu et al. Jul 2009 S
7559520 Quijano et al. Jul 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7577475 Consentino et al. Aug 2009 B2
7588558 Sage, Jr. et al. Sep 2009 B2
7590950 Collins et al. Sep 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7597665 Wilk et al. Oct 2009 B2
7606608 Blank et al. Oct 2009 B2
7612999 Clark et al. Nov 2009 B2
7616303 Yang et al. Nov 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7639145 Lawson et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
7650291 Rosenfeld Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
7654966 Westinskow et al. Feb 2010 B2
7658716 Banet et al. Feb 2010 B2
7661976 Ma Feb 2010 B2
7684845 Juan Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
RE41236 Seely Apr 2010 E
D614305 Al-Ali et al. Apr 2010 S
7693697 Westinskow et al. Apr 2010 B2
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7722542 Lia et al. May 2010 B2
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7736318 Consentino et al. Jun 2010 B2
7740590 Bernstein Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7763420 Strizker et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621515 Chua et al. Aug 2010 S
D621516 Kiani et al. Aug 2010 S
7766818 Iketani et al. Aug 2010 B2
7774060 Westenskow et al. Aug 2010 B2
7778851 Schoenberg et al. Aug 2010 B2
7791155 Diab Sep 2010 B2
7794407 Rothenberg Sep 2010 B2
7801581 Diab Sep 2010 B2
7803120 Banet et al. Sep 2010 B2
7806830 Bernstein Oct 2010 B2
7820184 Strizker et al. Oct 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7831450 Schoenberg Nov 2010 B2
7841986 He et al. Nov 2010 B2
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
D628795 Sanders Dec 2010 S
D628797 Kalbach Dec 2010 S
7848935 Gotlib Dec 2010 B2
7858322 Tymianski et al. Dec 2010 B2
7865222 Weber et al. Jan 2011 B2
7865232 Krishnaswamy et al. Jan 2011 B1
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7881892 Soyemi et al. Feb 2011 B2
7884314 Hamada Feb 2011 B2
7890156 Ooi et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7914514 Calderon Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7942691 McSweyn May 2011 B1
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7963927 Kelleher et al. Jun 2011 B2
7967749 Hutchinson et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7988639 Starks Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
7991463 Kelleher et al. Aug 2011 B2
7991625 Rosenfeld Aug 2011 B2
7993275 Banet et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8027846 Schoenberg Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8033996 Behar Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8036736 Snyder et al. Oct 2011 B2
8038625 Afonso et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
8068104 Rampersad Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
D652379 Vandiver Jan 2012 S
8094013 Lee et al. Jan 2012 B1
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
D659836 Bensch et al. May 2012 S
8170887 Rosenfeld May 2012 B2
8175672 Parker May 2012 B2
8175895 Rosenfeld May 2012 B2
8180420 Diab et al. May 2012 B2
8180440 McCombie et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8200308 Zhang et al. Jun 2012 B2
8200321 McCombie et al. Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8206312 Farquhar Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8235907 Wilk et al. Aug 2012 B2
8239010 Banet et al. Aug 2012 B2
8239780 Manetta et al. Aug 2012 B2
8241213 Lynn et al. Aug 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8249815 Taylor Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
D669375 Kao et al. Oct 2012 S
8280473 Al-Ali Oct 2012 B2
8294588 Fisher et al. Oct 2012 B2
8294716 Lord et al. Oct 2012 B2
8295521 Chan et al. Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8311747 Taylor Nov 2012 B2
8311748 Taylor et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
8315812 Taylor Nov 2012 B2
8315813 Taylor et al. Nov 2012 B2
8315814 Taylor et al. Nov 2012 B2
8321004 Moon et al. Nov 2012 B2
8321150 Taylor Nov 2012 B2
RE43860 Parker Dec 2012 E
8326649 Rosenfeld Dec 2012 B2
8328793 Birkenbach Dec 2012 B2
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8360936 Dibenedetto et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8364250 Moon et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
D677792 Vandiver Mar 2013 S
D679018 Fullerton et al. Mar 2013 S
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8401874 Rosenfeld Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8419649 Banet et al. Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
D682835 Daniel May 2013 S
8437824 Moon et al. May 2013 B2
8437825 Dalvi et al. May 2013 B2
8442607 Banet et al. May 2013 B2
8449469 Banet et al. May 2013 B2
D683960 Robbins et al. Jun 2013 S
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
D685189 Adelman et al. Jul 2013 S
8475370 McCombie et al. Jul 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8485448 Maizlin et al. Jul 2013 B2
8489167 Buxton Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8506480 Banet et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8527038 Moon et al. Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8545417 Banet et al. Oct 2013 B2
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8554297 Moon et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8565847 Buxton et al. Oct 2013 B2
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8574161 Banet et al. Nov 2013 B2
8577431 Lamego et al. Nov 2013 B2
8578082 Medina et al. Nov 2013 B2
8579813 Causey Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8588924 Dion Nov 2013 B2
8591411 Banet et al. Nov 2013 B2
8594776 McCombie et al. Nov 2013 B2
8597287 Benamou et al. Dec 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8600777 Schoenberg Dec 2013 B2
8602997 Banet et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8620678 Gotlib Dec 2013 B2
D697626 Laplante et al. Jan 2014 S
8622922 Banet et al. Jan 2014 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8672854 McCombie et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
D703671 Hackett et al. Apr 2014 S
8688183 Bruinsma et al. Apr 2014 B2
8690771 Wekell et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8727977 Banet et al. May 2014 B2
8738118 Moon et al. May 2014 B2
D706752 Myung et al. Jun 2014 S
8740792 Kiani et al. Jun 2014 B1
8740802 Banet et al. Jun 2014 B2
8740807 Banet et al. Jun 2014 B2
8747330 Banet et al. Jun 2014 B2
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8758045 McSweyn Jun 2014 B2
8761850 Lamego Jun 2014 B2
D709846 Oswaks Jul 2014 S
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8808188 Banet et al. Aug 2014 B2
8818477 Soller Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
D715667 Shigeno et al. Oct 2014 S
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8866620 Amir Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8873035 Yang et al. Oct 2014 B2
D717309 Govindarajan Nov 2014 S
8878888 Rosenfeld Nov 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888700 Banet et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
D719668 Cien et al. Dec 2014 S
D719860 Just et al. Dec 2014 S
8907287 Vanderpohl Dec 2014 B2
8909310 Lamego et al. Dec 2014 B2
8909330 McCombie et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8956292 Wekell et al. Feb 2015 B2
8956293 McCombie et al. Feb 2015 B2
8956294 McCombie et al. Feb 2015 B2
8965471 Lamego Feb 2015 B2
8979765 Banet et al. Mar 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
D728230 Oas May 2015 S
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9055928 McCombie et al. Jun 2015 B2
9057689 Soller Jun 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
D733598 Just et al. Jul 2015 S
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095291 Soller Aug 2015 B2
9095316 Welch et al. Aug 2015 B2
9104789 Gross et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
D741865 Sundermeyer et al. Oct 2015 S
9149192 Banet et al. Oct 2015 B2
9149228 Kinast Oct 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161700 Banet et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
D744109 Yoneta et al. Nov 2015 S
9173593 Banet et al. Nov 2015 B2
9173594 Banet et al. Nov 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
D745167 Canas et al. Dec 2015 S
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9215986 Banet et al. Dec 2015 B2
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9248299 Toy et al. Feb 2016 B2
9259185 Abdul-Hafiz et al. Feb 2016 B2
9262586 Steiger et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307915 McCombie et al. Apr 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9318840 Siev et al. Apr 2016 B2
9323894 Kiani Apr 2016 B2
D755183 Patel et al. May 2016 S
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339209 Banet et al. May 2016 B2
9339211 Banet et al. May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364158 Banet et al. Jun 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9380952 Banet et al. Jul 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
D765083 Breitweiser et al. Aug 2016 S
9408542 Kinast et al. Aug 2016 B1
9408573 Welch et al. Aug 2016 B2
9436645 Al-Ali et al. Sep 2016 B2
9439574 McCombie et al. Sep 2016 B2
9443059 Grubis Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
D769973 Benoni Oct 2016 S
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
D771057 Wurts et al. Nov 2016 S
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9480846 Strother et al. Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9529762 Gisler et al. Dec 2016 B2
D776664 Hendrick Jan 2017 S
D776916 Yeruva et al. Jan 2017 S
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
D782483 Patel et al. Mar 2017 S
9591975 Dalvi et al. Mar 2017 B2
D783170 Carreon et al. Apr 2017 S
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9706964 Ferber et al. Jul 2017 B2
D794807 Kranz et al. Aug 2017 S
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
D803841 Kim et al. Nov 2017 S
D803842 Daniel Nov 2017 S
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
D804413 McSweyn et al. Dec 2017 S
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
D808641 Clover et al. Jan 2018 S
D809147 Coonahan et al. Jan 2018 S
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9866255 Ketter-Muldrow Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872481 Goldfain Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9883800 Pekander Feb 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
D812229 Al-Siddiq Mar 2018 S
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9973534 Mahaffey et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
D829574 Mane et al. Oct 2018 S
D831462 McSweyn et al. Oct 2018 S
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
10130306 Katra et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Kiani et al. Jan 2019 B1
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226215 Cohrs et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
D850628 De Hoog et al. Jun 2019 S
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10374350 Nakazono et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
D874657 Bailey et al. Feb 2020 S
10555678 Dalvi et al. Feb 2020 B2
10560532 Yang et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
D881889 Wang et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
10638982 Ferber et al. May 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10736552 Ferber et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10842395 Schnall et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
D910623 Cueto et al. Feb 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D916705 Liao Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
D933951 Cardentey Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11179107 Chae et al. Nov 2021 B2
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
11201500 Partovi et al. Dec 2021 B2
11202571 Al-Ali et al. Dec 2021 B2
D944520 Akana et al. Mar 2022 S
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11259753 Ferber et al. Mar 2022 B2
11260238 Finch et al. Mar 2022 B2
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
D967625 Akana et al. Oct 2022 S
11457703 Calder Oct 2022 B2
11457733 Gallup et al. Oct 2022 B2
11464410 Muhsin Oct 2022 B2
D968410 Zhang et al. Nov 2022 S
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
D999244 Indorf et al. Sep 2023 S
D999245 Indorf et al. Sep 2023 S
D999246 Indorf et al. Sep 2023 S
11755879 Pascanu et al. Sep 2023 B2
11766198 Pauley et al. Sep 2023 B2
D1000975 Al-Ali et al. Oct 2023 S
11803623 Kiani et al. Oct 2023 B2
11832940 Diab et al. Dec 2023 B2
11872156 Telfort et al. Jan 2024 B2
11879960 Ranasinghe et al. Jan 2024 B2
20010011355 Kawai Aug 2001 A1
20010031922 Weng et al. Oct 2001 A1
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020052311 Solomon et al. May 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020063690 Chung et al. May 2002 A1
20020072681 Schnall Jun 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020140675 Ali et al. Oct 2002 A1
20020169439 Flaherty Nov 2002 A1
20020177758 Schoenberg Nov 2002 A1
20020198445 Dominguez et al. Dec 2002 A1
20030004423 Levie et al. Jan 2003 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030027326 Ulmsten et al. Feb 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030058838 Wengrovitz Mar 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20030216670 Beggs Nov 2003 A1
20040013647 Solomon et al. Jan 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040090742 Son et al. May 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040116787 Schnall Jun 2004 A1
20040122787 Avinash et al. Jun 2004 A1
20040126007 Ziel et al. Jul 2004 A1
20040139571 Chang et al. Jul 2004 A1
20040147818 Levy et al. Jul 2004 A1
20040152957 Stivoric et al. Aug 2004 A1
20040179332 Smith et al. Sep 2004 A1
20040186357 Soderberg et al. Sep 2004 A1
20040215085 Schnall Oct 2004 A1
20040230118 Shehada et al. Nov 2004 A1
20040230132 Shehada et al. Nov 2004 A1
20040230179 Shehada et al. Nov 2004 A1
20040243017 Causevic Dec 2004 A1
20040249670 Noguchi et al. Dec 2004 A1
20040254431 Shehada et al. Dec 2004 A1
20040254432 Shehada et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20050005710 Sage, Jr. Jan 2005 A1
20050009926 Kreye et al. Jan 2005 A1
20050020918 Wilk et al. Jan 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050065417 Al Ali et al. Mar 2005 A1
20050080336 Byrd et al. Apr 2005 A1
20050096542 Weng et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050124864 Mack et al. Jun 2005 A1
20050125256 Schoenberg Jun 2005 A1
20050148882 Banet et al. Jul 2005 A1
20050164933 Tymianski et al. Jul 2005 A1
20050191294 Arap et al. Sep 2005 A1
20050208648 Sage, Jr. et al. Sep 2005 A1
20050209518 Sage, Jr. et al. Sep 2005 A1
20050228244 Banet Oct 2005 A1
20050228299 Banet Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050242946 Hubbard, Jr. et al. Nov 2005 A1
20050245831 Banet Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050261594 Banet Nov 2005 A1
20050261598 Banet et al. Nov 2005 A1
20050268401 Dixon et al. Dec 2005 A1
20050277872 Colby et al. Dec 2005 A1
20060009697 Banet et al. Jan 2006 A1
20060009698 Banet et al. Jan 2006 A1
20060049936 Collins, Jr. et al. Mar 2006 A1
20060058647 Strommer et al. Mar 2006 A1
20060073719 Kiani Apr 2006 A1
20060084878 Banet et al. Apr 2006 A1
20060085952 Kaneko et al. Apr 2006 A1
20060089543 Kim et al. Apr 2006 A1
20060094936 Russ May 2006 A1
20060104824 Schnall May 2006 A1
20060149393 Calderon Jul 2006 A1
20060155175 Ogino et al. Jul 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060200009 Wekell et al. Sep 2006 A1
20060217684 Shehada et al. Sep 2006 A1
20060217685 Shehada et al. Sep 2006 A1
20060224413 Kim et al. Oct 2006 A1
20060235300 Weng et al. Oct 2006 A1
20060253042 Stahmann et al. Nov 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070002533 Kogan et al. Jan 2007 A1
20070021675 Childre et al. Jan 2007 A1
20070027368 Collins et al. Feb 2007 A1
20070032733 Burton et al. Feb 2007 A1
20070038050 Sarussi Feb 2007 A1
20070055116 Clark et al. Mar 2007 A1
20070055544 Jung et al. Mar 2007 A1
20070060798 Krupnik et al. Mar 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070088406 Bennett et al. Apr 2007 A1
20070096897 Weiner May 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070118399 Avinash et al. May 2007 A1
20070140475 Kurtock et al. Jun 2007 A1
20070142715 Banet et al. Jun 2007 A1
20070156033 Causey et al. Jul 2007 A1
20070157285 Frank et al. Jul 2007 A1
20070159332 Koblasz Jul 2007 A1
20070163589 DeVries et al. Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070185393 Zhou et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070244724 Pendergast et al. Oct 2007 A1
20070250286 Duncan et al. Oct 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255250 Moberg Nov 2007 A1
20070276261 Banet et al. Nov 2007 A1
20070276262 Banet et al. Nov 2007 A1
20070276632 Banet et al. Nov 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20070287898 Lee et al. Dec 2007 A1
20080000479 Elaz et al. Jan 2008 A1
20080003200 Arap et al. Jan 2008 A1
20080021854 Jung et al. Jan 2008 A1
20080033661 Syroid et al. Feb 2008 A1
20080039701 Ali et al. Feb 2008 A1
20080051670 Banet et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080058614 Banet et al. Mar 2008 A1
20080058657 Schwartz et al. Mar 2008 A1
20080064965 Jay et al. Mar 2008 A1
20080077024 Schnall Mar 2008 A1
20080077026 Banet et al. Mar 2008 A1
20080082004 Banet et al. Apr 2008 A1
20080090626 Griffin et al. Apr 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080091471 Michon et al. Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080097167 Yudkovitch et al. Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080103375 Kiani May 2008 A1
20080108884 Al-Ali et al. May 2008 A1
20080114220 Banet et al. May 2008 A1
20080119412 Tymianski et al. May 2008 A1
20080138278 Scherz et al. Jun 2008 A1
20080139354 Bell et al. Jun 2008 A1
20080169922 Issokson Jul 2008 A1
20080171919 Stivoric et al. Jul 2008 A1
20080188795 Katz et al. Aug 2008 A1
20080194918 Kulik et al. Aug 2008 A1
20080208912 Garibaldi Aug 2008 A1
20080221396 Garces et al. Sep 2008 A1
20080221399 Zhou et al. Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080221461 Zhou et al. Sep 2008 A1
20080228077 Wilk et al. Sep 2008 A1
20080275309 Stivoric et al. Nov 2008 A1
20080281167 Soderberg et al. Nov 2008 A1
20080281168 Gibson et al. Nov 2008 A1
20080281181 Manzione et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080292172 Assmann et al. Nov 2008 A1
20080300020 Nishizawa et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080312542 Banet et al. Dec 2008 A1
20080319275 Chiu et al. Dec 2008 A1
20080319327 Banet et al. Dec 2008 A1
20080319354 Bell et al. Dec 2008 A1
20090005651 Ward et al. Jan 2009 A1
20090018409 Banet et al. Jan 2009 A1
20090018422 Banet et al. Jan 2009 A1
20090018453 Banet et al. Jan 2009 A1
20090018808 Bronstein et al. Jan 2009 A1
20090024008 Brunner et al. Jan 2009 A1
20090036759 Ault et al. Feb 2009 A1
20090043172 Zagorchev et al. Feb 2009 A1
20090052623 Tome et al. Feb 2009 A1
20090054735 Higgins et al. Feb 2009 A1
20090054743 Stewart Feb 2009 A1
20090062682 Bland et al. Mar 2009 A1
20090069642 Gao et al. Mar 2009 A1
20090069868 Bengtsson et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090099480 Salgo et al. Apr 2009 A1
20090112072 Banet et al. Apr 2009 A1
20090118628 Zhou et al. May 2009 A1
20090119330 Sampath et al. May 2009 A1
20090119843 Rodgers et al. May 2009 A1
20090124867 Hirsch et al. May 2009 A1
20090131759 Sims et al. May 2009 A1
20090143832 Saba Jun 2009 A1
20090157058 Ferren et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090171225 Gadodia et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090182287 Kassab Jul 2009 A1
20090226372 Ruoslahti et al. Sep 2009 A1
20090247924 Harima et al. Oct 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090264778 Markowitz et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090281462 Heliot et al. Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20090309755 Williamson et al. Dec 2009 A1
20090322540 Richardson et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100030094 Lundback Feb 2010 A1
20100036209 Ferren et al. Feb 2010 A1
20100056886 Hurtubise et al. Mar 2010 A1
20100069725 Al-Ali Mar 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100125217 Kuo et al. May 2010 A1
20100130875 Banet et al. May 2010 A1
20100144627 Vitek et al. Jun 2010 A1
20100160794 Banet et al. Jun 2010 A1
20100160795 Banet et al. Jun 2010 A1
20100160796 Banet et al. Jun 2010 A1
20100160797 Banet et al. Jun 2010 A1
20100160798 Banet et al. Jun 2010 A1
20100168536 Banet et al. Jul 2010 A1
20100168589 Banet et al. Jul 2010 A1
20100185101 Sakai et al. Jul 2010 A1
20100198622 Gajic et al. Aug 2010 A1
20100210958 Manwaring et al. Aug 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100261979 Al-Ali et al. Oct 2010 A1
20100261982 Noury et al. Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298651 Moon et al. Nov 2010 A1
20100298652 McCombie et al. Nov 2010 A1
20100298653 McCombie et al. Nov 2010 A1
20100298654 McCombie et al. Nov 2010 A1
20100298655 McCombie et al. Nov 2010 A1
20100298656 McCombie et al. Nov 2010 A1
20100298657 McCombie et al. Nov 2010 A1
20100298658 McCombie et al. Nov 2010 A1
20100298659 Mccombie et al. Nov 2010 A1
20100298660 McCombie et al. Nov 2010 A1
20100298661 Mccombie et al. Nov 2010 A1
20100298742 Perlman et al. Nov 2010 A1
20100305412 Darrah et al. Dec 2010 A1
20100312103 Gorek et al. Dec 2010 A1
20100317936 Al-Ali et al. Dec 2010 A1
20100317951 Rutkowski et al. Dec 2010 A1
20100324384 Moon et al. Dec 2010 A1
20100324385 Moon et al. Dec 2010 A1
20100324386 Moon et al. Dec 2010 A1
20100324387 Moon et al. Dec 2010 A1
20100324388 Moon et al. Dec 2010 A1
20100324389 Moon et al. Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110004079 Al-Ali et al. Jan 2011 A1
20110021930 Mazzeo et al. Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110046495 Osypka Feb 2011 A1
20110066051 Moon et al. Mar 2011 A1
20110077473 Lisogurski Mar 2011 A1
20110077488 Buxton et al. Mar 2011 A1
20110078596 Rawlins et al. Mar 2011 A1
20110080294 Tanishima et al. Apr 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110087083 Poeze et al. Apr 2011 A1
20110087084 Jeong et al. Apr 2011 A1
20110087117 Tremper et al. Apr 2011 A1
20110087756 Biondi Apr 2011 A1
20110092831 Herscovivi-Cohen et al. Apr 2011 A1
20110092857 Herscovivi-Cohen et al. Apr 2011 A1
20110098583 Pandia et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110105956 Hirth May 2011 A1
20110118561 Tari et al. May 2011 A1
20110118573 Mckenna May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110152629 Eaton et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110172967 Al-Ali et al. Jul 2011 A1
20110184252 Archer et al. Jul 2011 A1
20110184253 Archer et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110208018 Kiani Aug 2011 A1
20110208073 Matsukawa et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110212090 Pedersen et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110213271 Telfort et al. Sep 2011 A1
20110224498 Banet et al. Sep 2011 A1
20110224499 Banet et al. Sep 2011 A1
20110224500 Banet et al. Sep 2011 A1
20110224506 Moon et al. Sep 2011 A1
20110224507 Banet et al. Sep 2011 A1
20110224508 Moon et al. Sep 2011 A1
20110224556 Moon et al. Sep 2011 A1
20110224557 Banet et al. Sep 2011 A1
20110224564 Moon et al. Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110257489 Banet et al. Oct 2011 A1
20110257544 Kaasinen et al. Oct 2011 A1
20110257551 Banet et al. Oct 2011 A1
20110257552 Banet et al. Oct 2011 A1
20110257553 Banet et al. Oct 2011 A1
20110257554 Banet et al. Oct 2011 A1
20110257555 Banet et al. Oct 2011 A1
20110263950 Larson et al. Oct 2011 A1
20110288383 Diab Nov 2011 A1
20110288421 Banet et al. Nov 2011 A1
20110295094 Doyle et al. Dec 2011 A1
20110301444 Al-Ali Dec 2011 A1
20120004579 Luo et al. Jan 2012 A1
20120029300 Paquet Feb 2012 A1
20120029304 Medina et al. Feb 2012 A1
20120029879 Sing et al. Feb 2012 A1
20120041316 Al Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059230 Teller et al. Mar 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120071771 Behar Mar 2012 A1
20120075464 Derenne et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120095778 Gross et al. Apr 2012 A1
20120101353 Reggiardo et al. Apr 2012 A1
20120108983 Banet et al. May 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120123231 O'Reilly May 2012 A1
20120123799 Nolen et al. May 2012 A1
20120132717 Maizlin et al. May 2012 A1
20120136221 Killen et al. May 2012 A1
20120157806 Stelger Jun 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120165630 Knight et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120179011 Moon et al. Jul 2012 A1
20120184120 Basta et al. Jul 2012 A1
20120190949 McCombie et al. Jul 2012 A1
20120197619 Namer Yelin et al. Aug 2012 A1
20120203078 Sze et al. Aug 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120226160 Kudoh Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120239434 Breslow et al. Sep 2012 A1
20120242501 Tran et al. Sep 2012 A1
20120265039 Kiani Oct 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120284053 Rosenfeld Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120294801 Scherz et al. Nov 2012 A1
20120296174 McCombie Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120302894 Diab et al. Nov 2012 A1
20120303476 Krzyzanowski et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130006131 Narayan et al. Jan 2013 A1
20130006151 Main et al. Jan 2013 A1
20130023775 Lamego et al. Jan 2013 A1
20130035603 Jarausch et al. Feb 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046197 Dlugos et al. Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130079610 Al-Ali Mar 2013 A1
20130092805 Funk et al. Apr 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109929 Menzel May 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130109937 Banet et al. May 2013 A1
20130116515 Banet et al. May 2013 A1
20130123616 Merritt et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130178749 Lamego Jul 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130197364 Han Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130261494 Bloom et al. Oct 2013 A1
20130262730 Al-Ali et al. Oct 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130279109 Lindblad et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130297330 Kamen et al. Nov 2013 A1
20130317327 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130317393 Weiss et al. Nov 2013 A1
20130324804 McKeown et al. Dec 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130324817 Diab Dec 2013 A1
20130331036 Baker et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130340176 Stevens et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140005502 Klap et al. Jan 2014 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140022081 Ribble et al. Jan 2014 A1
20140025010 Stroup et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140031650 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140046674 Rosenfeld Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140073167 Al-Ali et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081097 Al-Ali et al. Mar 2014 A1
20140081099 Banet et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140088385 Moon et al. Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140125495 Al-Ali May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142399 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140142445 Banet et al. May 2014 A1
20140152673 Lynn et al. Jun 2014 A1
20140155712 Lamego et al. Jun 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163393 McCombie et al. Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140188516 Kamen Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200415 McCombie et al. Jul 2014 A1
20140200420 Al-Ali Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140235964 Banet et al. Aug 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140249431 Banet et al. Sep 2014 A1
20140249432 Banet et al. Sep 2014 A1
20140249433 Banet et al. Sep 2014 A1
20140249434 Banet et al. Sep 2014 A1
20140249435 Banet et al. Sep 2014 A1
20140249440 Banet et al. Sep 2014 A1
20140249441 Banet et al. Sep 2014 A1
20140249442 Banet et al. Sep 2014 A1
20140257056 Moon et al. Sep 2014 A1
20140257057 Reis Cunha et al. Sep 2014 A1
20140266787 Tran Sep 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275816 Sandmore Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140276145 Banet et al. Sep 2014 A1
20140276175 Banet et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140301893 Stroup et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140336517 Schnall et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20140343889 Ben Shalom et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20140371548 Al-Ali et al. Dec 2014 A1
20140371632 Al-Ali et al. Dec 2014 A1
20140378784 Kiani et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150094618 Russell et al. Apr 2015 A1
20150097701 Muhsin et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150140863 Al-Ali et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150164437 McCombie et al. Jun 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150201874 Diab Jul 2015 A1
20150208966 Al-Ali Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150282708 Schlottau et al. Oct 2015 A1
20150282717 McCombie et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160022224 Banet et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160029933 Al-Ali et al. Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160045163 Weisner et al. Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160073967 Lamego et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160106366 Banet et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143546 McCombie et al. May 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160183836 Muuranto et al. Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160321420 Klee et al. Nov 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170055905 Cohrs Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170119252 Kim et al. May 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224231 Al-Ali Aug 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170332976 Al-Ali Nov 2017 A1
20170332980 Fifield et al. Nov 2017 A1
20180069776 Lamego et al. Mar 2018 A1
20180097373 McSweyn et al. Apr 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200021930 Iswanto et al. Jan 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200085321 Hatch Mar 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210251501 Moon et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220125377 Mendes-Roter et al. Apr 2022 A1
20220148724 Pasternak et al. May 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220211323 Schnall Jul 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220331065 Shah et al. Oct 2022 A1
20220346724 Ferber et al. Nov 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
20230284943 Scruggs et al. Sep 2023 A1
20230301562 Scruggs et al. Sep 2023 A1
20230346993 Kiani et al. Nov 2023 A1
20230368221 Haider Nov 2023 A1
20230371893 Al-Ali et al. Nov 2023 A1
20230389837 Krishnamani et al. Dec 2023 A1
20240016418 Devadoss et al. Jan 2024 A1
20240016419 Devadoss et al. Jan 2024 A1
Foreign Referenced Citations (62)
Number Date Country
301342850 Sep 2010 CN
302423595 May 2013 CN
108370502 Aug 2018 CN
001198584-0059 Jun 2010 EM
0735499 Oct 1996 EP
0 880 936 Dec 1998 EP
2335569 Jun 2011 EP
2766834 Aug 2014 EP
2811894 Dec 2014 EP
2 901 921 Aug 2015 EP
H08-080288 Mar 1996 JP
H10-336064 Dec 1998 JP
2002-513602 May 2002 JP
2002-165764 Jun 2002 JP
2002-172096 Jun 2002 JP
2002-542493 Dec 2002 JP
2004-337605 Dec 2004 JP
2005-218036 Aug 2005 JP
2005-295375 Oct 2005 JP
2007-021213 Feb 2007 JP
2007-095365 Apr 2007 JP
2007-174051 Jul 2007 JP
2008-126017 Jun 2008 JP
2008-519635 Jun 2008 JP
2008-541045 Nov 2008 JP
2009-017959 Jan 2009 JP
2009-207836 Sep 2009 JP
2010-503134 Jan 2010 JP
2010-524510 Jul 2010 JP
2011-519607 Jul 2011 JP
2011-152261 Aug 2011 JP
2014-533997 Dec 2014 JP
2016-538015 Dec 2016 JP
2017-506121 Mar 2017 JP
D1605226 May 2018 JP
D1614787 Oct 2018 JP
D1665851 Apr 2019 JP
D169966 Aug 2015 TW
D182804 May 2017 TW
D126452 Dec 2018 TW
D207721 Oct 2020 TW
WO 98004182 Feb 1998 WO
WO 98029790 Jul 1998 WO
WO 99013766 Mar 1999 WO
WO 99056613 Nov 1999 WO
WO 00063713 Oct 2000 WO
WO 00074551 Dec 2000 WO
WO 01064101 Sep 2001 WO
WO 2004056266 Jul 2004 WO
WO 2004059551 Jul 2004 WO
WO 2006051461 May 2006 WO
WO 2011001302 Jan 2011 WO
WO 2011002904 Jan 2011 WO
WO 2011025549 Mar 2011 WO
WO 2012112891 Aug 2012 WO
WO 2013056160 Apr 2013 WO
WO 2013119982 Aug 2013 WO
WO 2013184283 Dec 2013 WO
WO 2015054665 Apr 2015 WO
WO 2017040700 Mar 2017 WO
WO 2020077149 Apr 2020 WO
WO 2023132952 Jul 2023 WO
Non-Patent Literature Citations (76)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
ADInstruments: “Human NIBP Controller Owner's Guide Human NIBP Owner's Guide”, Jan. 1, 2014, XP055673095, Retrieved from the Internet: http://cdn.adinstruments.com/adi-web/manuals/human-nibp-OG.pdf [retrieved on Mar. 3, 2020), p. 16; figures 2-4, pp. 90.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2019/055722, dated Apr. 22, 2021.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2021/031625, dated Nov. 24, 2022.
International Search Report and Written Opinion received in PCT Application No. PCT/US2019/055722, dated Mar. 23, 2020.
International Search Report and Written Opinion received in PCT Application No. PCT/US2021/031625, dated Aug. 25, 2021.
International Search Report and Written Opinion received in PCT Application No. PCT/US2022/053988 on Jun. 26, 2023.
Masimo Sleep™, posted at masimopersonalhealth.com, no posting date, retrieved Nov. 17, 2021, online, https://www.masimopersonalhealth.com/pages/masimo-sleep (Year: 2021).
Notice of Allowance received in Taiwan Patent Office Application No. 108302030, dated Aug. 14, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 108302035, dated Mar. 13, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 108302046, dated Mar. 18, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109301079, dated Jul. 8, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109301080, dated Jul. 7, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109301129, dated Jul. 8, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109301130, dated Jul. 8, 2020 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109303055, dated Jan. 21, 2021 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109303056, dated Jan. 21, 2021 in 6 pages.
Notice of Allowance received in Taiwan Patent Office Application No. 109303057, dated Jan. 21, 2021 in 6 pages.
Patil et al., “Telemonitoring Physiological Parameters of a Patient from a Distance by Near Field Communication Mobile”, 2014 Fourth International Conference on Advanced Computing & Communication Technologies, pp. 345-348.
PCT Invitation to Pay Additional Search Fees issued in application No. PCT/US2019/055722 on Jan. 30, 2020.
PCT Invitation to Pay Additional Search Fees issued in application No. PCT/US2022/053988 on May 4, 2023.
“Radius PPG™ Tetherless Pulse Oximetry”, masimo.com, site visited Mar. 18, 2022: https://www.masimo.com/products/sensors/radius-ppg/, pp. 2.
Wayback Machine search for “Masimo Sleep™”, first found Sep. 24, 2020, retrieved Nov. 17, 2021, online, https://web.archive.org/web/20200924015943/https://www.masimopersonalhealth.com/pages/masimo-sleep (Year: 2020), pp. 8.
Yongwu, Shi, “Research progress of wearable medical devices”, Medical Equipment, Mar. 2018, vol. 31, No. 5, pp. 3.
U.S. Appl. No. 12/973,392, filed Dec. 20, 2010, Kiani et al.
U.S. Appl. No. 29/537,221, filed Aug. 24, 2015, Al-Ali et al.
Aminian et al., “Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes”, Journal of Biomechanics, 2002, vol. 35, pp. 689-699.
Anliker et al., “Amon: A Wearable Multiparameter Medical Monitoring and Alert System”, IEEE Transactions on Information Technology in Biomedicine, vol. 8, No. 4, Dec. 2004, pp. 415-427.
Asada et al., “Mobile Monitoring with Wearable Photoplethysmographic Biosensors”, IEEE Engineering in Medicine and Biology Magazine, May/Jun. 2003, pp. 28-40.
Ayello et al., “How and Why to Do Pressure Ulcer Risk Assessment”, Advances in Skin & Wound Care, May/Jun. 2002, vol. 15, No. 3., pp. 125-133.
Bergstrom et al., “A Prospective Study of Pressure Sore Risk Among Institutionalized Elderly”, Journal of the American Geriatrics Society, Aug. 1992, vol. 40, No. 8, pp. 747-758.
Bourke et al., “Evaluation of a Threshold-Based Tri-Axial Accelerometer Fall Detection Algoithm”, Gait & Posture, vol. 26, 2007, pp. 194-199.
Campo et al., “Wireless Fall Sensor with GPS Location for Monitoring the Elderly”, 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, Aug. 20-24, 2008, pp. 498-501.
Caporusso et al., “A Pervasive Solution for Risk Awareness in the Context of Fall Prevention”, Pervasive Health, 2009, pp. 8.
Capuano et at. “Remote Telemetry—New Twists for Old Technology.” Nursing Management. vol. 26, No. 7. Jul. 1995.
Chen et al., “In-Bed Fibre Optic Breathing and Movement Sensor for Non-Intrusive Monitoring”, Proceedings of SPIE vol. 7173, 2009, pp. 6.
Chen et al., “Wearable Sensors for Reliable Fall Detection”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 1-4, 2005, pp. 3551-3554.
Degen et al., “Speedy: A Fall Detector in a Wrist Watch”, Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC'03), 2003, pp. 184-187.
Dhillon et al., “Towards the Prevention of Pressure Ulcers with a Wearable Patient Posture Monitor Based on Adaptive Accelerometer Alignment”, 34th Annual International Conference of the IEEE EMBS, San Diego, CA, Aug. 28-Sep. 1, 2012, pp. 4513-4516.
Di Rienzo et al., “MagIC System: a New Textile-BasedWearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, Sep. 1-4, 2005, pp. 7167-7169.
Dinh et al, “A Fall and Near-Fall Assessment and Evaluation System”, The Open Biomedical Engineering Journal, 2009, vol. 3, pp. 1-7.
Elmer-Dewitt, Philip, Apple's iWatch: The killer apps may be in hospitals, not health clubs, Fortune.com, Feb. 3, 2014, http://fortune.com/2014/02/03/apples-iwatch-the-killer-apps-may-be-in-hospitals-not-health-clubs/, in 4 pages.
Giansanti et al., “Assessment of Fall-Risk by Means of a Neural Network Based on Parameters Assessed by a Wearable Device During Posturography”, Medical Engineering & Physics, vol. 30, 2008, pp. 367-372.
Giansanti, Daniele, “Investigation of Fall-Risk Using a Wearable Device with Accelerometers and Rate Gyroscopes”, Institute of Physics Publishing, Physiological Measurement, vol. 27, 2006, pp. 1081-1090.
Grundy et al. “Telemedicine in Critical Care: An Experiment in Health Care Delivery.” Oct. 1977.
Grundy et al. “Telemedicine in Critical Care: Problems in design, implementation and assessment.” vol. 10, No. 7. Jul. 1982.
Gunningberg et al., “Improved Quality and Comprehensiveness in Nursing Documentation of Pressure Ulcers after Implementing an Electronic Health Record in Hospital Care”, Journal of Clinical Nursing, 2009, vol. 18, pp. 1557-1564.
Harada et al., “Portable Orientation Estimation Device Based on Accelerometers, Magnetometers and Gyroscope Sensors for Sensor Network”, IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems 2003, 2003, pp. 191-196.
Hwang et al., “Development of Novel Algorithm and Real-time Monitoring Ambulatory System Using Bluetooth Module for Fall Detection in the Elderly”, Proceedings of the 26th Annual International Conference of the IEEE EMBS, Sep. 1-5, 2004, pp. 2204-2207.
Kärki et al., “Pressure Mapping System for Physiological Measurements”, XVIII Imeko World Congress, Metrology for a Sustainable Development, Sep. 17 - 22, 2006, Rio de Janeiro, Brazil, pp. 5.
Li et al., “Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information”, Conference Paper, Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, Berkeley, CA, USA, Jun. 3-5, 2009, pp. 6.
Lindemann et al., “Evaluation of a Fall Detector Based on Accelerometers: A Pilot Study”, Medical & Biological Engineering & Computing, vol. 43, 2005, pp. 548-551.
Linder-Ganz et al., “Real-Time Continuous Monitoring of Sub-Dermal Tissue Stresses Under the Ischial Tuberosities in Individuals with Spinal Cord Injury”, Proceedings of the ASME 2008 Summer Bioengineering Conference (SBC2008), Jun. 25-29, 2008, Marriott Resort, Marco Island, Florida, pp. 2.
Luo et al., “A Dynamic Motion Pattern Analysis Approach to Fall Detection”, 2004 IEEE International Workshop on Biomedical Circuits & Systems, Dec. 1-3, 2004, pp. S2.1-5-S2.1-8.
Masimo, “Radius-7—The Power of Masimo's Breakthrough Measurements in a Patient-worn Monitor,” 2015, in 2 pages.
Mathie et al., “A System for Monitoring Posture and Physical Activity Using Accelerometers”, Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, Oct. 25-28, 2001, pp. 3654-3657.
McInerney, Joan A., “Reducing Hospital-Acquired Pressure Ulcer Prevalence Through a Focused Prevention Program”, Advances in Skin & Wound Care, vol. 21, No. 2, Feb. 2008, pp. 75-78.
Merbitz et al., “Wheelchair Push-ups: Measuring Pressure Relief Frequency”, Archives of Physical Medicine and Rehabilitation, vol. 66, No. 7, Jul. 1985, pp. 433-438.
Narayanan et al., “Falls Management: Detection and Prevention, Using a Waist-Mounted Triaxial Accelerometer”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, Aug. 23-26, 2007, pp. 4037-4040.
Noury, Norbert, “A Smart Sensor for the Remote Follow Up of Activity and Fall Detection of the Elderly”, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, pp. 314-317.
Nyan et al., “A Wearable System for Pre-Impact Fall Detection”, Journal of Biomechanics, vol. 41, 2008, pp. 3475-3481.
Nyan et al., “Garment-Based Detection of Falls and Activities of Daily Living Using 3-Axis MEMS Accelerometer”, Institute of Physics Publishing, International MEMS Conference 2006, Journal of Physics: Conference Series 34, 2006, pp. 1059-1067.
O'Donovan et al., “A Context Aware Wireless Body Area Network”, Pervasive Health, 2009, pp. 8.
Pérolle et al., “Automatic Fall Detection and Activity Monitoring for Elderly”, Jan. 2007, pp. 6.
Philips, “Small, lightweight, and cableless—Philips Mobile CL cuffs, sensors, and accessories” brochure, 2013, in 2 pages.
Po et al., “Overview of MEMSWear II—Incorporating MEMS Technology Into Smart Shirt for Geriatric Care”, Institute of Physics Publishing, International MEMS Conference 2006, Journal of Physics: Conference Series 34, 2006, pp. 1079-1085.
Prado et al., “Distributed Intelligent Architecture for Falling Detection and Physical Activity Analysis in the Elderly”, Proceedings of the Second Joint EMBS/BMES Conference, Oct. 23-26, 2002, pp. 1910-1911.
Rithalia et al., “Quantification of Pressure Relief Using Interface Pressure and Tissue Perfusion in Alternating Pressure Air Mattresses”, Archives of Physical Medicine and Rehabilitation, vol. 81, Oct. 2000, pp. 1364-1369.
Rysavy, “Making the Call with Two-Way Paging”, Network Computing, Published Jan. 15, 1997, www.rysavy.com/Articles/twoway.htm.
Sakai et al., “Continuous Monitoring of Interface Pressure Distribution in Intensive Care Patients for Pressure Ulcer Prevention”, Journal of Advanced Nursing, vol. 65, No. 4, 2009, pp. 809-817.
Spillman Jr., et al., “A ‘Smart’ Bed for Non-Intrusive Monitoring of Patient Physiological Factors”, Measurement Science and Technology, Aug. 2004, vol. 15, No. 8, pp. 1614-1620.
Wachter, S. Blake; Journal of the American Medical Informatics Association; The Employment of an Iterative Design Process to Develop a Pulmonary Graphical Display; vol. 10, No. 4, Jul./Aug. 2003; pp. 363-372.
Webster, John G., “A Pressure Mat for Preventing Pressure Sores”, IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1989, pp. 2.
Williams et al., “A Remote Electronic Monitoring System for the Prevention of Pressure Sores”, Proceedings of the 19th International Conference, IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL, pp. 1076-1079.
Wu et al., “Portable Preimpact Fall Detector With Inertial Sensors”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, No. 2, Apr. 2008, pp. 178-183.
Related Publications (1)
Number Date Country
20220175249 A1 Jun 2022 US
Provisional Applications (2)
Number Date Country
62463331 Feb 2017 US
62359589 Jul 2016 US
Continuations (2)
Number Date Country
Parent 16813551 Mar 2020 US
Child 17525140 US
Parent 15644152 Jul 2017 US
Child 16813551 US