The invention relates to a roller drawing apparatus for spinning machines in which the covering for the pressure roller at the output of a drafting field consists of an outer layer and of an inner layer fastened on the core of the pressure roller. The outer layer is thinner and harder than the inner layer, which outer layer loosely surrounds the inner layer so that the outer layer can move relative to the inner layer.
A roller drawing apparatus is described in DE 102 60 025.2. Since the apron covering on the withdrawal cylinder has a running speed approximately 40 times greater than is the case in customary drafting aprons, it is very important that the apron covering is well guided and causes as little friction as possible on the deflection rail. The tensioning force required for the guidance of the apron covering is therefore very low and is advantageously only produced in that the apron covering tends to assume an approximately circular form in the circumferential direction in the unloaded state (DE 103 48 452 A1). Conditioned by this low tension with which the apron covering glides over the deflection roller, fibers collect on the deflection roller during a rather long operation of this apparatus. As a consequence, laps form around the deflection rail that hinder the easy gliding over the deflection rail and generate a higher and higher tension that finally leads to breaking of the deflection rail.
Furthermore, the running properties of the apron covering over the deflection rail are adversely affected in that the yarn insert applied to hinder longitudinal expansion is customarily produced by winding a yarn onto the first inner layer, that is then covered with another layer. As a result, it occurs again and again that, at the high running speed, the apron covering behaves asymmetrically corresponding to the winding and has the tendency to run off to one side. This can be counteracted by positioning edges on the deflection rail. However, the borders of the apron covering are stressed and worn down by running against the edge.
The present invention addresses the problem of avoiding the described disadvantages and of avoiding adverse effects during the gliding of the very rapidly running apron covering over the deflection rail. Additional objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
It surprisingly turned out that given sufficiently large dimensioning of the circumference of the cross section of the deflection rail, the lap problems of prior art systems can be avoided. The circumference of the cross section of the deflection rail is preferably greater than the length of the longest fiber of the fiber material processed on the drafting apparatus. A running of the rapidly running apron covering against limiting edges is avoided by the curvature of the apron gliding surface of the deflection rail transversely to the running direction of the apron. The limitation by edges can even be entirely eliminated, especially if the covering constructed as an endless apron is provided with a double yarn insert, which yarn inserts are wound in opposing directions. The opposing winding of the yarn inserts eliminates the asymmetric behavior of the apron covering at high running speeds. In addition, the advantage results that when using a rigid holder, the apron covering can still be readily replaced. The rigid holder for the apron covering is preferably mounted on the pressure roller shaft in a freely rotatable manner and is supported via stops on the upper roller carrying arm of the drafting apparatus. In this manner, an especially simple and operationally reliable guidance of the apron covering is achieved.
Further details of the invention are described using the drawings.
Reference will now be made to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each embodiment is presented by way of explanation of the invention, and not as a limitation of the invention. For example, features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment. It is intended that the invention include these and other modifications and variations of the embodiments described herein.
The drafting apparatus in
The delivery cylinder pair consists of the lower cylinder 31 and the pressure roller 3, that is looped around by an apron covering 1 that runs over deflection rail 2. Since pressure roller 3 has a speed approximately 40 or 60 times greater than pressure rollers 6 and 7, cover apron 1 must run very rapidly. The deflection rail 2 is therefore provided with a smooth, low-fiction apron sliding surface 27 and covering 1, designed as an apron, of pressure roller 3 is tensioned only slightly. The intrinsic tension of apron covering 1 that would result in a circular form of the apron 1 in the free non-tension state, is sufficient for this. Apron covering 1 is stretched by the arrangement of deflection rail 2. The tension produced as a result is already sufficient for the unobjectionable running of apron covering 1.
A clearer (i.e. cleaning) roller 5 is arranged in a customary manner above pressure roller 3 and of apron covering 1 in order to keep apron covering 1 free of fibers. However, during rather long running times of the drafting device, fibers accumulate on the inside of apron covering 1 between apron covering 1 and apron sliding surface 27 of deflection rail 2, which fibers are not eliminated by or cannot be prevented by the clearer roller. These fibers become firmly fixed so that a greater and greater accumulation of fibers develops on gliding surface 27 of deflection rail 2, and the tension of apron covering 1 increases in an inadmissible manner. The tension can even become so great that not only is apron covering 1 considerably braked and the course is thus adversely affected, but also deflection rail 2 breaks.
The accumulation of fibers between apron covering 1 and apron sliding surface 27 of deflection rail 2 is counteracted by the shaping of deflection rail 2, especially of the cross-sectional circumference U. It turned out here that the size of the circumference U is important, and in any case should be greater than the average staple length of the fiber material drawn on the drafting apparatus. Good results were achieved, for example, with a cross-sectional circumference U of deflection rail 2 of at least 1.5 times the average fiber length. Since it is obviously important that the start and the end of a fiber can not close themselves to a ring around circumference U of deflection rail 2, the cross-sectional circumference U of deflection rail 2 should preferably be slightly longer than the longest fiber of the fiber material drawn on the roller drafting apparatus.
Even the cross-sectional form plays a certain part here. It can be circular in accordance with
As is described in DE 102 60 025.2, apron covering 1 is stiffened by a yarn insert in the direction of travel of apron covering 1 and is therefore largely non-elastic in this direction. The yarn insert is wound in a spiral during the production of apron covering 1 onto the running layer of apron coating 1. During the cutting of apron covering 1 projecting fringes are produced by the yarn insert on the edges. This is disadvantageous because these fringes result in accumulations of fibers. Apron borders 13 (
As a result of the yarn insert applied in spiral form, apron covering 1 exhibits an asymmetric behavior and runs on the one side against edge 24. As a consequence, the smoothly cut borders 13 are roughened and a fringe formation with the above-described negative effects reoccur. The application of a yarn insert 11 in Z form and a yarn insert 12 in S form results in a crossing of the yarns in the spiral winding. Moreover, this counteracts the asymmetric behavior. Apron covering 10 runs uniformly, so that no damage occurs due to running on borders 13. Edges 24 can even be omitted if apron sliding surface 203 of deflection rail 200 has a slight curvature transversely to the direction of travel of the apron. Apron covering 10 is constantly held and guided as a result in the middle of sliding surface 203. The omission of outer edges 24 also has the advantage that apron covering 10 can be more readily replaced, even if deflection rail 200 is rigidly arranged. In the embodiment according to
All these described measures bring about an easy and trouble-free course of apron covering 1 or 10. Since this apron covering 1 or 10 runs at a very high speed, slight disturbances work themselves out to a large extent. The described measures can avoid disturbances in a simple manner and achieve an unobjectionable course of covering 1 even at high turning speeds of pressure roller 3.
It should be appreciated by those skilled in the art that modifications and variations can be made to the embodiments described herein without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 011 128.1 | Mar 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/050675 | 1/24/2007 | WO | 00 | 2/3/2009 |