The present invention is directed toward devices and methods of harvesting vehicle energy, and more specifically, toward a weather responsive treadle locking means for power generation system for harvesting vehicle energy.
Very few devices that capture energy from passing vehicles have been implemented, despite numerous designs put forth by various parties over the years. Issues of efficiency, reliability, and manufacturability, among others, have limited the practicality of vehicle energy harvesting devices. Added to the challenge is the variability of vehicle sizes, speeds, axle configurations, and lane positions, all of which can greatly influence the operation of a device trying to capture the motion energy of vehicles and convert it into a useful form of energy.
Therefore, a need exists for an energy capture device and method having improved efficiency, reliability, and manufacturability, as well as practicality. A need also exists for an energy capture device and method that takes into account the variability of vehicle sizes, speeds, axle configurations, and lane positions in converting the captured motion energy of vehicles into a useful form of energy.
These problems and others are addressed by the present invention, which provides a novel vehicle energy harvester that overcomes many of the issues with the conventional devices and is therefore better suited for real-world implementation than the conventional devices.
The exemplary embodiments of the invention make productive use of the energy that is normally wasted (in the form of heat) in reducing the speed of motor vehicles on exit ramps, toll plazas etc., etc. The vehicle energy harvester can absorb mechanical energy from passing (or breaking) vehicles and convert the mechanical energy to electrical energy using, for example, shaft driven generators.
The disclosed embodiments provide a vehicle energy harvester and power generation system that is simple to install, provides a short payback period, and has a scalable configuration. More particularly, the disclosed embodiments can provide a simple and reliable mechanical configuration that can withstand sever environments. The low cost configuration of the system may provide for faster payback of the expense of the system, and therefore, make the system more practical and desirable for practical applications.
Additionally, the ease with which the system can be installed also may make the system more practical and desirable for practical applications. The disclosed embodiments require little or no excavation and can be installed in a few hours, instead of over several days as with conventional devices.
The disclosed embodiment also can provide a scalable configuration that may be particularly advantageous for use at locations, such as exits ramps, toll plazas, hills, among other locations.
An embodiment also can include monitoring the status or operation of the unit, either periodically or 24 hours per day, seven days per week, using for example, a wireless link or other wired or wireless communication device.
The exemplary embodiments improve the durability of the system under practical use scenarios. The exemplary embodiments of the invention are capable of withstanding the stresses placed upon the system during normal use. The exemplary embodiments of the invention recognize that numerous factors may reduce the durability of the system under normal use including, for example, motor vehicles impacting the treadles at highway/freeway speeds of 60 to 70 miles per hour or more, and ice build-up restricting free movement of the treadle assembly, among other things.
The exemplary embodiments of the invention address and solve these problems and improve the durability of a treadle based energy conversion systems according to the exemplary embodiments of the invention.
In order to reduce the wear and tear on the treadle assembly, exemplary embodiments of the present invention can include a temperature sensor that aids in determining whether icy (freezing) conditions might prevent normal operation of the treadle assembly.
Additionally or alternatively, exemplary embodiments of the present invention can include a precipitation detector that aids in determining whether icy (freezing) conditions might prevent normal operation of the treadle assembly.
Additionally or alternatively, exemplary embodiments of the present invention can include a treadle locking means such that the unit can be locked safely in a flat (level with the road surface) position until more favorable weather conditions are detected.
An exemplary embodiment of the invention is directed to, for example, a vehicle energy harvester comprising a subunit having an upper surface forming a roadway surface, a vehicle activated treadle on the subunit, the vehicle activated treadle moveable between a first position in which an upper surface of the treadle is at an angle with respect to the upper surface of the roadway surface and a second position in which the upper surface of the treadle is flush with the upper surface of the roadway surface, a generator that generates power in response to movement of the vehicle activated treadle, and a treadle locking device that selectively locks the vehicle activated treadle in the second position.
Another exemplary embodiment of the invention is directed to, for example, a vehicle energy harvester comprising a plurality of subunits each having an upper surface forming a roadway surface, a vehicle activated treadle on at least one of the plurality of subunits, the vehicle activated treadle moveable between a first position in which an upper surface of the treadle is at an angle with respect to the upper surface of the roadway surface and a second position in which the upper surface of the treadle is flush with the upper surface of the roadway surface, a generator that generates power in response to movement of the vehicle activated treadle, and a treadle locking device that selectively locks the vehicle activated treadle in the second position.
Another exemplary embodiment of the invention is directed to, for example, a vehicle energy harvester comprising a subunit having an upper surface forming a roadway surface, a vehicle activated treadle on the subunit, the vehicle activated treadle moveable between a first position in which an upper surface of the treadle is at an angle with respect to the upper surface of the roadway surface and a second position in which the upper surface of the treadle is flush with the upper surface of the roadway surface, a generator that generates power in response to movement of the vehicle activated treadle, and treadle locking means for selectively locking the vehicle activated treadle in the second position.
These and other aspects and features of embodiments of the present invention will be better understood after a reading of the following detailed description, together with the attached drawings, wherein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring now to the drawings,
The exemplary embodiments can make productive use of the energy that is normally wasted (in the form of heat) in reducing the speed of motor vehicles on exit ramps, toll plazas etc., etc. The vehicle energy harvester can absorb mechanical energy from passing (or breaking) vehicles and convert the mechanical energy to electrical energy using, for example, shaft driven generators. Other means for converting the mechanical energy to electrical energy also are contemplated. In an exemplary aspect, the electric power from the generators can be converted, metered, and fed into the commercial power grid. In another exemplary aspect, each site can be equipped with wireless communications to monitor the status and/or output of the system.
Power Absorber Configuration
The disclosed embodiments can include individual assemblies with integral generators. Other generator configurations also are possible, such as separate generators.
As shown in
In other embodiments, the vehicle energy harvester unit 10 can be set into the road surface. The surface mounted assembly may require minimal installation effort. Additionally, the unit count can be scaled to road/breaking needs. In an embodiment, each generator unit 20 can feed a common power summing/conversion unit 22. A simple cable interconnect 24 can be provided to connect each generator unit 20 to the common power summing/conversion unit 22. A fail safe configuration can protect the system against individual unit failures.
Power Conversion Unit
In a disclosed embodiment, the individual absorber units 16 can be connected via cable assemblies 24. The input power can be summed and applied to a low-loss inverter unit. The power can be converted immediately to a form that is transmittable to the power grid. The output can be metered and applied to the power grid for transmission.
Absorber Unit Operation
With reference to
The exemplary embodiments improve the durability of the system under practical use scenarios. The exemplary embodiments of the invention are capable of withstanding the stresses placed upon the system during normal use, as well as minimizing or preventing interference or damage to the system resulting from other factors. The exemplary embodiments of the invention recognize that factors that may reduce the durability of the system under normal use further include, for example, environmental conditions such as ambient temperature, rain, sleet, snow, or ice, among other things.
The exemplary embodiments of the invention address and solve these problems and improve the durability of a treadle based energy conversion systems according to the exemplary embodiments of the invention.
Temperature Detector
With reference to
In order to reduce the wear and tear on the treadle assembly (e.g., 18), exemplary embodiments of the present invention can include one or more temperature sensors 50 that aid in determining whether icy (freezing) conditions may prevent normal operation of the treadle assembly. The temperature sensor 50 can be mounted, for example, under a top cover plate or driving surface 17 of one or more subunits 16. In other embodiments, the temperature sensor 50 can be mounted on or in a surface of the top cover plate or driving surface 17 of one or more subunits 16, or on another part of the vehicle energy harvester unit 10. Alternatively, the temperature sensor 50 can be separate from the vehicle energy harvester unit 10 and communicate with the vehicle energy harvester unit 10 via a wired connection or wireless connection. In this manner, the temperature sensor 50 can accurately measure surface temperatures of the vehicle energy harvester unit 10.
A common, commercially available, semiconductor temperature sensor 50, such as the XXX-111 temperature sensor or the like, can be used in conjunction with a low-cost micro-controller unit (MCU) (not shown) to determine if hazardous conditions exist. An embodiment having a low-cost single chip (IC) arrangement can provide a very reliable and durable design. One of ordinary skill in the art will recognize that integrated circuits (ICs) with temperature conversion accuracy of 0.5 degrees are readily available. These circuits can provide a simple serial (digital) output to the micro-controller unit (MCU). The micro-controller unit (MCU) can use the temperature sensor 50 to control overall operation of the vehicle energy harvester unit 10. In other embodiments, the temperature sensor 50 can be used in conjunction with other sensors or detectors, for example, as described in the exemplary embodiments below.
Precipitation Detector
With reference to
An exemplary embodiment of the present invention can include one or more precipitation detectors 60 that aid in determining whether icy (e.g., freezing) conditions may prevent normal operation of the treadle assembly (e.g., 18). One of ordinary skill in the art will recognize that a common operational amplifier can be as a precipitation detector 60 and configured as shown, for example, in
In addition, one or more snow/ice sensors 70 having, for example, a small, low-cost infrared emitter/detector 72, 74 can be used as illustrated in
The snow/ice sensor 70 can be mounted, for example, on or in a surface of the top cover plate or driving surface 17 of one or more subunits 16, or on another part of the vehicle energy harvester unit 10. Alternatively, the snow/ice sensor 70 can be separate from the vehicle energy harvester unit 10 and communicate with the vehicle energy harvester unit 10 via a wired connection or wireless connection. In this manner, the snow/ice sensor 70 can accurately detect the presence of snow or ice on one or more subunits 16 of the vehicle energy harvester unit 10. The snow/ice sensor 70 can take samples continuously or periodically to conserve power usage. One or more snow/ice sensors 70 can be used in conjunction with, for example, the temperature sensor 50 and a low-cost micro-controller unit (MCU), for example, to determine if hazardous conditions exist.
Treadle Locking Means
With reference to
In an exemplary aspect, during normal operation, the treadle 18 is in the active (elevated) position and pushed downward upon impact with a tire of an oncoming motor vehicle. If ice is formed inside the vehicle energy harvester unit 10, the treadle assembly may no longer be free to move when struck by the tire of the vehicle. Instead, the momentum of the vehicle may be applied directly and entirely to the mechanical components connected to the treadle 18. This type of collision may result (or will almost certainly result) in physical damage to the vehicle energy harvester unit 10 (e.g., bending or breaking of mechanical members, stripping gearbox assemblies, etc.). To minimize or prevent such damage in freezing weather, the exemplary embodiments of a vehicle energy harvester unit 10 can be equipped with a solenoid operated locking pawl such that the unit can be locked safely in a flat (i.e., level with the driving surface 17) position until more favorable weather conditions are detected. This locking means also can minimize or prevent damage to the vehicle energy harvester unit 10 that may be caused by snow removal equipment operating on the road surface or driving surface 17.
As illustrated in
In operation, the impact of the tire of a vehicle travelling on the driving surface 17 can force the treadle 18 downward into a flush position with the driving surface 17 and cause the locking latch 80 to engage with the sliding lock pawl 82. The power to the solenoid 84 can be removed to conserve power after the treadle 18 is locked. By reversing the voltage to the solenoid 84, the solenoid 84 momentarily will move the sliding lock pawl 82 to the right and release the locking latch 80 of the treadle 18 such that the treadle 18 can return to an elevated or open position (e.g., active position).
Other locking means are possible for securing and locking the treadle 18 in a flush position with the driving surface 17. The locking means can be using in conjunction with a micro-controller unit (MCU) and one or more of the temperature sensor 50, precipitation sensor 60, and snow/ice sensor 70. In this manner, the micro-controller unit (MCU) can apply or remove voltage from the solenoid 84 to lock or unlock the treadle 18 based on signals or input received from one or more of the temperature sensor 50, precipitation sensor 60, and snow/ice sensor 70, thereby locking or securing the treadle 18 in a flush position with the driving surface 17 when conditions exist that may affect the operation of the vehicle energy harvester unit 10. Accordingly, the exemplary embodiments can improve the durability of the system under practical use scenarios. The exemplary embodiments of the invention are capable of withstanding the stresses placed upon the system during normal use, as well as minimizing or preventing interference or damage to the system resulting from other factors, for example, including environmental conditions such as ambient temperature, rain, sleet, snow, or ice, among other things.
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
Like numbers refer to like elements throughout. In the figures, the thickness of certain lines, layers, components, elements or features may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y.” As used herein, phrases such as “from about X to Y” mean “from about X to about Y.”
It will be understood that when an element is referred to as being “on”, “attached” to, “connected” to, “coupled” with, “contacting”, etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on”, “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper”, “lateral”, “left”, “right” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the descriptors of relative spatial relationships used herein interpreted accordingly.
The present invention claims the benefit of U.S. Provisional Patent Application No. 61/147,747, filed Jan. 27, 2009, and entitled “TRANSIENT ABSORBER FOR POWER GENERATION SYSTEM”, U.S. Provisional Patent Application No. 61/147,748, filed Jan. 27, 2009, and entitled “WEATHER RESPONSIVE TREADLE LOCKING MEANS FOR POWER GENERATION SYSTEM”, U.S. Provisional Patent Application No. 61/147,749, filed Jan. 27, 2009, and entitled “LOW PROFILE, SURFACE-MOUNTED POWER GENERATION SYSTEM”, U.S. Provisional Patent Application No. 61/147,750, filed Jan. 27, 2009, and entitled “VEHICLE SPEED DETECTION MEANS FOR POWER GENERATION SYSTEM”, U.S. Provisional Patent Application No. 61/147,752, filed Jan. 27, 2009, and entitled “RECIPROCAL SPRING ARRANGEMENT FOR POWER GENERATION SYSTEM”, and U.S. Provisional Patent Application No. 61/147,754, filed Jan. 27, 2009, and entitled “LOSSLESS SHORT-DURATION ELECTRICAL STORAGE MEANS FOR POWER GENERATION SYSTEM”, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1312131 | Morton | Aug 1919 | A |
1771200 | Akers | Jul 1930 | A |
1916873 | Wiggins | Jul 1933 | A |
3748443 | Kroll et al. | Jul 1973 | A |
3859589 | Rush | Jan 1975 | A |
3885163 | Toberman | May 1975 | A |
3918844 | Bailey | Nov 1975 | A |
3944855 | Le Van | Mar 1976 | A |
4004422 | Le Van | Jan 1977 | A |
4081224 | Krupp | Mar 1978 | A |
4115034 | Smith | Sep 1978 | A |
4130064 | Bridwell | Dec 1978 | A |
4211078 | Bass | Jul 1980 | A |
4212598 | Roche et al. | Jul 1980 | A |
4228360 | Navarro | Oct 1980 | A |
4238687 | Martinez | Dec 1980 | A |
4239974 | Swander et al. | Dec 1980 | A |
4239975 | Chiappetti | Dec 1980 | A |
4247785 | Apgar | Jan 1981 | A |
4250395 | Lundgren | Feb 1981 | A |
4322673 | Dukess | Mar 1982 | A |
4339920 | Le Van | Jul 1982 | A |
4409489 | Hayes | Oct 1983 | A |
4418542 | Ferrell | Dec 1983 | A |
4434374 | Lundgren | Feb 1984 | A |
4437015 | Rosenblum | Mar 1984 | A |
4614875 | McGee | Sep 1986 | A |
4700540 | Byrum | Oct 1987 | A |
4739179 | Stites | Apr 1988 | A |
4912995 | Otters | Apr 1990 | A |
4915196 | Krisko | Apr 1990 | A |
4944474 | Jones | Jul 1990 | A |
4980572 | Sen | Dec 1990 | A |
5119136 | Morikawa | Jun 1992 | A |
5157922 | Baruch | Oct 1992 | A |
5250769 | Moore | Oct 1993 | A |
5347186 | Konotchick | Sep 1994 | A |
5355674 | Rosenberg | Oct 1994 | A |
5449909 | Kaiser et al. | Sep 1995 | A |
5634774 | Angel et al. | Jun 1997 | A |
5648645 | Arpagaus et al. | Jul 1997 | A |
5678933 | Ouchi et al. | Oct 1997 | A |
5977742 | Henmi | Nov 1999 | A |
5984432 | Otomo et al. | Nov 1999 | A |
6023134 | Carl et al. | Feb 2000 | A |
6091159 | Galich | Jul 2000 | A |
6116704 | Nakakita et al. | Sep 2000 | A |
6172426 | Galich | Jan 2001 | B1 |
6204568 | Runner | Mar 2001 | B1 |
6353270 | Sen | Mar 2002 | B1 |
6362534 | Kaufman | Mar 2002 | B1 |
6376925 | Galich | Apr 2002 | B1 |
6467266 | Kanazawa et al. | Oct 2002 | B1 |
6494144 | Perez Sanchez | Dec 2002 | B1 |
6662099 | Knaian et al. | Dec 2003 | B2 |
6718760 | Padera | Apr 2004 | B1 |
6734575 | Ricketts | May 2004 | B2 |
6756694 | Ricketts | Jun 2004 | B2 |
6767161 | Calvo et al. | Jul 2004 | B1 |
6812588 | Zadig | Nov 2004 | B1 |
6858952 | Gott et al. | Feb 2005 | B2 |
6894233 | Dingwall et al. | May 2005 | B2 |
6936932 | Kenney | Aug 2005 | B2 |
6969213 | Rastegar et al. | Nov 2005 | B2 |
7043904 | Newman | May 2006 | B2 |
7067932 | Ghassemi | Jun 2006 | B1 |
7102244 | Hunter, Jr. | Sep 2006 | B2 |
7145257 | Ricketts | Dec 2006 | B2 |
7148581 | Hershey et al. | Dec 2006 | B2 |
7239031 | Ricketts | Jul 2007 | B2 |
7315088 | Erriu | Jan 2008 | B2 |
7347643 | Jeong | Mar 2008 | B2 |
7371030 | Hickman | May 2008 | B2 |
7541684 | Valentino | Jun 2009 | B1 |
7717043 | Rastegar et al. | May 2010 | B2 |
20030132636 | Ricketts | Jul 2003 | A1 |
20030151381 | Kadota et al. | Aug 2003 | A1 |
20040066041 | Hunter, Jr. | Apr 2004 | A1 |
20050116545 | Hamel et al. | Jun 2005 | A1 |
20050143876 | Tanase | Jun 2005 | A1 |
20050200132 | Kenney | Sep 2005 | A1 |
20060152008 | Ghassemi | Jul 2006 | A1 |
20060237968 | Chandrasekaran | Oct 2006 | A1 |
20070018803 | Lang | Jan 2007 | A1 |
20070020047 | Adair | Jan 2007 | A1 |
20070085342 | Horianopoulos et al. | Apr 2007 | A1 |
20070158945 | Annen et al. | Jul 2007 | A1 |
20080224477 | Kenney | Sep 2008 | A1 |
20090315334 | Chen | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
19861007504 | Dec 1986 | CH |
Entry |
---|
Lee W. Young, International Search Report, PCT/US2009/066024, Apr. 2, 2010, p. 2, Alexandria, VA, US. |
Blaine R. Copenheaver, International Search Report, PCT/US2009/066025, Mar. 10, 2010, p. 2, Alexandria, VA, US. |
Lee W. Young, International Search Report, PCT/US2010/022287, Jun. 1, 2010, p. 2, Alexandria, VA, US. |
Blaine R. Copenheaver, International Search Report, PCT/US2010/022288, Jul. 12, 2010, p. 2, Alexandria, VA, US. |
Lee W. Young, International Search Report, PCT/US2010/022289, Jun. 1, 2010, p. 2, Alexandria, VA, US. |
Lee W. Young, International Search Report, PCT/US2010/022291, Jun. 15, 2010, p. 2, Alexandria, VA, US. |
Blaine R. Copenheaver, International Search Report, PCT/US2010/022294, Jun. 28, 2010, p. 2, Alexandria, VA, US. |
Blaine R. Copenheaver, International Search Report, PCT/US2010/022296, Jul. 29, 2010, p. 2, Alexandria, VA, US. |
Lee W. Young, International Search Report, PCT/US2010/020676, Jun. 15, 2010, p. 2, Alexandria, VA, US. |
Number | Date | Country | |
---|---|---|---|
20110084499 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61147747 | Jan 2009 | US | |
61147748 | Jan 2009 | US | |
61147749 | Jan 2009 | US | |
61147750 | Jan 2009 | US | |
61147752 | Jan 2009 | US | |
61147754 | Jan 2009 | US |