1. Field of the Invention
The invention relates to weaving machine and, more particularly, to such a weaving machine, which uses magnetic force to reciprocate the shuttle, preventing friction during reciprocating motion of the shuttle.
2. Description of the Related Art
A conventional weaving machine 6, as shown in
The present invention has been accomplished under the circumstances in view. It is one object of the present invention to provide a weaving machine, which uses a magnetic traction device to reciprocate the shuttle by means of magnetic floating, preventing the production of noise during reciprocating motion of the shuttle. It is another object of the present invention to provide a weaving machine, which saves power consumption. It is still another object of the present invention to provide a weaving machine, which is durable in use.
To achieve these and other objects of the present invention, the weaving machine comprises a magnetic traction device, the magnetic traction device comprising two magnetic tracks arranged in parallel at two sides of warp threads, a set of magnetic traction plates disposed at two sides of warp threads and defining a contained angle, a plurality of main coils respectively disposed at a bottom side of each of the magnetic traction plates and respectively sleeved onto the magnetic tracks and adapted to reciprocate along the magnetic tracks without contact when alternatively reversely connected with electric current, the magnetic traction plates each having two end magnets and an intermediate magnet respectively disposed at each of two opposing inner sides, said end magnets having magnetic lines of force extending from an outer side toward an inner side, the intermediate magnetic having magnetic lines of force extending from an outer side toward an inner side and from an upper side toward a bottom side, the magnetic tracks each having a buffer spring member at each of two distal ends thereof; a shuttle set in warp threads within the contained angle of the magnetic traction plates and adapted to move weft threads over warp threads, the shuttles comprising two sloping sidewalls, two end magnets respectively disposed at front and rear sides of each of the two sloping sidewalls and adapted to act with the end magnets at the magnetic traction plates to keep the shuttles be suspended within the contained angle of the magnetic traction plates, an intermediate magnet disposed between the two end magnets at each of the two sloping sidewalls and adapted to produce a magnetic repulsive force against the intermediate magnets at the magnetic traction plates to keep the shuttle away from an inner surface of the magnetic traction plates; a set of magnetic rails symmetrically provided at the main coils at a bottom side corresponding to the length of the magnetic tracks; and a set of adjustment plates respectively pivoted to the main coils at a bottom side and adapted to adjust the contained angle of said magnetic traction plates, the adjustment plates each comprising a plurality of lugs respectively pivoted to respective lugs at the main coils, and adjustment screws respectively fastened to the lugs and adapted to adjust the pitch between the adjustment plates and the magnetic rails, the adjustment plates each having a plurality of magnets mounted thereon and adapted to produce a magnetic repulsive force against the magnetic rail to keep the adjustment plates out of contact with the magnetic rails; wherein when electric current is connected to the main coils, a magnetic push force is produced between the main coils and the magnetic tracks to push the main coils and the magnetic traction plates along the magnetic tracks without contacting the magnetic tracks and simultaneously to carry the shuttle, causing the shuttle to move weft threads over warp threads.
Referring to FIGS. 1˜6, before weaving warp threads 41 into a cloth 4, the weaving machine; referenced by 3, has a magnetic traction device 1 set at two sides of warp threads 41. The magnetic traction device 1 comprises a set of magnetic traction plates 11 defining a predetermined contained angle, a plurality of main coils 14 disposed at the bottom side of each magnetic traction plate 11 and respectively sleeved on a respective magnetic track 16 at two sides of the warp threads 41. When electrically connected, the main coils 14 produce magnetic lines of force against the magnetic lines of force of the magnetic tracks 16, thereby causing the main coils 14 to move along the magnetic tracks 16 at a high speed. By means of alternating positive and negative poles of electric current through the main coils 14, the main coils 14 are controlled to reciprocate the magnetic traction plates 11 along the magnetic tracks 16. The magnetic traction plates 11 each comprise two high-power electromagnets 12 symmetrically disposed at two sides, and an intermediate magnet 13 disposed between the high-power electromagnets 12. The magnetic lines of force of the intermediate magnets 13 extend from the outer side toward the inner side and from the upper side toward the bottom side. A shuttle 2 is set on the warp threads 41 in the contained angle within the magnetic traction plates 11, and adapted to hook weft threads. The shuttle 2 has two sloping sides corresponding to the obliquely disposed magnetic traction plates 11, and an end magnet 21 at each of the front and rear ends of each of the two sloping sides. The magnetic lines of force of the end magnets 21 of the shuttle 2 extend in direction against the extending direction of the magnetic lines of force of the high-power electromagnets 12 to constrain the shuttle 2 to stay within the magnetic traction plates 11. The shuttle 2 further comprises an intermediate magnet 22 at each of the two sloping sides between the corresponding two end magnets 21. The magnetic lines of force of the intermediate magnets 22 are against the magnetic lines of the intermediate magnets 13 of the magnetic traction plates 11. The magnetic repulsive force between the intermediate magnets 13 and 22 keeps the shuttle 2 away from the inner surface of the magnetic traction plates 11. There are provided two supplementary coils 15 respectively disposed at the front and rear sides of each main coil 14, and constantly electrically connected. When main coils 14 are off, the supplementary coils 15 are still maintained electrically connected to prevent direct contact of the main coils 14 with the magnetic tracks 16. Each two supplementary coils 15 at the front and rear sides of one main coil 14 are electrically reversed to offset the push force, so as not to affect the magnetic push force of the corresponding main coil 14.
Referring to FIGS. 7˜12, two spring members 161 are provided at the two distal ends of each magnetic track 16. Each spring member 161 has the end mounted with a metal ring 166 that is not magnetically conductive, and a magnetic ring 165. When the central control box 5 sending electric current to the main coils 14, a magnetic push force is produced between the main coils 14 and the magnetic tracks 16 in one direction, thereby causing the main coils 14 to carry the magnetic traction plates 11 along the magnetic tracks 16 without contact, and therefore the shuttle 2 is moved synchronously without contact. Two photoelectric sensors 162 are provided at two sides of each magnetic track 16 near one end. When the magnetic traction plates 11 approaching one end of the magnetic tracks 16, the photoelectric sensors 162 are induced to give a signal to the central control box 5, thereby causing the central control box 5 to cut off power supply from the main coils 14, for enabling the main coils 14 to move along the magnetic tracks 16 to the end by means of inertia force. Further, each supplementary coil 15 has an outer end provided with a metal ring 152 that is not magnetically conductive, and a magnetic ring 153. When the magnetic traction plates 11 reached one end of the magnetic tracks 16, the magnetic rings 153 of the supplementary coils 15 and the magnetic rings 165 of the spring members 161 produce a magnetic repulsive force to compress the spring members 161 and to stop the magnetic traction plates 11. Each magnetic track 16 has a magnetic retainer 18 at each of the two distal ends. The magnetic retainer 18 comprises a latch 181 having a beveled front end. Each supplementary coil 15 is provided with a beveled retaining portion 151 disposed at the bottom side (alternatively the beveled retaining portion may be provided at each main coil). When the magnetic traction plates 11 reached one end of the magnetic tracks 16, the latch 181 is moved over the beveled face of the beveled retaining portion 151 and then stopped in place by the latch 181. When the central control box 5 sending electric current to the main coils 14 and the magnetic retainers 18, the magnetic latch 181 of each magnetic retainers 18 is released from the corresponding beveled retaining portion 151 to unlock the main coils 14, enabling the main coils 14 to move along the magnetic tracks 16 toward the other end without contact. When unlocked the main coils 14, the returning force of the compressed spring members 161 and the magnetic repulsive force between the magnetic rings 153 and 165 give a starting push force to the main coils 14 (see
A prototype of weaving machine has been constructed with the features of FIGS. 1˜13. The weaving machine functions smoothly to provide all of the features discussed earlier.
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. For example, the fans used can be cooling fans for use in hot weather, or fans with electric heater means for use in cold weather. Accordingly, the invention is not to be limited except as by the appended claims.