The present invention relates generally to wearable electronics, and more particularly, to a variable resistor device for controlling electronic devices in wearable electronic applications.
Wearable electronics involves the integration of electronic items with fabric and garments. Examples of these are personal stereos, heart rate monitors, bio-feedback sensors, telephone headsets, data line connections, microprocessors, computerized components, etc. Some of these devices use variable resistors as control devices such as dimmer switches for illumination or volume control for audio.
However, variable resistors are typically made from materials that are different than the materials used in garments. Further, the techniques used to make variable resistors are also different than the ones used to make garments. Therefore, the need exists for a variable resistor device that is readily adaptable to garment manufacturing techniques and materials.
The present invention is directed to a variable resistor for use in a garment. The variable resistor includes a channel. Conductive areas are disposed in an inner wall of the channel. A conductive object is in the channel contacting the conductive areas. The conductive object moves within the channel to provide a variable resistance. In one example, the channel extends within fabric of the garment. In another, the channel extends within a draw string of the garment. Further, the conductive areas include conductive fibers woven into the inner wall.
The present invention is also directed to a method of making a variable resistor in a garment. The method includes a channel formed in the garment. Conductive areas are formed in an inner wall of the channel. A conductive object is placed in the channel contacting the conductive areas. In one example, the channel is formed within fabric of the garment. In another example, the channel is formed within a draw string of the garment. Further, the conductive areas include conductive fibers woven into the inner wall.
Referring now to the drawings were like reference numbers represent corresponding parts throughout:
One example of a garment including the wearable variable resistor according to the present invention is shown in
As can be seen, the variable resistor 4 includes a channel 6 that is integrated into the garment 2. In this embodiment, the channel 6 is shown extending from the right shoulder to the middle right side of the garment 2. However, other configurations are contemplated. For example, the channel 6 may extend from the other shoulder, diagonally across the front of the garment, horizontally across the top, middle or bottom of the garment.
As can be further seen, a conductive object 8 is included in the channel 6. During operation, the conductive object 8 will move within the channel 6 in order to change the: resistance of the device. This will be described in more detail below.
A cross sectional view of the channel in the example of
Alternatively, the channel 6 may be woven into the fabric itself. This can be done by either a circular or flatbed knitting machine. Both types of machines include a front and back needle which work together to form a single layer knit structure. If the two needles are separated, a two layer structure is formed. Thus, in order to form the channel, the needles would be separated in the area of the garment where the channel is desired. An example of a circular knitting machine is made by Santoni and an example of flat bed knitting machine is made by Stoll.
An inner view of the channel 6 in the example of
It is preferred that the conductive object 8 have a spherical or elliptical (bullet) shape, which will enable it to move freely within the channel 6. It also preferred that the conductive object 8 have a larger diameter than that of the channel 6. This will ensure that the conductive object 8 stays in contact with the conductive areas 10,12. Also, having a larger diameter will enable the conductive object 8 to stay in place within the channel 6 when not being moved.
During operation, an electrical device 22 is connected to the conductive areas 10,12 as shown in
Another example of a garment including the wearable variable resistor according to the present invention is shown in
An inner view of the draw string in the example of
As can be seen, the inner wall of the channel 6 also includes two conductive areas 10,12. The conductive areas 10,12 are preferably made from conductive fiber such as stainless steel or silver plated synthetic fiber. Further, a conductive object 8 is also disposed in the channel 6 and in contact with the two conductive areas 12. It is preferred that the conductive object 8 have a spherical or elliptical (bullet) shape and have a larger diameter than that of the channel 6.
During operation, an electrical device is connected to the conductive areas 10,12, as shown
The description of the present invention have been presented for the purpose of illustration and description. It is not intended to limit the invention to the precise structures or configurations disclosed. Many modifications and variations are possible in light of the above teachings. Therefore, it is not intended that the scope of the invention should be limited by the detail description
Number | Date | Country | Kind |
---|---|---|---|
60/473,118 | May 2003 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/01691 | 5/19/2004 | WO | 11/21/2005 |