The present invention relates to wearable safety devices and, more particularly, to wearable light-emitting safety devices.
A common cause of law enforcement officer injury and mortality is automobile accident related. Often, officers are struck by vehicles while they are out of their own vehicle. Typically, these accidents occur during highway traffic stops, as it can be difficult to see officers on the side of the road. It is especially difficult to see officers when they leave their vehicles at night time. Bright flashing warning lights are effective in attracting the attention of other drivers in these settings.
The present invention provides a wearable lighting system that can be worn by a user, such as a law enforcement officer or first responder, when outside his or her vehicle to provide a flashing, bright, warning light. The wearable lighting system includes a first wireless communications device such as a transmitter within a vehicle, a second wireless communications device such as sensor, and a light-emitting device. The light-emitting device may be adapted to be worn on the back of the user or other convenient locations. The sensor is also worn by the user and adapted to be in wireless communication with the transmitter. The sensor activates the light-emitting device when the sensor is further than a threshold distance from the transmitter. The sensor deactivates the light-emitting device when the sensor is closer than or equal to a threshold distance from the transmitter. The system may also include a switch that allows for the user to manually control the light-emitting device. The switch may be adapted to be worn on the shoulder of the user or in substantially any other convenient location on the user's body or clothing. The light-emitting device may flash when activated and may include at least one light-emitting diode. The sensor and transmitter may communicate via electromagnetic fields or, more specifically, radio waves.
In one form of the present invention, a method for selectively activating a light-emitting device of a wearable lighting system includes determining a distance between a sensor of the wearable lighting system and a transmitter disposed within a vehicle. The sensor and light-emitting device are worn by a user. The method further includes activating the light-emitting device if the determined distance is greater than a distance threshold. The method also includes deactivating the light-emitting device if the determined distance is less than the distance threshold.
In an aspect of the present invention, the distance threshold is reached when the sensor does not receive or detect a signal from the transmitter. Alternatively, the distance threshold is reached when a received signal's signal strength is below a threshold.
In another aspect of the present invention, the wearable lighting system may further include an actuation switch. The sensor may be further adapted to deactivate the light emitting device by outputting an actuation signal to the actuation switch. Deactivating the light emitting device disconnects a power supply from the light emitting device.
Thus, the wearable lighting system of the present invention provides a convenient and cost-effective means for improving the safety of those outside of their vehicle and still near traffic. The wearable lighting system automatically activates and deactivates a light-emitting device based on the proximity of the user to his or her vehicle and increases the visibility of the user without active intervention. Optionally, a manual switch may be used to manually turn the light-emitting device on or off.
In another form of the present invention, a wearable lighting system includes a transmitter adapted to be disposed within a vehicle and a wearable portion adapted to be worn by a user. The wearable portion includes a light-emitting device and a sensor in wireless communication with the transmitter. The wearable lighting system further includes a manual switch electrically coupled to the light-emitting device and adapted to selectively activate and deactivate the light-emitting device when the manual switch is actuated. The sensor is adapted to activate the light-emitting device when the sensor detects a distance greater than a threshold distance between the sensor and the transmitter. The sensor is adapted to deactivate the light emitting device when the sensor detects a distance less than or equal to the threshold distance between the sensor and transmitter. The actuation of the manual switch will supersede the sensor from activating and deactivating the light-emitting device.
These and other objects, advantages, purposes, and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, a wearable lighting system 10 provides a wearable portion 20, which includes a bright light source or light-emitting device 21, to be worn by a user 14, such as law enforcement and/or first responders, when outside of his or her vehicle. Other users 14 are also anticipated, such as those traveling in roadside maintenance or similar service vehicles, which may make frequent stops and see the user 14 exit the vehicle. The light source 21 is automatically activated when the user 14 leaves the vehicle and is deactivated when the user 14 enters (or remains in) the vehicle. To accomplish this, the system 10 includes a first wireless communicator such as a transmitter 12 disposed within the vehicle and a second wireless communicator such as a sensor 18 worn by the user 14 (and part of the wearable portion 20). As it is light weight and compact, the wearable portion 20 (comprising the sensor 18 and associated light source 21) may be easily worn in many convenient locations on the user 14. The light source 21 therefore automatically enhances visibility of the user 14 when outside the vehicle, as will be described in more detail below.
As shown in
As previously discussed, the sensor 18 is worn by the user 14 (as part of the wearable portion 20) and is in wireless communication with the transmitter 12. When the sensor 18 detects a distance greater than a threshold distance between the sensor 18 and the transmitter 12, the sensor 18 activates the light source 21. When the sensor 18 detects a distance less than or equal to the threshold distance, the sensor 18 deactivates the light source 21. If the light source 21 is already deactivated and the distance is still below the threshold distance, the light source 21 will remain deactivated. The threshold distance may be any distance supported by the sensor 18 and transmitter 12, and in most applications would preferably be a distance sufficient to be indicative that the user 14 is outside the vehicle. For example, this distance may be approximated as 2 meters.
The sensor 18 and transmitter 12 may use any wireless communication appropriate for the sensor 18 to determine the distance from the transmitter 12. For example, the transmitter 12 and the sensor 18 could use electromagnetic fields to communicate. More specifically, radio signals may be used, or substantially any other technology capable of wirelessly transmitting a signal or field, including RFID technology or even a permanent magnet. With radio signals, the strength of the signal determines a distance at which the sensor 18 can detect radio signals transmitted by the transmitter 12. The sensor 18 may be adapted to keep the light source 21 deactivated whenever the sensor 18 is successfully receiving a radio signal from the transmitter 12. If the sensor 18 fails to receive a radio signal from the transmitter 12, the sensor 18 may activate the light source 21. Accordingly, adjusting the strength of the electromagnetic fields or radio signals emanating from transmitter 12 will adjust the threshold distance, and sensor 18 may be configured to activate the light source 21 once the detected field strength has fallen below the predetermined threshold distance. It is contemplated that the transmitter 12 may allow for the user 14 to adjust the threshold distance. For example, the user 14 might adjust a switch or other control on the transmitter 12 to increase or decrease the signal strength of the transmitted radio signal. While the term “transmitter” is used herein, it is to be understood that there may be two-way communication between the transmitter 12 and the sensor 18. For example, the sensor 18 may communicate status or other information to the transmitter 12.
As shown in the illustrated embodiment of
While sensor 18 is referred to as a sensor configured to determine if a detected field strength has fallen below a predetermined threshold distance, and to responsively activate or deactivate the light source 21, as illustrated in
Accordingly, the wearable lighting system of the present invention provides a flashing, bright, automatically-activated warning light to be worn by a user when outside of his or her vehicle. It is lightweight and compact and may be worn in any convenient location. The light provides additional visibility, especially at night. It is activated automatically when the user leaves the vehicle and automatically deactivated when the user returns to the vehicle. This is accomplished via the transmitter located inside of the vehicle and the sensor worn by the vehicle. A manual switch to activate and deactivate the light may be used to manually control the light source. Institution of this device should make police officers, first responders, and other roadside workers more easily visible when they leave their vehicles, therefore lowering the risk of being hit by oncoming traffic.
Changes and modifications in the specifically-described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.
This application claims the filing benefits of U.S. provisional application, Ser. No. 62/690,375, filed Jun. 27, 2018, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4328533 | Paredes | May 1982 | A |
5690411 | Jackman | Nov 1997 | A |
6411204 | Bloomfield | Jun 2002 | B1 |
6461015 | Welch | Oct 2002 | B1 |
8301237 | Lanfermann | Oct 2012 | B2 |
8629766 | Lee | Jan 2014 | B2 |
8917187 | Matte | Dec 2014 | B2 |
9092956 | Secord et al. | Jul 2015 | B2 |
20050162265 | Werner | Jul 2005 | A1 |
20080117642 | Moizard | May 2008 | A1 |
20110046826 | Carroll | Feb 2011 | A1 |
20140055986 | Corpus, Jr. et al. | Feb 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20200005605 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62690375 | Jun 2018 | US |