This relates generally to weaving and, more particularly, to equipment for processing strands during weaving.
It may be desirable to form fabric from strands of material that are treated differently at different locations along their lengths. Strands may, for example, be dyed with different colors at different locations. Strands of this type may be woven together to produce fabric with colored patterns.
In warp ikat fabrics, warp threads are printed with specific patterns. It can be challenging to use traditional weaving equipment to form fabrics such as warp ikat fabrics in which the printed patterns are aligned as desired with the underlying structures of a fabric (i.e., the connecting warp and weft threads that determine the fabric's construction and properties). In most looms, there is a relatively long distance between the warp beam and the fabric being woven. As a result, it can be difficult to accurately position warp strands with respect to each other and with respect to the weft strands that are being used to form the fabric. Adjacent warp strands can become misaligned with respect to each other and may not align properly with the weft strands. This can make it impossible to form precise patterns in the fabric. More accurate weaving would allow improved fabric-based items to be formed.
It would therefore be desirable to be able to process strands at various locations along their lengths in a way that facilitates accurate weaving with the processed strands.
Fabric may be formed by weaving warp strands and weft strands together using weaving equipment. The weaving equipment may include warp strand positioning equipment that positions the warp strands to produce a shed and weft strand positioning equipment that inserts weft strands into the warp strands to form the fabric. Strands may be selectively modified prior to weaving. For example, one or more of the warp strands may be selectively modified along its length using a warp strand modification unit.
A warp strand modification unit may be located adjacent to the edge of the fabric that is being woven. This allows warp strand segments that have been modified to be accurately aligned with desired weft strands. For example, a segment of a warp strand may be positioned to overlap a particular weft strand.
The warp strand modification unit may be interposed between the fabric and a reed, may be interposed between the fabric and the warp strand positioning equipment, may be mounted to the reed, or may be incorporated elsewhere in the weaving equipment.
The warp strand modification unit may add segments of metallic paint coatings or other conductive coatings, may add insulating coatings, may apply liquids to segments of the warp strands such as liquids that modify the stretchiness of warp strands and that remove material from segments of the warp strands, may attach electrical components to the warp strands, and may otherwise selectively modify the warp strands.
Selectively modified strands may be incorporated into strand-based items such as strand-based item of
Strands in strand-based item 10 may form all or part of a housing wall for an electronic device, may form internal structures in an electronic device, or may form other strand-based structures. Strand-based item 10 may be soft (e.g., item 10 may have a fabric surface that yields to a light touch), may have a rigid feel (e.g., the surface of item 10 may be formed from a stiff fabric), may be coarse, may be smooth, may have ribs or other patterned textures, and/or may be formed as part of a device that has portions formed from non-fabric structures of plastic, metal, glass, crystalline materials, ceramics, or other materials.
Item 10 may include intertwined strands 12. The strands may be intertwined using strand intertwining equipment such as weaving equipment, knitting equipment, or braiding equipment. Intertwined strands 12 may, for example, form woven fabric.
Strands 12 may be single-filament strands or may be threads, yarns, or other strands that have been formed by intertwining multiple filaments of material together. Strands may be formed from polymer, metal, glass, graphite, ceramic, natural fibers such as cotton or bamboo, or other organic and/or inorganic materials and combinations of these materials. Conductive coatings such as metal coatings may be formed on non-conductive strands (e.g., plastic cores) to make them conductive. Reflective coatings such as metal coatings may be applied to strands to make them reflective. Strands may also be formed from single-filament metal wire, multifilament wire, or combinations of different materials. Strands may be insulating or conductive. Strands may be conductive along their entire length or may have conductive segments (e.g., metal portions that are exposed by locally removing insulation or that are formed by adding a conductive layer to a portion of a non-conductive strand.). Threads and other multifilament yarns that have been formed from intertwined filaments may contain mixtures of conductive fibers and insulating fibers (e.g., metal strands or metal coated strands with or without exterior insulating layers may be used in combination with solid plastic fibers or natural fibers that are insulating).
Item 10 may include additional mechanical structures 14 such as polymer binder to hold strands 12 together, support structures such as frame members, housing structures (e.g., an electronic device housing), and other mechanical structures.
Circuitry 16 may be included in item 10. Circuitry 16 may include components that are coupled to strands 12, components that are housed within an enclosure formed by strands 12, components that are attached to strands 12 using welds, solder joints, adhesive bonds (e.g., conductive adhesive bonds), crimped connections, or other electrical and/or mechanical bonds. Circuitry 16 may include metal structures for carrying current, integrated circuits, discrete electrical components such as resistors, capacitors, and inductors, switches, connectors, light-emitting components such as light-emitting diodes, audio components such as microphones and speakers, vibrators, solenoids, piezoelectric devices, and other electromechanical devices, connectors, microelectromechanical systems (MEMs) devices, pressure sensors, light detectors, proximity sensors, force sensors, moisture sensors, temperature sensors, accelerometers, gyroscopes, compasses, magnetic sensors, touch sensors, and other sensors, components that form displays, touch sensors arrays (e.g., arrays of capacitive touch sensor electrodes to form a touch sensor that detects touch events in two dimensions), and other input-output devices. Circuitry 16 may also include control circuitry such as non-volatile and volatile memory, microprocessors, application-specific integrated circuits, system-on-chip devices, baseband processors, wired and wireless communications circuitry, and other integrated circuits.
Item 10 may interact with electronic equipment or other additional items 18. Items 18 may be attached to item 10 or item 10 and item 18 may be separate items that are configured to operate with each other (e.g., when one item is a case and the other is a device that fits within the case, etc.).
As shown in
In some situations, item 18 may be an electronic device such as a cellular telephone, computer, or other portable electronic device and strand-based item 10 may form a case or other structure that receives the electronic device in a pocket, an interior cavity, or other portion of item 10. In other situations, item 18 may be a wrist-watch device or other electronic device and item 10 may be a strap of other strand-based item that is attached to item 18. In still other situations, item 10 may be an electronic device, strands 12 may be used in forming the electronic device, and additional items 18 may include accessories or other devices that interact with item 10.
If desired, magnets and other structures in items 10 and/or 18 may allow items 10 and 18 to interact wirelessly. One item may, for example, include a magnet that produces a magnetic field and the other item may include a magnetic switch or magnetic sensor that responds in the presence of the magnetic field. Items 10 and 18 may also interact with themselves or each other using pressure-sensitive switches, pressure sensors, force sensors, proximity sensors, light-based sensors, interlocking electrical connectors, etc.
The strands that make up item 10 may be intertwined using any suitable strand intertwining equipment. With one suitable arrangement, which may sometimes be described herein as an example, strands 12 may be woven together to form a fabric. The fabric may have a plain weave, a satin weave, a twill weave, or variations of these weaves, may be a three-dimensional woven fabric, or may be other suitable fabric.
Illustrative weaving equipment for forming woven fabric for items such as item 10 of
Source 24 may supply warp strands 28 from warp beam 80. Warp beam 80 may be implemented using a drum or other structure that rotates about rotational axis 78 in direction 76. Warp strands 24 may be dispensed between rollers 26 as the drum rotates.
Warp strands 28 may be positioned using warp strand positioning equipment 74. Equipment 74 may include strand positioning structures such as harness 80. Harness 80 may be controlled using control circuitry 70 to control the positions of strands 28.
As shown in
Weft strand 58 may be inserted into sheds 66 during weaving to form fabric 60. Weft strand positioning equipment 62 may be used to place weft strand 58 between the warp strands forming each shed 66. Weft strand positioning equipment 62 may include one or more shuttles or may include shuttleless weft strand positioning equipment (e.g., needle weft strand positioning equipment, rapier weft strand positioning equipment, or other weft strand positioning equipment such as equipment based on projectiles, air or water jets, etc.).
After each pass of weft strand 64 is made through shed(s) 66, reed 48 may be moved in direction 50 (e.g., reed 48 may be rotated about axis 46) to push the weft strand that has just been inserted into the shed between respective warp strands 28 against previously woven fabric 60, thereby ensuring that a satisfactorily tight weave is produced. Fabric 60 that has been woven in this way may be gathered on take-down roller 82 as roller 82 rotates in direction 86 about rotational axis 84. Reed 48 and weft strand positioning equipment 62 may be controlled by control signals from control outputs 72.
Strand modification equipment such as strand modification unit 52 may be used in processing one or more warp strands 28. As shown in
Each positioner 54 and processing head 56 may be controlled by control circuitry 70 using control signals on control outputs 72. The position of head 56 may, for example, be adjusted by positioner 54 to place head 56 in and out of use. As one example, head 56 may contain a liquid-soaked pad. The liquid may be a colored ink or other colorant or may be other liquid. When it is desired to apply the liquid to warp strand 28, positioner 54 may move head 56 into contact with warp strand 28. When it is desired to terminate the liquid application process, positioner 54 may pull head 56 away from warp strand 28. The positions of strands 28 relative to heads such as head 56 may also be controlled using warp strand positioning equipment 74 (whether or not equipment 74 is being used to position strands 28 to form sheds 66 to accommodate weft strand 64).
The application of liquids such as inks to strand 28 is merely an illustrative example of a potential strand modification that may be made using unit 52. Other liquids may also be applied (e.g., metallic paint, material for removing selected portions of strand 28, insulating material such as adhesive, etc.). In general, unit 52 may be used to apply material, remove material, change strand 28 or portions of strand 28 by application of energy, may mechanically alter strand 28, or may otherwise process strand 28.
Strand modification unit 52 may, for example, be used to apply material to strand 28. The applied material may be used to selectively adjust the properties of strands 28. For example, material may be applied to strand 28 that changes the stiffness of strand 28. If strand 28 is relatively flexible and stretchable, the applied material may locally increase the stiffness of strand 28 and thereby reduce flexibility and stretchability. If strand 28 is relatively stiff, the applied material may locally increase the flexibility and/or stretchability of strand 28.
Unit 52 may also be used to apply conductive material (e.g., conductive adhesive, metallic paint, etc.) to strand 28. The conductive material may selectively increase the conductivity of strand 28. If, as an example, strand 28 is formed from a polymer strand or other dielectric strand, use of unit 52 to apply a conductive adhesive or metallic paint to strand 28 to one or more segments of strand 28 can render the one or more segments of strand 28 conductive.
If desired, unit 52 may also be used to apply a solvent such as an etchant or other substance that removes material from strand 56 (e.g., to strip polymer insulation from the outer surface of a metal wire, etc.). With this type of arrangement, strand 28 may have an insulating coating except where strand 28 has been stripped of insulation with the solvent to allow electrical components to be attached to strand 28.
Other techniques may also be used to selectively remove material from strand 28 or to selectively texture or otherwise treat exterior of portions of strand 28. These techniques may involve applying energy (light, heat, electricity, plasma, etc.) to strand 28. The application of energy to strand 28 may locally remove a conductive or insulating exterior coating. For example, a conductive coating on a dielectric strand may be locally removed to form an insulating segment between two conductive segments or an insulating coating on a metal strand may be locally removed to form a strand segment with a conductive surface between two insulated strand portions.
Cutting blades and other mechanical equipment may be used to process strand 28 (e.g., to remove insulation, to remove a conductive coating, to roughen the exterior of strand 28, etc.). The coatings that are applied to strand 28 by unit 52 may include colored materials (e.g., colored inks), may include dyes, pigments, adhesives, polymers, conductive materials, etchants and other solvents for selectively removing dielectric and/or metallic materials from strand 28, etc.
As part of the processing of strand 28 by unit 52, electrical components may be crimped into place on strand 28 or may be electrically and mechanically mounted on strand 28 using other techniques (e.g., soldering, etc.).
Unit 52 may be located adjacent to edge 88 of fabric 60, so that the accuracy with which the processed portion of strand 28 is placed within fabric 60 is enhanced. With this type of arrangement, modifications to warp strand 28 take place just as strand 28 is being incorporated into fabric 60, so that there is a reduced possibility that the selectively modified portions of each strand 28 will shift out of desired alignment with respect to weft strands 64. Accurate placement of the processed warp strand portions relative to weft strands 64 may allow electrical connections to be made for signal paths, may ensure that locally insulated strand segments are properly aligned with other strands, etc.
If desired, unit 52 may be mounted on reed 48 in a location such as illustrative mounting location 49, may be placed between reed 48 and warp strand positioning equipment 74 (e.g., in a location such as illustrative mounting location 51), or may be mounted elsewhere in equipment 22. The configuration of
Solvent application tool 96 may be used to apply solvent 94. Solvent 94 may include chemicals that remove dielectric and/or conductive materials from strand 28 (e.g., metal etchant for removing metal, a polymer solvent for dissolving and removing polymer, an etchant for removing inorganic dielectric, etc.). Solvent application tool 96 may include equipment for ink-jet coating, spray coating, pad-based coating, dipping, or other or other tools for supplying liquid solvent 94 to strand 28.
Unit 52 may include one or more mechanical treatment tools such as tool 98. The mechanical treatment tools may be used to remove coatings, to change the texture of strand 28, or to otherwise process strand 28. Tool 98 may include equipment for cutting strand 28, for scoring strand 28, for roughening the surface of strand 28, for bending strand 28, or for otherwise mechanically processing strand 28.
If desired, other equipment 100 may be used in processing strand 28. Equipment 100 may include a heat source (e.g., a flame, a heated metal structure or other heated structure, a lamp that produces heat, etc.). Equipment 100 may also include a laser, light-emitting diode, or other light source (e.g., an infrared laser or infrared light-emitting diode, a visible laser or visible light-emitting diode, and/or an ultraviolet laser or light-emitting diode). By applying heat or light or other energy to strand 28, coatings can be selectively removed, liquid polymers and other coating materials may be cured, the texture of strand 28 may be altered, or other strand modifications can be made.
Equipment 100 may be used in attaching electrical components such as electrical components in circuitry 16 of
As shown in
Illustrative coating equipment for use in unit 52 of system 22 is shown in
When using coating equipment of the type shown in
By rotating strand 28 with rotator 114, head 56 or other coating equipment in system 22 can coat all surfaces (top and bottom) of strand 28.
In the illustrative configuration of
In the illustrative example of
Weft strands 64 of
In the illustrative example of
To prevent undesired short circuit paths in the illustrative configuration of
Electrical connections in fabric 60 may be made by ensuring that the overlapping strand portions in a signal path are formed from conductive material (e.g., metal, metal in metallic paint, etc.). The metallic paint, conductive adhesive, or other material that is applied to strands 28 to form segments 132 may be dried and/or cured before overlapping strands 28 and strands 64 or wet liquid metallic paint, uncured liquid conductive adhesive, or other moist applied material may be used in forming electrical connections (i.e., strand 28 may be coated with metallic paint and woven with weft strands 64 before the metallic paint has completely dried).
If desired, connections may be augmented using conductive materials such as conductive adhesive, solder, metallic paint, or other conductive materials applied to the bare metal or metal coating of segments 132 using equipment such as unit 52. Adding conductive material to the joints between overlapping strands in a signal path may help reduce resistance along the path. In some situations, additional conductive material can be omitted (e.g., when overlapping conductive strands form low-contact-resistance connections). This may help reduce fabrication complexity.
In some designs, it may be desirable for conductive strands to pass over each other without forming an electrical connection. Consider, as an example, a fabric in which warp strands 28 contain a mixture of insulating strands and conductive strands and in which weft strands 64 contain a mixture of insulating strands and conductive strands. The insulating strands may be, for example, polymer strands and the conductive strands may be, for example, bare metal strands or polymer strands coated with metal. In this type of arrangement, a given conductive warp strand may cross over a given conductive weft strand even though an electrical connection is not desired between these two strands. The conductive strands may overlap to form a desired pattern of signal interconnects, to form a capacitive touch sensor array (with each sensing point corresponding to an overlap between a warp and weft strand), or to form other structures for item 10.
As shown in
As shown in the cross-sectional side view of
When a dielectric material such as layer 1321 is interposed between respective conductive strands in fabric 60, the conductive strands will not be electrically shorted to each other at direct current (DC) frequencies. This allows signals to be routed through the conductive strands without inadvertent shorts (i.e., the conductive strands may form a desired signal interconnect pattern in fabric 60). If desired, the intersections at which conductive warp and weft strands overlap may serve as capacitive touch sensor electrodes (e.g., touch sensor locations in a mutual capacitance touch sensor array). In a capacitive touch sensor arrangement, alternating current (AC) drive signals may be applied to weft strands and sense signals may be gathered at warp strands that are separated from the weft strands by insulating portions 1321 or drive signals may be applied to the warp strands while sense signals are gathered at weft strands. Other types of capacitive touch sensor may be formed in which warp and weft strands are separated by insulating portions 1321, if desired. The use of overlapping sense and drive signal paths formed from perpendicular conductive strands in fabric 60 is merely illustrative.
The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of provisional patent application No. 62/083,078 filed on Nov. 21, 2014, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1080298 | Prein | Dec 1913 | A |
1083462 | Prein | Jan 1914 | A |
1095417 | Prein | May 1914 | A |
1098755 | Prein | Jun 1914 | A |
1098756 | Prein | Jun 1914 | A |
2012306 | Fether | Aug 1935 | A |
2081620 | Fether | May 1937 | A |
2421135 | Walter | May 1947 | A |
2593320 | Lewis | Apr 1952 | A |
2797711 | Ballard | Jul 1957 | A |
3414666 | Doundoulakis | Dec 1968 | A |
3495225 | Davis et al. | Feb 1970 | A |
5069257 | Borisch | Dec 1991 | A |
7365031 | Swallow et al. | Apr 2008 | B2 |
7470483 | Yoshida et al. | Dec 2008 | B2 |
8669195 | Swallow et al. | Mar 2014 | B2 |
9124680 | Lundell | Sep 2015 | B2 |
20010013377 | Wahhoud et al. | Aug 2001 | A1 |
20030211797 | Hill | Nov 2003 | A1 |
20060258247 | Tao | Nov 2006 | A1 |
20090272455 | Speich | Nov 2009 | A1 |
20140209375 | Linow | Jul 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2014064455 | Jan 2014 | WO |
Number | Date | Country | |
---|---|---|---|
62083078 | Nov 2014 | US |