Web adjusters for use with restraint systems and associated methods of use and manufacture

Information

  • Patent Grant
  • 9775410
  • Patent Number
    9,775,410
  • Date Filed
    Wednesday, December 16, 2015
    9 years ago
  • Date Issued
    Tuesday, October 3, 2017
    7 years ago
Abstract
Various embodiments of web adjusters are disclosed herein. In one embodiment, a web adjuster includes a spring-loaded cam member having a bore through which a mounting shaft or pin extends for rotatably or pivotally mounting the cam member to a frame. The cam member can extend along a central axis and include a first engagement feature positioned at a first radial distance from the central axis, and a second engagement feature positioned at a second radial distance from the central axis, larger than the first radial distance. The cam member can be rotated to engage the web to restrict movement of the web. The web adjuster can also include a handle or cover portion and a strap attached to the handle for gripping by a user to adjust the web adjuster.
Description
TECHNICAL FIELD

The present technology relates generally to web adjusters for use with restraint systems and, more particularly, to web adjusters for use with personal restraint systems for securing an occupant in a seat of a vehicle.


BACKGROUND

Various types of restraint systems are known for restraining an occupant in an automobile, aircraft, or other vehicle. Generally, personal restraint systems for use in vehicles include one or more web adjusters for adjusting the tension in, for example, the shoulder straps, harnesses and/or the lap straps so that they fit snugly around an occupant using the restraint system. Many utility vehicles (“UTVs”) and other types of recreational vehicles (e.g., “side by side” ATVs, etc.) include seatbelt or personal restraint systems. These types of vehicles are often used in and/or are open to harsh environments in which a web adjuster and other components of the personal restraint system may be exposed to dirt, mud, debris, snow, ice, water, etc. during use. Accordingly, it would be advantageous to provide a web adjuster having reduced manufacturing costs, an ergonomic design, increased service life, and/or improved functionality in harsh environments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1E are top isometric, front isometric, side, top and rear views, respectively, of a web adjuster configured in accordance with an embodiment of the present technology.



FIGS. 2A and 2B are an exploded top isometric view and an exploded bottom isometric view, respectively, of the web adjuster of FIGS. 1A-1E.



FIG. 2C is an enlarged cross-sectional side view of a cam member configured in accordance with an embodiment of the present technology.



FIG. 3 is a front isometric view illustrating additional details of the web adjuster of FIGS. 1A-1E.



FIG. 4 is a top isometric view illustrating additional details of a web adjuster configured in accordance with another embodiment of the present technology.



FIGS. 5A and 5B are side cross-sectional views illustrating various stages of operation of the web adjuster of FIGS. 1A-1E.



FIG. 6 is an isometric view of a restraint system having a web adjuster configured in accordance with an embodiment of the present technology.





DETAILED DESCRIPTION

The present technology describes various embodiments of devices and systems for adjusting the length and/or tension of a web, such as a web, strap, harness and/or belt of a restraint system. In one embodiment, for example, a web adjuster includes a cam member having a plurality of engagement features (e.g., teeth, ridges, protrusions) on a portion thereof. The cam member is normally biased against the web so that the engagement features grip (e.g., engage and/or clamp) the web and prevent movement of the web in at least a first direction along its length. The cam member can be moved (e.g., pivoted or rotated) about a shaft extending through a bore in the cam member to move the engagement features away from the web and permit movement of the web in the first direction and a second direction, opposite the first direction. As described in greater detail below, the web adjuster can also include other features to enhance operation, improve ease of adjustment of the web in harsh environments, improve functionality with gloved hands and helmets, increase product life and/or reduce wear. Such features can include, for example, cam member engagement features that remove debris from a web during operation. Another feature can include a pull strap for ease of web adjustment during use in harsh environments when a user may have gloved hands and/or a helmet on.


Certain details are set forth in the following description and in FIGS. 1A-6 to provide a thorough understanding of various embodiments of the present technology. Other details describing well-known structures and systems often associated with web adjusters, restraint systems, seat harnesses, seatbelts, etc. have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the present technology.


Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the present technology. Accordingly, other embodiments can add other details, dimensions, angles and features without departing from the spirit or scope of the present invention. In addition, those of ordinary skill in the art will appreciate that further embodiments of the invention can be practiced without several of the details described below.


In the Figures, identical reference numbers identify identical, or at least generally similar, elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 110 is first introduced and discussed with reference to FIG. 1.



FIGS. 1A-1E illustrate top isometric, front isometric, side, top and rear views, respectively, of a web adjuster 110 configured in accordance with an embodiment of the present technology. Referring to FIGS. 1A-1E together, in one aspect of this embodiment, the web adjuster 110 includes a frame 140 having parallel opposing sidewalls 142 (e.g., plates or flanges), identified individually as a first sidewall 142a and a second sidewall 142b, that extend upwardly from opposite sides of a base 141. The sidewalls 142a and 142b can be spaced apart by a selected distance W, depending on the width of the particular web being used. For example, in one embodiment the sidewalls 142a and 142b can be spaced apart by a distance W of about 2 inches to accommodate a web width of about 1.9 inches. In other embodiments, the web adjuster 110 can be shaped and sized to accommodate other sizes, shapes and/or types of webs.


In the illustrated embodiment, a cam member 150 is movably (e.g., pivotally or rotatably) mounted to the sidewalls 142a and 142b by a cylindrical shaft 160. The shaft 160 provides a fixed axis of rotation for the cam member 150. In other embodiments, the shaft 160 can have a non-cylindrical shape.


The base 141 can include a forward or front portion 144 spaced apart from a rear portion 146 by a generally rectangular-shaped first opening 130 (e.g., an aperture, a passage or slot). As shown in, e.g., FIG. 1B, a second opening 132 is formed between the sidewalls 142a and 142b, the cam member 150, and the front portion 144. As described in greater detail below with reference to FIGS. 5A and 5B, the second opening 132 is configured to receive a first web 520 (e.g., a strap, belt or harness) that extends rearwardly (i.e., in a first linear direction identified by an arrow A) through the second opening 132 along the front portion 144, and then downward through the first opening 130.


In the illustrated embodiment, the front portion 144 can include a first horizontal surface portion 145, a ramped surface portion 147 (e.g., an inclined or sloped surface portion) that extends rearwardly from the first horizontal surface portion 145, and a curved surface portion 149. The curved surface portion 149 extends transversely between the sidewalls 142a and 142b and forms a first edge portion of the first opening 130. The rear portion 146 includes a second edge portion 152 of the first opening 130 that is opposite the curved surface portion 149 and provides a smooth surface for a second web 521 (see FIGS. 5A and 5B) to rub against as it moves relative to the frame 140, thereby reducing friction and associated abrasion and wear on the second web 521. The curved surface portion 149 extends between the ramped surface portion 147 and a second horizontal surface portion 151 that extends forwardly (i.e., in a second linear direction identified by an arrow B) at least partially beneath the ramped surface portion 147 and/or the first horizontal surface portion 145.


In the illustrated embodiment, the web adjuster 110 includes a movable handle 126 (e.g., a latch or lever) operably coupled to the cam member 150. As described in more detail below, movement of the handle 126 moves the cam member 150 to engage and disengage the cam member 150 from the first web 520. The handle 126 can include one or more strap passages 184 for receiving and securing a strap (e.g., a web, harness or belt). As illustrated in FIG. 1B, the passage 184 is positioned below an upper surface of the handle 126, and extends from a first opening 185 to a second opening 187 and around a bar portion 188 to provide a structure a strap can be looped around and secured to.


In the illustrated embodiment, the first sidewall 142a can include a projection or protrusion 128 extending inwardly towards the second sidewall 142b. The protrusion 128 can be formed directly out of the sidewall 142a by cutting and deflecting a portion of the sidewall 142a inwardly. In other embodiments, the protrusion 128 can be coupled or attached to sidewall 142a in other ways. In other embodiments, the protrusion 128 can extend inwardly from the second sidewall 142b, or both sidewalls 142a and 142b can each include a protrusion 128. As described in greater detail below with reference to FIGS. 5A and 5B, the protrusion 128 can act as a stop member for limiting a maximum movement (e.g., rotation) of the handle 126 when a user or occupant rotates the handle 126.



FIGS. 2A and 2B are exploded top and bottom isometric views, respectively, of the web adjuster 110 configured in accordance with an embodiment of the present technology. Referring to FIG. 2A, aligned pin bores 254 (identified individually as a first pin bore 254a and a second pin bore 254b) extend through each of the side flanges 142a and 142b, respectively, and are configured to operably receive and support the shaft 160. A pin bore, e.g., the first pin bore 254a includes a flat or generally flat edge portion 267 configured to bear against a complimentary flat portion 265 of the shaft 160 to hold the shaft 160 in angular position relative to the frame 140. In the illustrated embodiment, the frame 140 can be formed from suitable materials known in the art, such as steel plate that is bent or otherwise formed to shape. In other embodiments, the frame 140 can be made from other suitable materials, including other metals that are cast, machined, etc., and/or non-metallic materials.


In the illustrated embodiment of FIGS. 2A and 2B, the shaft 160 is a solid or generally solid pin having a cylindrical body portion 264 extending between flange or head portions 262a and 262b at opposing ends of the body portion 264. One or both head portions 262a and 262b can be coupled (e.g., secured, fastened or assembled) to the body portion 264 and/or formed on the body portion 264 after installing other components of the web adjuster 110 onto the shaft 160 and installing the shaft 160 in position on the frame 140 as described in more detail below. In other embodiments, the shaft 160 can be at least partially hollow and/or have other shapes. The shaft 160 can include a channel 263 (e.g., a slot or recess) extending lengthwise along at least a portion of the shaft 160 for receiving, accommodating, and/or securing at least a portion of a biasing member 290. The flat portion 265 extends transverse or generally transverse to the channel 263 at an end portion of the shaft 160. The shaft 160 can be made from various types of suitable materials known in the art, such as plated steel. In other embodiments, the shaft 160 can be made from other suitable materials including other metal and non-metallic materials.


In one aspect of this embodiment, the web adjuster 110 further includes cylindrical bushings 270 (identified individually as a first bushing 270a and a second bushing 270b) configured to receive the shaft 160 and insert into opposite ends of a cam bore 276 formed in the cam member 150. The bushings 270a and 270b can include a protruding flange or head portion 274 (identified individually as a first head portion 274a and a second head portion 274b) at one end, and a pin bore 272 (identified individually as a first pin bore 272a and a second pin bore 272b) extending centrally and axially therethrough to receive the shaft 160. The bushings 270a and 270b can reduce wear and/or increase the durability and strength of the web adjuster 110. The bushings 270a and 270b can be made from various materials known in the art for reducing friction and/or wear between the cam member 150 and the shaft 160 during operation of the web adjuster 110. For example, the bushings 270a and 270b can be manufactured from a durable plastic material (such as acetal, polypropylene, etc.) Delrin, Teflon, nylon, and/or other suitable nonmetallic materials known in the art. In yet other embodiments, the bushings 270a and 270b can be manufactured from a suitable metallic material, such as bronze, stainless steel, etc.


In the illustrated embodiment, the outer diameter of the shaft 160 is configured to fit through the pin bores 272a and 272b with a slight clearance fit to permit free rotation of the parts with minimal, or at least little radial movement, and the outer diameter of the bushings 270a and 270b are configured to fit snugly into the cam bore 276 with a light press fit. Moreover, the bushings 270a and 270b do not extend all the way through the cam bore 276 and contact each other, providing room between the bushings 270a and 270b to accommodate the biasing member 290 that fits around the shaft 160 and is positioned within the cam bore 276.


In the illustrated embodiment, the biasing member 290 is configured to be operably coupled to the shaft 160 and the cam member 150 when these parts are assembled on and/or to the frame 140. For example, a second end portion 294 of the biasing member 290 is inserted into a slot 278 (e.g., a notch, groove or recess) in the cam bore 276 as the biasing member 290 is inserted into the cam bore 276. Additionally, a first end portion 292 of the biasing member 290 is received within and engages the channel 263 in the shaft 160 as the shaft 160 is inserted axially through the center of the biasing member 290. In the illustrated embodiment, the biasing member 290 is a helical torsion spring made of suitable wire that resiliently biases the cam member 150 in a first rotational direction (e.g., a counterclockwise direction CCW) toward the engaged position.



FIG. 2C is an enlarged cross-sectional side view of the cam member 150 configured in accordance with an embodiment of the present technology. In one aspect of the illustrated embodiment, the cam member 150 includes a cam surface portion 280 having a plurality of engagement features 282 (e.g., transverse teeth, ridges, or protrusions). The engagement features 282 extend radially outwardly with respect to a central axis 277, and the engagement features 282 are individually angled or slanted toward the second direction B. That is, the engagement features 282 are angled or slanted in a second rotational direction (e.g., in a clockwise direction CW), opposite to the first rotational direction. As used herein, the terms counterclockwise CCW (first rotational direction), and clockwise CW (second rotational direction), generally refer to rotational directions with reference to the views of the web adjuster 110 and the components thereof shown and correspondingly annotated in several of the figures. It is to be understood, however, that views of the web adjuster 110 and the components thereof from an opposite direction would include opposite use of these terms (e.g., substitution of the term counterclockwise CCW (first rotational direction) for the term clockwise CW (second rotational direction), and vice-versa).


The cam surface portion 280 is eccentrically oriented (e.g., offset) relative to a central axis 277 of the cam bore 276. More specifically, all or at least a portion of the engagement features 282 are not equidistant from the central axis 277, with individual engagement features 282 being positioned progressively further away from the central axis 277 as the cam surface portion 280 extends in the clockwise direction CW. For example, referring to FIG. 2C, a first engagement feature 282a, a second engagement feature 282b, and a third engagement feature 282c are positioned at progressively further radial distances from the central axis 277. In particular, the first engagement feature 282a is positioned at a first radial distance r1 from the central axis 277; the second engagement feature 282b is positioned at a second radial distance r2, greater than the first radial distance r1; and the third engagement feature 282c is positioned at a third radial distance r3, greater than the second radial distance r2. In several embodiments, at least a portion of the cam surface portion 280 includes an involute cross-sectional shape. In one example, the cam surface portion 280 can have a cross-section that at least partially follows an involute curve (i.e., an involute curve can be drawn through a cross-section of the engagement features 282).


In the illustrated embodiment, the handle 126 is formed separately from the cam member 150. In this embodiment, the handle 126 is secured to the cam member 150 by one or more mating projections and recesses in the handle 126 and the cam member 150. For example, as illustrated in FIGS. 2A and 5A, the cam member 150 includes a first projection 233 and a first recess or cavity 237, and the handle 126 includes a second projection 231 and a second recess or cavity 235. In the illustrated embodiment, the first projection 233 of the cam member 150 is received in the second recess or cavity 235 of the handle 126 and the second projection 231 of the handle 126 is received in the first recess or cavity 237 of the cam member 150 to securely couple (e.g., fixedly attach) the handle 126 to the cam member 150. In other embodiments, the handle 126 can be secured to the cam member 150 with bolts, rivets, adhesive and/or other suitable fasteners known in the art. In yet other embodiments, the handle 126 and the cam member 150 can be formed monolithically.


To install the cam member 150 on the frame 140, one of the bushings, e.g., the bushing 270a is inserted into a first end of the cam bore 276 until the head portion 274a contacts a sidewall of the cam member 150. The biasing member 290 can then be inserted into a second end of the cam bore 276 with the second end portion 294 positioned in the slot 278. The second bushing 270b can then be inserted into the second end of the cam bore 276 until the head portion 274b contacts the adjacent sidewall of the cam member 150. The handle 126 is then attached to the cam member 150. In other embodiments, the handle 126 can be attached to the cam member 150 prior to installation of the bushing 270a, the biasing member 290, and/or the bushing 270b in the cam member 150.


The cam member 150 is then installed on the frame 140 with the bores 272a, 272b and 276 axially aligned with the corresponding bores 254a, 254b. The head portion 262a must be removed from the shaft 160 before the shaft is inserted or the head portion 262a must be otherwise formed on the end of the shaft 160 after the shaft is inserted. The shaft 160 is then inserted through the bore 254b and the bore 272b towards the bores 272a and 254a. As the shaft 160 is being inserted, the first end portion 292 of the biasing member 290 is received in the channel 263 of the shaft 160. Prior to inserting the flat portion 265 on the shaft 160 through the bore 254a, the shaft 160 is rotated in the clockwise direction CW to preload the biasing member 290 in torsion, and then the flat portion 265 of the shaft 160 is inserted into the bore 254a such that the shaft 160 is fixed in position relative to the frame 140 and prevented from rotation while the cam member 150 is rotatably or pivotally mounted to the frame 140. In some embodiments, the shaft 160 can be rotated within a range from about 10 degrees to about 180 degrees to preload the biasing member 290 in torsion. In other embodiments, the shaft 160 can be rotated within a range from about 20 degrees to about 160 degrees. In other embodiments, the shaft 160 can be rotated within a range from about 30 degrees to about 120 degrees. In other embodiments, the shaft 160 can be rotated within other ranges to preload the biasing member 290. After the cam member 150 is movably mounted (e.g., coupled, secured or attached) on the frame 140, the head portions 262a and 262b can be inserted into the end portions of the shaft 160 or formed by e.g., peening or flaring the end portions to retain the shaft 160 on the frame 140 and pivotally or rotatably mount the cam member 150 to the frame 140.



FIG. 3 is a front isometric view of the web adjuster 110 described in detail above. A strap 386 (e.g., a release strap or release web) can be passed through the passage 184 and secured to the handle 126. A user or occupant can grip the strap 386 and pull on it to move the handle 126 instead of gripping the handle 126 directly. FIG. 3 illustrates the strap 386 is attached to the handle 126 by passing the strap 386 around the bar member 188 through the passage 184 below an upper surface of the handle 126. In other embodiments, the strap 386 can be attached to other portions of the handle 126. For example, as illustrated in the top isometric view of a web adjuster 410 in FIG. 4, in some embodiments, the strap 386 can be passed through a passage 493 formed through an upper surface of the handle 126 and secured to the handle 126.



FIGS. 5A and 5B are cross-sectional side views illustrating two stages of operation and other features of the web adjuster 110 in accordance with an embodiment of the present technology. Referring to FIG. 5A, a first end portion 522 (e.g., a free end portion) of the first web 520 extends rearwardly through the second opening 132 in the web adjuster 110 between the cam surface portion 280 and the horizontal surface portion 145 in the first direction A. The first web 520 then follows the ramped surface portion 147 and wraps around the curved surface portion 149 as it exits the web adjuster 110 through the first opening 130. The curved surface portion 149 provides a smooth surface for the first web 520 to rub against as it moves or is adjusted relative to the frame 140, thereby reducing abrasion and wear on the first web 520. A second end portion 524 of the first web 520 then extends along the bottom of the second horizontal surface portion 151 in the second direction B opposite of the first direction A for connection to, e.g., a buckle, lap web, and/or other portion of the vehicle or restraint system. The second web 521 can be looped or wrapped around the lip or second edge portion 152 and fastened to itself to secure it to the rear portion 146 of the frame 140.


As illustrated in FIG. 5A, the biasing member 290 biases the cam member 150 in the counterclockwise direction CCW toward an engaged position to drive the engagement features 282 towards and/or against the base 141 of the frame 140, which clamps (e.g., grips) a portion of the first web 520 (e.g., the first end portion 522) firmly between the engagement features 282 and the adjacent base 141. Because of the biased cam member 150, the angle on the engagement features 282 and/or the eccentricity of the cam surface 280, pulling on the second end portion 524 of the first web 520 in the second direction B causes the engagement features 282 to drive against the web 520 with increased pressure and prevent, or at least substantially restrict, movement of the first web 520 (e.g., portion 522) in the first direction A, thereby preventing or at least substantially counteracting a decrease in tension of the web 520. For example, the engagement features 282 are generally angled toward the second direction B and directed downward toward the base 141 of the frame 140. The engagement features 282 are angled toward the direction B such that rotation of the cam member 150 in the counterclockwise direction CCW causes the engagement features 282 to drive against and grip the web 520 with increased pressure and prevent movement of the first end portion 522 in the first direction A when the second end portion 524 is pulled in the second direction B. Conversely, pulling the first end portion 522 of the web 520 in the second direction B causes the cam member 150 to rotate forward slightly and away from the base 141 in the clockwise direction CW, allowing the first end portion 522 of the first web 520 to be drawn in the second direction B and the second portion to be drawn in the first direction A (e.g., increasing tension in the first web 520).


The cam member 150 is thus spring-loaded and prevents the first end portion 522 from moving (e.g., from slipping or creeping) in at least one direction (e.g., the first direction A) when the cam member 150 is engaged with the first web 520. In some embodiments, this allows the web adjuster 110 to catch or grip the first web 520 to prevent it from moving (e.g., slipping or creeping) without requiring the use of locking and/or lifting bars. In other embodiments, the cam member 150 can be biased with other types of springs or suitable biasing members known in the art.


As illustrated in FIG. 5B, to permit an occupant or user (not shown) to adjust tension in the web 520 (e.g., of a shoulder strap or lap strap of a restraint system), the occupant or user pulls upwardly on a front portion of the handle 126 and/or the strap 386 to rotate the handle 126 in the clockwise direction CW to move the cam member 150 toward the disengaged position from the engaged position. The protrusion 128 of the frame 140 can contact a rear portion 127 of the handle 126 and prevent over-rotation of the handle 126 in the clockwise direction CW. This can stop the rear end portion 127 of the handle 126 from contacting or rubbing against the first web 520 and/or interfering with the movement of the first web 520 through the adjuster 110.


Pulling upwardly on the handle 126 and/or the strap 386 rotates the cam member 150 in the clockwise direction CW toward the disengaged position from the engaged position and releases the first web 520 (e.g., first end portion 522) from the grip of the cam member 150 for movement in either the first direction A or the second direction B. For example, the occupant or user can then pull the first end portion 522 of the first web 520 in the second direction B, which moves the second end portion 524 towards the first direction A, thereby increasing tension in the first web 520. Conversely, if the occupant or user pulls the second end portion 524 of the first web 520 in the second direction B, the first end portion 522 moves in the first direction A and decreases tension in the first web 520.


If the occupant or user wishes to prevent the movement of the web 520 in at least one direction (e.g., preventing movement of the first end portion 522 in at least the first direction A) to prevent decreasing tension in the first web 520, the occupant or user can release the handle 126 and/or strap 386 to move (e.g., return) the cam member 150 to the engaged position from the disengaged position. Releasing the handle 126 and/or strap 386 allows the biasing member 290 to rotate the cam member 150 in the counterclockwise direction CCW to engage (e.g., grip or clamp) the first web 520 and prevent movement of the first web 520 in at least one direction (e.g., movement of the first end portion 522 in at least the first direction A and the second end portion 524 in at least the second direction B). In the illustrated embodiments, the handle 126 can also prevent inadvertent contact by a user or occupant and/or debris with certain components of the web adjuster 110. For example, the handle 126 can extend over and cover at least certain portions of the web adjuster 110 (e.g., portions of the cam member 150).


In one aspect of the illustrated embodiment, the interaction of the cam member 150 with the web 520 can remove contaminants or debris (e.g., dirt, dust, snow, mud, ice, water, etc.) from the web during normal operation as the web 520 contacts and/or moves across the cam member 150. For example, the web 520 can move across or against the engagement features 282 as the handle 126 and/or strap 386 is lifted or released. Additionally, the web 520 can move across the cam member 150 when a user or occupant adjusts the tension in the web 520. As the web 520 moves across the surface of the cam member 150, the plurality of engagement features 282 can remove dirt or other debris from the web 520 and prevent a build-up of dirt or other debris on the web 520. This can provide the web adjuster 110 with a self-cleaning feature that can facilitate use in harsh environments. In harsh environments, some web adjusters have a tendency to get stuck or jammed and make adjustment more difficult. The self-cleaning feature can also provide for a greater product life of the web adjuster 110 by removing dirt or other debris.


In another aspect of the illustrated embodiment, the web adjuster 110 includes a strap 386. Rather than directly gripping the handle 126, a user can grip and pull the strap 386 to move the handle 126. The strap 386 can be particularly advantageous for occupants of vehicles used in harsh environments. For example, an occupant could have gloved hands on and/or a helmet on. The gloves can make it more difficult for an occupant to grip and/or move the handle 126 directly to adjust tension in the web. Additionally, a helmet can make it more difficult for an occupant to see the handle 126 of the web adjuster 110. Further, harsh environmental factors (e.g., dirt, mud, debris, snow, ice, water, etc.) can also make it more difficult for an occupant to grip, see and/or move the handle 126 directly. Accordingly, a strap 386 extending from the handle 126 as described herein can provide a more ergonomic design and/or improved functionality for web adjustment in harsh environments and/or by a user that has, for example, gloves and/or a helmet on. The strap 386 can provide a structure that can be easier to grip, maneuver, find and/or see than the handle 126.



FIG. 6 is a front isometric view of a personal restraint system 600 having two of the web adjusters 110 configured in accordance with an embodiment of the present technology. In the illustrated embodiment, the restraint system 600 includes a vehicle seat 602 having a back portion 612 extending upwardly from a seat portion 614. The seat 602 is configured to be secured to, e.g., a UTV or other vehicle (not shown) and accommodate a user or occupant 613. The occupant or user 613 can be secured to the seat 602 by a harness assembly 604 (e.g., a 4-point harness as illustrated, or a 3-point harness, 5-point harness or 6-point harness, etc.) that includes one or more shoulder straps or webs 615 (identified individually as a first shoulder web 615a and a second shoulder web 615b). Each of the shoulder webs 615 have two portions, respectively, e.g., the first web portion 520 (identified individually as first web portions 520a and 520b) and the second web portion 521 (identified individually as second web portions 521a and 521b) and are configured to extend over a respective shoulder of the user or occupant 613. A lap web 623 can extend around the waist of the user or occupant 613. A proximal end portion (not shown) of the second web portion 521 can be fixedly attached to an anchor point or points (not shown) on the vehicle, and/or to a web retractor (also not shown) attached to the vehicle behind the seat 602. In other embodiments, the second shoulder web portion 521 can be attached to other portions or components of e.g., the seat 602, the harness assembly 604, and/or the vehicle. The harness assembly 604 can be secured around the user or occupant 613 by attaching each of the shoulder webs 615a and 615b (e.g., distal ends of the first web portions 520a and 520b) to the lap web 623 and attaching the lap web 623 to a conventional buckle 609. In other embodiments, the shoulder webs 615a and 615b can be attached directly to and/or integrated with the lap web 623. In other embodiments, the shoulder webs 615a and 615b can be attached to the conventional buckle 609 or other types of buckles. The various webs described herein can include conventional webs known in the art for use with child seats, seat belts, etc., such as conventional woven nylon straps, belts or webs. In other embodiments, the web adjusters disclosed herein can be used with other types of webs, belts, straps, etc.


In the illustrated embodiment, each of the web adjusters 110 (identified individually as a first web adjuster 110a and a second web adjuster 110b) are attached to first and second web portions 520 and 521 as described above near the shoulder, chest and/or upper body area of the user 613. The first end portion 522a of the first web portion 520a is a free end that extends through the adjuster 110a. The user 613 can pull the free end portion 522a in the second direction B (see FIGS. 5A and 5B) to draw the second end portion 524a in the first direction A and through the adjuster 110a to tighten the harness assembly 604 (e.g., increase tension in the web 615a) around the user 613. As described above, the user can also move the handle 126 and/or pull the release strap 386 to move the cam member 150 to the disengaged position and pull on the second end portion 524a in the second direction B to draw the first end portion 522a in the first direction A and back through the adjuster 110a to loosen the harness assembly 604 (e.g., decrease tension in the web 615a) around the user 613.


While the function and/or operation of the first web adjuster 110a with the first shoulder web 615a is described with reference to FIG. 6 above, the second web adjuster 110b can be used and/or operated with the second shoulder web 615b configured to extend over a second shoulder of the user or occupant 613 in a similar or identical manner. In some embodiments, a similar web adjuster 110 can be used with waist or lap belts or straps (e.g., lap belt 623) of a harness assembly or other type of restraint system. In other embodiments, the web adjuster 110 is positioned near the stomach or waist area of the user 613.


Although the foregoing embodiment illustrates one possible use of the web adjuster 110, those of ordinary skill in the art will appreciate that the web adjuster 110 and/or other web adjusting devices disclosed herein can be used in a wide variety of different restraint systems. Such systems can include, for example, child restraint systems, adult restraint systems, cargo restraint systems, etc. The web adjuster 110 can be used with different types of harnesses, seatbelts, and webbing. For example, the web adjuster 100 can be used with lap belts, shoulder belts, racing harnesses, 3-point harnesses, 4-point harnesses, 5-point harnesses, etc. In another aspect of this embodiment, a web can extend between the cam member and the frame and can enter and exit the adjuster from either end of the frame, rather than from an opening in the frame base. The web adjuster can be used with a single web instead of two separate webs in certain embodiments.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the invention. Further, while various advantages associated with certain embodiments of the invention have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.

Claims
  • 1. A restraint sytem comprising: a web having a first end portion and a second end portion; anda web adjuster for adjusting tension in the web, the web adjuster including a frame having a pair of opposing sidewalls and a base extending therebetween, wherein the base includes a front portion having an upper surface and a lower surface, a rear portion, and an opening therebetween, wherein the web extends adjacent to the upper surface of the front portion, through the opening, and adjacent to the lower surface of the front portion such that the first end portion of the web extends in generally the same direction as the second end portion; anda cam member rotatably coupled between the opposing sidewalls and including a central axis and a cam surface portion having a plurality of engagement features, wherein the cam member is biased to rotate in a first rotational direction to drive individual engagement features toward the upper surface of the front portion of the base and against the web to restrict movement of the web from the upper surface through the opening in the base, wherein the plurality of engagement features extend away from the central axis and are angled in a second rotational direction, opposite to the first rotational direction, and wherein the cam member is rotatable in the second rotational direction to permit movement of the web from the lower surface through the opening in the base.
  • 2. The restraint system of claim 1 wherein a first individual engagement feature is positioned at a first radial distance from the central axis, a second individual engagement feature is positioned at a second radial distance from the central axis, and a third individual engagement feature is positioned at a third radial distance from the central axis, and wherein the second radial distance is greater than the first radial distance, and the third radial distance is greater than the second radial distance.
  • 3. The restraint system of claim 2 wherein the cam member includes a bore extending along the central axis, wherein the upper surface includes a horizontal surface portion and a ramped surface portion extending from the horizontal surface portion, wherein the base further includes a curved surface portion between the upper surface and the lower surface and forming an edge of the opening, wherein the web is positionable to extend along the horizontal surface portion, the ramped surface portion, and the curved surface portion, and wherein the web adjuster further comprises: a biasing member positioned within the bore of the cam member to bias the cam member in the first rotational direction; anda handle operably coupled to the cam member, wherein the handle is operable to rotate the cam member in the second rotational direction to drive individual engagement features away from the base to permit movement of the web.
  • 4. The restraint system of claim 3, further comprising a strap coupled to the handle and operable to rotate the cam member in the second rotational direction, and wherein one or more of the plurality of engagement features is positioned to contact the web to remove contaminants from the web when the web is moved.
  • 5. The restraint system of claim 1, further comprising means for biasing the cam member in the first rotational direction.
  • 6. The restraint system of claim 1 wherein the base further includes a curved surface portion forming an edge of the opening, and wherein the curved surface portion provides a smooth surface for movement of the web through the opening.
  • 7. The restraint system of claim 1 wherein the cam surface portion is eccentrically oriented relative to the central axis.
  • 8. A restraint system, comprising: a web having a first end portion and a second end portion; anda web adjuster for adjusting tension in the web, the web adjuster including: a frame having a base portion, wherein the base portion includes a front portion, a rear portion, and an opening therebetween, wherein the web extends along an upper surface of the front portion, through the opening, and at least partially along a lower surface of the front portion such that the first end portion extends away from the web adjuster in generally the same direction as the second end portion;a cam member rotatably coupled to the frame, wherein the cam member extends along a central axis and includes a first engagement feature positioned at a first radial distance from the central axis and a second engagement feature positioned at a second radial distance from the central axis, larger than the first radial distance, wherein the web extends between the cam member and the base portion, and wherein the cam member is rotatable to drive at least one of the first engagement feature and the second engagement feature toward the base portion to engage the web and restrict movement of the web through the opening in at least one direction.
  • 9. The restraint system of claim 8 wherein the base portion includes a curved surface portion forming an edge of the opening, and wherein the curved surface portion reduces friction on the web during movement of the web through the opening.
  • 10. The restraint system of claim 8 wherein the cam member includes a bore, and wherein the web adjuster further includes a biasing member positioned in the bore to bias the cam member rotate in a rotational direction that drives drive at least one of the first engagement feature and the second engagement feature toward the first horizontal surface to engage the web and restrict movement of the web.
  • 11. The restraint system of claim 8 wherein the cam member is rotatable in a first rotatable direction to drive at least one of the first engagement feature and the second engagement feature toward the upper surface of the front portion of the base portion to engage the web and restrict movement of the web from the upper surface through the opening in the base portion, and wherein the first engagement feature and the second engagement feature are angled in a second rotational direction, opposite to the first rotational direction.
  • 12. The restraint system of claim 8, further comprising a handle coupled to the cam member and a strap coupled to the handle, wherein the strap is operable to move the handle to rotate the cam member in a rotational direction to release a tension in the web.
  • 13. The restraint system of claim 8 wherein rotation of the cam member moves the first engagement feature and the second engagement feature along a surface of the web to remove debris therefrom.
  • 14. The restraint system of claim 8 wherein movement of the web between the upper surface of the front portion of the base portion and the cam member moves the web against the first engagement feature and the second engagement feature and removes debris from the web.
  • 15. A restraint system comprising: a web;a frame having a first end portion, a second end portion, and an opening between the first end portion and the second end portion, wherein the first end portion includes an upper surface portion, a curved surface portion forming an edge of the opening, and a lower surface portion, and wherein the web extends along the upper surface portion, through the opening, and along the lower surface portion; anda cam member rotatably coupled to the frame, wherein the cam member extends along a central axis and includes a cam surface portion having a plurality of protrusions, wherein the cam surface portion is eccentrically oriented relative to the central axis, and wherein the cam member is rotatable to move an individual protrusion toward the horizontal surface portion to engage the web and restrict movement of the web.
  • 16. The restraint system of claim 15 wherein the plurality of protrusions are shaped to clear debris from the web when there is relative motion between the web and the plurality of protrusions while the web and the plurality of protrusions are in contact.
  • 17. The restraint system of claim 15 wherein the plurality of protrusions extend away from the central axis and are angled in a rotational direction.
  • 18. The restraint system of claim 15, further comprising a handle coupled to the cam member, wherein the handle is operable to rotate the cam member to release a tension in the web.
  • 19. The restraint system of claim 18, further comprising a strap operably coupled to the handle, wherein the strap is operable to rotate the cam member via the handle.
  • 20. The restraint system of claim 15 wherein the cam member includes a bore extending along the central axis, wherein the web adjuster further comprises a shaft extending through the bore and a biasing member positioned within the bore and encircling the shaft, wherein the cam member is rotatably coupled to the frame via the shaft, and wherein the biasing member biases the cam member to rotate in a direction that moves the individual protrusion toward the horizontal surface portion to engage the web and restrict movement of the web.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Provisional Application No. 62/092,769, filed Dec. 16, 2014, and titled WEB ADJUSTERS FOR USE WITH RESTRAINT SYSTEMS AND ASSOCIATED METHODS OF USE AND MANUFACTURE, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (576)
Number Name Date Kind
906045 Martin Dec 1908 A
1079080 Ward Nov 1913 A
1369456 Meredith Feb 1921 A
1438898 Carpmill Dec 1922 A
1816262 Ritter Jul 1931 A
1930378 Beagan Oct 1933 A
2132556 Blackshaw Oct 1938 A
2255258 Lethern et al. Sep 1941 A
2372557 Dowd Mar 1945 A
2393178 Manson Jan 1946 A
2437585 Zimmern Mar 1948 A
2482693 Rogers et al. Sep 1949 A
2538641 Elsner Jan 1951 A
2549841 Morrow et al. Apr 1951 A
2639852 Sanders et al. May 1953 A
2641813 Loxham Jun 1953 A
2668997 Irvin et al. Feb 1954 A
2710999 Davis Jun 1955 A
2763451 Moran Sep 1956 A
2803864 Bishaf Aug 1957 A
2845233 Pfankuch et al. Jul 1958 A
2846745 Lathrop Aug 1958 A
2869200 Phillips et al. Jan 1959 A
2876516 Cummings Mar 1959 A
2892232 Quilter Jun 1959 A
2893088 Harper et al. Jul 1959 A
2899732 Cushman Aug 1959 A
2901794 Prete, Jr. Sep 1959 A
2921353 Cushman Jan 1960 A
2938254 Gaylord May 1960 A
D188897 Prete, Jr. Sep 1960 S
2964815 Sereno Dec 1960 A
2965942 Carter Dec 1960 A
3029487 Shinichiro Apr 1962 A
3034596 Twaits, Jr. May 1962 A
3084411 Lindblad Apr 1963 A
3091010 Davis May 1963 A
3104440 Davis Sep 1963 A
3110071 Higuchi Nov 1963 A
3118208 Wexler Jan 1964 A
3132399 Cooper May 1964 A
3137907 Unai Jun 1964 A
D198566 Holmberg Jul 1964 S
3142103 Lindblad Jul 1964 A
3142968 Basham et al. Aug 1964 A
3145442 Brown Aug 1964 A
3165805 Lower Jan 1965 A
3178226 Cates Apr 1965 A
3179992 Murphy, Sr. Apr 1965 A
3183568 Gaylord May 1965 A
3189963 Warner et al. Jun 1965 A
3218685 Atumi Nov 1965 A
3226791 Carter Jan 1966 A
3233941 Selzer Feb 1966 A
3256576 Klove, Jr. et al. Jun 1966 A
3262169 Jantzen Jul 1966 A
3287062 Board et al. Nov 1966 A
3289261 Davis Dec 1966 A
3293713 Gaylord Dec 1966 A
3306662 Finnigan Feb 1967 A
3312502 Coe Apr 1967 A
3323829 Liem Jun 1967 A
3369842 Adams et al. Feb 1968 A
3380776 Dillender Apr 1968 A
3414947 Holmberg et al. Dec 1968 A
3428029 Klickstein et al. Feb 1969 A
3451720 Makinen Jun 1969 A
3473201 Hopka et al. Oct 1969 A
3491414 Stoffel Jan 1970 A
3505711 Carter Apr 1970 A
3523342 Spires Aug 1970 A
D218589 Lohr Sep 1970 S
3564672 McIntyre Feb 1971 A
3576056 Barcus Apr 1971 A
3591900 Brown Jul 1971 A
3605207 Glauser et al. Sep 1971 A
3605210 Lohr Sep 1971 A
3631571 Stoffel Jan 1972 A
3639948 Sherman Feb 1972 A
3644967 Romanzi, Jr. et al. Feb 1972 A
3648333 Stoffel Mar 1972 A
3658281 Gaylord Apr 1972 A
3673645 Burleigh Jul 1972 A
3678542 Prete, Jr. Jul 1972 A
3695696 Lohr et al. Oct 1972 A
3714684 Gley Feb 1973 A
3744102 Gaylord Jul 1973 A
3744103 Gaylord Jul 1973 A
3747167 Pravaz Jul 1973 A
3760464 Higuchi Sep 1973 A
3766611 Gaylord Oct 1973 A
3766612 Hattori Oct 1973 A
3775813 Higuchi Dec 1973 A
3825979 Jakob Jul 1974 A
3827716 Vaughn et al. Aug 1974 A
3856351 Garvey Dec 1974 A
3879810 Prete, Jr. et al. Apr 1975 A
3898715 Balder Aug 1975 A
3935618 Fohl Feb 1976 A
3964138 Gaylord Jun 1976 A
3975800 Farlind Aug 1976 A
3986234 Frost et al. Oct 1976 A
3995885 Plesniarski Dec 1976 A
4018399 Rex Apr 1977 A
4026245 Arthur May 1977 A
4051743 Gaylord Oct 1977 A
4095313 Piljay et al. Jun 1978 A
D248618 Anthony Jul 1978 S
4100657 Minolla Jul 1978 A
4118833 Knox et al. Oct 1978 A
4128924 Happel et al. Dec 1978 A
4136422 Ivanov et al. Jan 1979 A
4148224 Craig Apr 1979 A
4181832 Ueda Jan 1980 A
4184234 Anthony et al. Jan 1980 A
4185363 David Jan 1980 A
4196500 Happel et al. Apr 1980 A
4220294 Dipaola Sep 1980 A
4228567 Ikesue et al. Oct 1980 A
4239260 Hollowell Dec 1980 A
4253623 Steger et al. Mar 1981 A
4262396 Koike Apr 1981 A
4273301 Frankila Jun 1981 A
4302049 Simpson Nov 1981 A
4317263 Fohl Mar 1982 A
4321734 Gandelman Mar 1982 A
4323204 Takada Apr 1982 A
4334341 Krautz et al. Jun 1982 A
4336636 Ishiguro et al. Jun 1982 A
4344588 Hollowell et al. Aug 1982 A
4366604 Anthony et al. Jan 1983 A
4385425 Tanaka et al. May 1983 A
4403376 Palloks Sep 1983 A
4408374 Fohl Oct 1983 A
4419874 Brentini Dec 1983 A
4425688 Anthony et al. Jan 1984 A
4428103 Wier et al. Jan 1984 A
4454634 Haglund et al. Jun 1984 A
D274861 Lindblad Jul 1984 S
4457052 Hauber Jul 1984 A
4487454 Biller Dec 1984 A
4491343 Fohl Jan 1985 A
4525901 Krauss Jul 1985 A
4545097 Wier Oct 1985 A
4549769 Pilarski Oct 1985 A
4555831 Otzen et al. Dec 1985 A
4562625 Hunter et al. Jan 1986 A
4569535 Haglund et al. Feb 1986 A
4574911 North et al. Mar 1986 A
D285383 Anthony Sep 1986 S
4617705 Anthony et al. Oct 1986 A
4637102 Teder et al. Jan 1987 A
4638533 Gloomis et al. Jan 1987 A
4640550 Hakansson Feb 1987 A
4644618 Holmberg et al. Feb 1987 A
4646400 Tanaka Mar 1987 A
4648483 Skyba Mar 1987 A
4650214 Higbee Mar 1987 A
4651946 Anthony et al. Mar 1987 A
4656700 Tanaka et al. Apr 1987 A
4660889 Anthony et al. Apr 1987 A
4679852 Anthony et al. Jul 1987 A
4682791 Ernst Jul 1987 A
4685176 Burnside Aug 1987 A
4692970 Anthony et al. Sep 1987 A
4711003 Gelula Dec 1987 A
4716630 Skyba Jan 1988 A
4720148 Anthony et al. Jan 1988 A
4726625 Bougher Feb 1988 A
4727628 Rudholm Mar 1988 A
4733444 Takada Mar 1988 A
4738485 Rumpf Apr 1988 A
4741574 Weightman et al. May 1988 A
4742604 Mazelsky May 1988 A
D296678 Lortz et al. Jul 1988 S
4757579 Nishino et al. Jul 1988 A
4758048 Shuman Jul 1988 A
4766654 Sugimoto Aug 1988 A
4786078 Schreier et al. Nov 1988 A
4786080 Jay Nov 1988 A
4790597 Bauer et al. Dec 1988 A
4809409 Van Riesen Mar 1989 A
4832410 Bougher May 1989 A
4843688 Ikeda Jul 1989 A
4854607 Mandracchia et al. Aug 1989 A
4854608 Barral Aug 1989 A
D303232 Lortz et al. Sep 1989 S
4876770 Bougher Oct 1989 A
4876772 Anthony et al. Oct 1989 A
4884652 Vollmer Dec 1989 A
4901407 Pandola et al. Feb 1990 A
4903377 Doty Feb 1990 A
4911377 Lortz et al. Mar 1990 A
4919484 Bougher et al. Apr 1990 A
4927211 Bolcerek May 1990 A
4934030 Spinosa et al. Jun 1990 A
4940254 Ueno Jul 1990 A
4942649 Anthony et al. Jul 1990 A
4995640 Saito Feb 1991 A
5015010 Homeier et al. May 1991 A
5023981 Anthony et al. Jun 1991 A
5026093 Nishikaji Jun 1991 A
5029369 Oberhardt et al. Jul 1991 A
5031962 Lee Jul 1991 A
5038446 Anthony et al. Aug 1991 A
5039169 Bougher et al. Aug 1991 A
5046687 Herndon Sep 1991 A
5050274 Staniszewski et al. Sep 1991 A
5054815 Gavagan Oct 1991 A
5058244 Fernandez Oct 1991 A
5067212 Ellis Nov 1991 A
5074011 Carlson Dec 1991 A
5074588 Huspen Dec 1991 A
5084946 Lee Feb 1992 A
5088160 Warrick Feb 1992 A
5088163 Van Riesen Feb 1992 A
5097572 Warrick Mar 1992 A
5100176 Ball et al. Mar 1992 A
D327455 Blair Jun 1992 S
5119532 Tanaka Jun 1992 A
5123147 Blair Jun 1992 A
5123673 Tame Jun 1992 A
5142748 Anthony et al. Sep 1992 A
5159732 Burke Nov 1992 A
5160186 Lee Nov 1992 A
5165149 Nihei Nov 1992 A
5170539 Lundstedt et al. Dec 1992 A
D332433 Bougher Jan 1993 S
5176402 Coulon Jan 1993 A
5182837 Anthony et al. Feb 1993 A
5219206 Anthony et al. Jun 1993 A
5219207 Anthony et al. Jun 1993 A
5220713 Lane, Jr. et al. Jun 1993 A
D338119 Merrick Aug 1993 S
5234181 Schroth Aug 1993 A
5236220 Mills Aug 1993 A
5248187 Harrison Sep 1993 A
D342465 Anthony et al. Dec 1993 S
5267377 Gillis et al. Dec 1993 A
5269051 McFalls Dec 1993 A
5272770 Allen et al. Dec 1993 A
5282672 Borlinghaus Feb 1994 A
5282706 Anthony et al. Feb 1994 A
5283933 Wiseman et al. Feb 1994 A
5286057 Forster Feb 1994 A
5286090 Templin et al. Feb 1994 A
5292181 Dybro Mar 1994 A
5301371 Chao Apr 1994 A
5306044 Tucker Apr 1994 A
5308148 Peterson et al. May 1994 A
5311653 Merrick May 1994 A
5332968 Brown Jul 1994 A
5350195 Brown Sep 1994 A
5350196 Atkins Sep 1994 A
5364048 Fujimura et al. Nov 1994 A
5369855 Tokugawa Dec 1994 A
5370333 Lortz et al. Dec 1994 A
5375879 Williams et al. Dec 1994 A
5380066 Wiseman et al. Jan 1995 A
5392535 Van Noy et al. Feb 1995 A
5397171 Leach Mar 1995 A
5403038 McFalls Apr 1995 A
5406681 Olson Apr 1995 A
5411292 Collins et al. May 1995 A
5416957 Renzi, Sr. et al. May 1995 A
D359710 Chinni et al. Jun 1995 S
5432987 Schroth Jul 1995 A
5435272 Epstein Jul 1995 A
5443302 Dybro Aug 1995 A
D362415 Takimoto Sep 1995 S
5451094 Templin et al. Sep 1995 A
D364124 Lortz et al. Nov 1995 S
5471714 Olson Dec 1995 A
5495646 Scrutchfield et al. Mar 1996 A
5497956 Crook Mar 1996 A
5511856 Merrick et al. Apr 1996 A
5516199 Crook et al. May 1996 A
5526556 Czank Jun 1996 A
5540403 Standley Jul 1996 A
5560565 Merrick et al. Oct 1996 A
5561891 Hsieh Oct 1996 A
5566431 Haglund Oct 1996 A
5568676 Freeman Oct 1996 A
5570933 Rouhana et al. Nov 1996 A
5577683 Imai Nov 1996 A
5579785 Bell Dec 1996 A
5584107 Koyanagi et al. Dec 1996 A
5588189 Gorman et al. Dec 1996 A
5606783 Gillis et al. Mar 1997 A
5622327 Heath et al. Apr 1997 A
5628548 Lacoste May 1997 A
5634664 Seki et al. Jun 1997 A
5640468 Hsu Jun 1997 A
5669572 Crook Sep 1997 A
5695243 Anthony et al. Dec 1997 A
5699594 Czank et al. Dec 1997 A
D389426 Merrick et al. Jan 1998 S
5722689 Chen et al. Mar 1998 A
5743597 Jessup et al. Apr 1998 A
5765774 Maekawa et al. Jun 1998 A
5774947 Anscher Jul 1998 A
5779319 Merrick Jul 1998 A
D397063 Woellert et al. Aug 1998 S
5788281 Yanagi et al. Aug 1998 A
5788282 Lewis Aug 1998 A
5794878 Carpenter et al. Aug 1998 A
5806148 Mcfalls et al. Sep 1998 A
5813097 Woellert et al. Sep 1998 A
5839793 Merrick et al. Nov 1998 A
5857247 Warrick et al. Jan 1999 A
5873599 Bauer et al. Feb 1999 A
5873635 Merrick Feb 1999 A
5882084 Verellen et al. Mar 1999 A
D407667 Homeier Apr 1999 S
5908223 Miller Jun 1999 A
5915630 Step Jun 1999 A
5934760 Schroth Aug 1999 A
D416827 Anthony et al. Nov 1999 S
5979026 Anthony Nov 1999 A
5979982 Nakagawa Nov 1999 A
5996192 Haines et al. Dec 1999 A
6003899 Chaney Dec 1999 A
6017087 Anthony et al. Jan 2000 A
6056320 Khalifa et al. May 2000 A
6065367 Schroth May 2000 A
6065777 Merrick May 2000 A
6123388 Vits et al. Sep 2000 A
6182783 Bayley Feb 2001 B1
RE37123 Templin et al. Apr 2001 E
6224154 Stoki May 2001 B1
6230370 Nelsen May 2001 B1
6260884 Bittner et al. Jul 2001 B1
6295700 Plzak Oct 2001 B1
6309024 Busch Oct 2001 B1
6312015 Merrick et al. Nov 2001 B1
6315232 Merrick Nov 2001 B1
6322140 Jessup et al. Nov 2001 B1
6322149 Conforti et al. Nov 2001 B1
6325412 Pan Dec 2001 B1
6328379 Merrick et al. Dec 2001 B1
6343841 Gregg et al. Feb 2002 B1
6351717 Lambrecht Feb 2002 B2
6357790 Swann et al. Mar 2002 B1
6358591 Smith Mar 2002 B1
6363591 Bell et al. Apr 2002 B1
6367882 Van Druff et al. Apr 2002 B1
6374168 Fujii Apr 2002 B1
6400145 Chamings et al. Jun 2002 B1
6412863 Merrick et al. Jul 2002 B1
6418596 Haas Jul 2002 B2
6425632 Anthony et al. Jul 2002 B1
6442807 Adkisson Sep 2002 B1
6446272 Lee Sep 2002 B1
6463638 Pontaoe Oct 2002 B1
6467849 Deptolla Oct 2002 B1
6485057 Midorikawa et al. Nov 2002 B1
6485098 Vits et al. Nov 2002 B1
6508515 Vits et al. Jan 2003 B2
6513208 Sack et al. Feb 2003 B1
6520392 Thibodeau et al. Feb 2003 B2
6543101 Sack et al. Apr 2003 B2
6547273 Grace et al. Apr 2003 B2
6560825 Maciejczyk May 2003 B2
6566869 Chamings et al. May 2003 B2
6588077 Katsuyama et al. Jul 2003 B2
6592149 Sessoms Jul 2003 B2
6606770 Badrenas Buscart Aug 2003 B1
6619753 Takayama Sep 2003 B2
6631926 Merrick et al. Oct 2003 B2
6665912 Turner et al. Dec 2003 B2
6694577 Di Perrero Feb 2004 B2
6711790 Pontaoe Mar 2004 B2
6719233 Specht et al. Apr 2004 B2
6719326 Schroth et al. Apr 2004 B2
6722601 Kohlndorfer et al. Apr 2004 B2
6722697 Krauss et al. Apr 2004 B2
6733041 Arnold et al. May 2004 B2
6739541 Palliser et al. May 2004 B2
6749150 Kohlndorfer et al. Jun 2004 B2
6763557 Steiff et al. Jul 2004 B2
6769157 Meal Aug 2004 B1
6786294 Specht Sep 2004 B2
6786510 Roychoudhury et al. Sep 2004 B2
6786511 Heckmayr Sep 2004 B2
6793291 Kocher Sep 2004 B1
6796007 Anscher Sep 2004 B1
6802470 Smithson et al. Oct 2004 B2
6820310 Woodard et al. Nov 2004 B2
6820902 Kim Nov 2004 B2
6834822 Koning et al. Dec 2004 B2
6836754 Cooper Dec 2004 B2
6837519 Moskalik et al. Jan 2005 B2
6840544 Prentkowski Jan 2005 B2
6851160 Carver Feb 2005 B2
6857326 Specht et al. Feb 2005 B2
6860671 Schulz Mar 2005 B2
6863235 Koning et al. Mar 2005 B2
6863236 Kempf et al. Mar 2005 B2
6868585 Anthony et al. Mar 2005 B2
6868591 Dingman et al. Mar 2005 B2
6871876 Xu Mar 2005 B2
6874819 O'Neill Apr 2005 B2
6882914 Gioutsos et al. Apr 2005 B2
6886889 Vits et al. May 2005 B2
6896291 Peterson May 2005 B1
6902193 Kim et al. Jun 2005 B2
6913288 Schulz et al. Jul 2005 B2
6916045 Clancy, III et al. Jul 2005 B2
6921136 Bell et al. Jul 2005 B2
6922875 Sato et al. Aug 2005 B2
6931669 Ashline Aug 2005 B2
6935701 Arnold et al. Aug 2005 B1
6951350 Heidorn et al. Oct 2005 B2
6957789 Bowman et al. Oct 2005 B2
6959946 Desmarais et al. Nov 2005 B2
6962394 Anthony et al. Nov 2005 B2
6966518 Kohlndorfer et al. Nov 2005 B2
6969022 Bell et al. Nov 2005 B2
6969122 Sachs et al. Nov 2005 B2
6993436 Specht et al. Jan 2006 B2
6997474 Midorikawa et al. Feb 2006 B2
6997479 Desmarais et al. Feb 2006 B2
7010836 Acton et al. Mar 2006 B2
D519406 Merrill et al. Apr 2006 S
7025297 Bell et al. Apr 2006 B2
7029067 Vits et al. Apr 2006 B2
7040696 Vits et al. May 2006 B2
7065843 Wu Jun 2006 B1
7073866 Berdahl Jul 2006 B1
7077475 Boyle Jul 2006 B2
7080856 Desmarais et al. Jul 2006 B2
7083147 Movsesian et al. Aug 2006 B2
7100991 Schroth Sep 2006 B2
7108114 Mori et al. Sep 2006 B2
7118133 Bell et al. Oct 2006 B2
7131667 Bell et al. Nov 2006 B2
7137648 Schulz et al. Nov 2006 B2
7137650 Bell et al. Nov 2006 B2
7140571 Hishon et al. Nov 2006 B2
7144085 Vits et al. Dec 2006 B2
7147251 Bell et al. Dec 2006 B2
D535214 Kolasa Jan 2007 S
7159285 Karlsson Jan 2007 B2
7180258 Specht et al. Feb 2007 B2
7182370 Arnold Feb 2007 B2
7210707 Schroth May 2007 B2
7216827 Tanaka et al. May 2007 B2
7219929 Bell et al. May 2007 B2
7232154 Desmarais et al. Jun 2007 B2
7237741 Specht Jul 2007 B2
7240405 Webber et al. Jul 2007 B2
7240924 Kohlndorfer et al. Jul 2007 B2
7246854 Dingman et al. Jul 2007 B2
7263750 Keene et al. Sep 2007 B2
7278684 Boyle Oct 2007 B2
D555358 King Nov 2007 S
7300013 Morgan et al. Nov 2007 B2
7341216 Heckmayr Mar 2008 B2
7343650 Baldwin Mar 2008 B2
7360287 Cerruti et al. Apr 2008 B2
7367590 Koning et al. May 2008 B2
7377464 Morgan May 2008 B2
7384014 Ver Hoven et al. Jun 2008 B2
7395585 Longley et al. Jul 2008 B2
7404239 Walton et al. Jul 2008 B1
7407193 Yamaguchi et al. Aug 2008 B2
D578931 Toltzman et al. Oct 2008 S
7452003 Bell Nov 2008 B2
7455256 Morgan Nov 2008 B2
7461866 Desmarais et al. Dec 2008 B2
7475840 Heckmayr Jan 2009 B2
7477139 Cuevas Jan 2009 B1
7481399 Nöhren et al. Jan 2009 B2
7506413 Dingman et al. Mar 2009 B2
7516808 Tanaka Apr 2009 B2
7520036 Baldwin et al. Apr 2009 B1
D592543 Kolasa May 2009 S
D592830 Whiteside May 2009 S
7533902 Arnold et al. May 2009 B2
7547043 Kokeguchi et al. Jun 2009 B2
D603753 Palmer et al. Nov 2009 S
7614124 Keene et al. Nov 2009 B2
7631830 Boelstler et al. Dec 2009 B2
7669794 Boelstler et al. Mar 2010 B2
7673945 Riffel et al. Mar 2010 B1
7698791 Pezza Apr 2010 B2
7716794 Wu May 2010 B2
7716795 Versellie et al. May 2010 B2
7722081 Van Druff et al. May 2010 B2
7739019 Robert et al. Jun 2010 B2
7753410 Coultrup Jul 2010 B2
7775557 Boström et al. Aug 2010 B2
7794024 Kranz et al. Sep 2010 B1
RE41790 Stanley Oct 2010 E
7861341 Ayette et al. Jan 2011 B2
7862124 Dingman Jan 2011 B2
7871132 Rogers Jan 2011 B2
D632611 Buscart Feb 2011 S
D637518 Chen May 2011 S
7934775 Walker et al. May 2011 B2
7945975 Thomas et al. May 2011 B2
8011730 Greenwood Sep 2011 B2
8037581 Gray et al. Oct 2011 B2
8096027 Jung et al. Jan 2012 B2
8240012 Walega et al. Aug 2012 B2
8240767 Greenwood Aug 2012 B2
8256073 Zhang Sep 2012 B2
8381373 Jung Feb 2013 B2
8387216 Martinson Mar 2013 B1
8468660 Holler Jun 2013 B2
8567022 Keene et al. Oct 2013 B2
8627554 Hagan et al. Jan 2014 B1
D729119 Janes May 2015 S
20020089163 Bedewi et al. Jul 2002 A1
20020135175 Schroth Sep 2002 A1
20020145279 Murray Oct 2002 A1
20030015863 Brown et al. Jan 2003 A1
20030027917 Namiki et al. Feb 2003 A1
20030085608 Girardin May 2003 A1
20040084953 Hansen May 2004 A1
20040169411 Murray Sep 2004 A1
20040174063 Kocher Sep 2004 A1
20040217583 Wang Nov 2004 A1
20040227390 Schroth Nov 2004 A1
20040251367 Suzuki et al. Dec 2004 A1
20050073187 Frank et al. Apr 2005 A1
20050107932 Bolz et al. May 2005 A1
20050127660 Liu Jun 2005 A1
20050175253 Li et al. Aug 2005 A1
20050179244 Schroth Aug 2005 A1
20050206151 Ashline Sep 2005 A1
20050284977 Specht et al. Dec 2005 A1
20060071535 Kim et al. Apr 2006 A1
20060075609 Dingman et al. Apr 2006 A1
20060090313 Muromachi et al. May 2006 A1
20060097095 Boast May 2006 A1
20060237573 Boelstler et al. Oct 2006 A1
20060243070 Van Druff et al. Nov 2006 A1
20060267394 David et al. Nov 2006 A1
20060277727 Keene et al. Dec 2006 A1
20070052255 O'Connor Mar 2007 A1
20070080528 Itoga et al. Apr 2007 A1
20070241549 Boelstler et al. Oct 2007 A1
20070257480 Van Druff et al. Nov 2007 A1
20080018156 Hammarskjold et al. Jan 2008 A1
20080030013 Burghardt Feb 2008 A1
20080054615 Coultrup Mar 2008 A1
20080087754 Aihara et al. Apr 2008 A1
20080093833 Odate Apr 2008 A1
20080100051 Bell et al. May 2008 A1
20080100122 Bell et al. May 2008 A1
20080136246 Salter Jun 2008 A1
20080172847 Keene et al. Jul 2008 A1
20080224460 Erez Sep 2008 A1
20090014991 Smyth et al. Jan 2009 A1
20090069983 Humbert et al. Mar 2009 A1
20090179412 Gray et al. Jul 2009 A1
20090183348 Walton et al. Jul 2009 A1
20090212549 Jones Aug 2009 A1
20090241305 Buckingham Oct 2009 A1
20100046843 Ma et al. Feb 2010 A1
20100115737 Foubert May 2010 A1
20100125983 Keene et al. May 2010 A1
20100146749 Jung Jun 2010 A1
20100213753 Humbert Aug 2010 A1
20100219667 Merrill et al. Sep 2010 A1
20110010901 Holler Jan 2011 A1
20110043402 Sasakawa Feb 2011 A1
20110057500 Walker et al. Mar 2011 A1
20110162175 Gnesda et al. Jul 2011 A1
20120242134 Siegel Sep 2012 A1
20120284966 Greaves et al. Nov 2012 A1
20120292893 Baca et al. Nov 2012 A1
20130127229 Humbert May 2013 A1
20130212845 Ford et al. Aug 2013 A1
20140230202 Humbert et al. Aug 2014 A1
Foreign Referenced Citations (36)
Number Date Country
2036493 Aug 1991 CA
2038505 Sep 1991 CA
2091526 Oct 1993 CA
2112960 Dec 2002 CA
2450744 Feb 2003 CA
4019402 Dec 1991 DE
69019765 Jul 1995 DE
4421688 Dec 1995 DE
0026564 Apr 1981 EP
0254383 Jan 1988 EP
0363062 Apr 1990 EP
0380442 Aug 1990 EP
0401455 Dec 1990 EP
0404730 Dec 1990 EP
0449772 Oct 1991 EP
0519296 Dec 1992 EP
0561274 Sep 1993 EP
0608564 Aug 1994 EP
1153789 Nov 2001 EP
1447021 Aug 2004 EP
1298012 Jul 1962 FR
888436 Jan 1962 GB
1047761 Nov 1966 GB
1582973 Jan 1981 GB
2055952 Mar 1981 GB
2356890 Jun 2001 GB
52055120 May 1977 JP
63141852 Jun 1988 JP
63247150 Oct 1988 JP
10119611 May 1998 JP
2001138858 May 2001 JP
8603386 Jun 1986 WO
03009717 Feb 2003 WO
2004004507 Jan 2004 WO
2006041859 Apr 2006 WO
2010027853 Mar 2010 WO
Non-Patent Literature Citations (19)
Entry
Britax, “COMPAQ: Convertible Car Seats,” Buckle Image, accessed Oct. 12, 2010, www.britax.com.au/car-seats/compaq, 2 pages. This has been publicly available for at least one year prior to this application's filed.
Global Seating Systems LLC, “CCOPS Cobra: Soldier Survival System,” 1 page, undated. [Color Copy].
Holmbergs, “Art.no. 63/4959-XX and 63/4958-XX GR.1 Buckle, 3/5 point,” accessed Sep. 15, 2010, www.holmbergs.se, 2 pages.
Holmbergs, “Gr. 0+ 3-point buckle with plastic chassi and tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/70/1/, 1 page.
Holmbergs, “Gr. 1 Buckle, Viking,” accessed Sep. 15, 2010, http://www.holmbergs.se1/1/1.0.1.0/53/1/, 1 page.
Holmbergs, “Group 1 Systems,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/87/1/, 1 page.
Holmbergs, “Infant buckle with steel tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/74/1/, 1 page.
Holmbergs, “Infant buckle. 5-point with plastic chassi and plastic tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/73/1/, 1 page.
International Search Report and Written Opinion; Application No. PCT/US2015/066190; dated Mar. 2, 2016; 10 pages.
Novarace, “DL: Group 1 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com—content&task=view&id=36&Itemid=48, 1 page.
Novarace, “GT 3: Group 0 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com—content&task=view&id=33&Itemid=46, 1 page.
Novarace, “GT 5: Group 0 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com—content&task=view&id=30&Itemid=44, 1 page.
Novarace, “GT: Group 1 Buckle,” accessed Oct. 8, 2010, http://www.novarace.com/gt.htm,1 page.
Novarace, “KMA 1: Group 1 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com—content&task=view&id=34&Itemid=47, 1 page.
Sabelt Catalog, “SAB104: Standard tongue hole to facilitate webbing insert,” p. 23, 1 page.
Sabelt, “Daphne 0: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-DAPHNE-0.htm1/1/, 1 page.
Sabelt, “RO1000: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing—RO1000.htm1/1/pid/1,1 page.
Sabelt, “SAB004: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-SAB004.htm1/1/pid/1, 1 page.
Sabelt, “SABUSA004: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-SABUSA004.htm1/1/, 1 page.
Related Publications (1)
Number Date Country
20160166013 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
62092769 Dec 2014 US