The present invention generally relates to recommending Web application programming interfaces (API) and more specifically to recommending a “next” Web API considering already selected Web APIs.
One embodiment of the present invention is a computer-implemented method of recommending an application programming interface (API) includes: gathering Web API data and usage data; generating co-occurrence documents from the Web API data and usage data; deriving service co-occurrence topic and features from the co-occurrence topics; and generating a list of recommended Web APIs for use with the Web APIs.
Other embodiments include a computer program product and a system.
Additional objects, features, and advantages of the present disclosure will become more clearly apparent when the following description is taken in conjunction with the accompanying drawings, in which:
By way of overview, an application programming interface (API) is a set of routines, protocols, and tools for building software applications. An API makes it easier for software developers to develop a software application by providing basic building blocks. These basic building blocks provide functions and sets of attributes associated with those functions including behavior and execution of those functions. A software developer then puts the basic building blocks together to create the software application. In essence, a software application's API defines a proper way for the software developer to request services from that software application. A world-wide web (“Web”) API makes these services available through the Web to a potentially large set of consuming applications.
Web APIs may be used for accessing a Web-based software service. Multiple Web APIs may be composed to accomplish a function unbeknownst to an end user. For example, when an end user buys movie tickets online and enters credit card information, the movie ticket Web site uses a Web API to send the credit card information to a remote software application that verifies whether the credit card information is correct. Once payment is confirmed, the remote software application sends a response back to the movie ticket Web site indicating that the move ticket Web site may issue the tickets to the end user. The end user only sees the movie ticket Web site interface, but behind the scenes many software applications are working together using different Web APIs to provide the Web-based software service. Thus, Web-based software service applications may be based on many different Web APIs from multiple sources.
Some aspects of the invention use a probabilistic topic model to reveal latent composition patterns of Web APIs. Discovered topics can be characterized as a multinominal distribution over Web APIs. A latent topic model can thus reveal several features: importance of the topic (i.e., what are important composition patterns), important words in the topic (i.e., what are important APIs for a composition pattern), and transitive co-occurrences (i.e., while not directly used with an API “C”, API “A” may be typically combined with an API “B” which may be combined with API C).
Each of the foregoing features cannot be achieved using existing usage-based recommendation approaches. Existing usage-based solutions can rely on frequent pattern/item set mining, e.g., “API A has been used with API B some x times”, which makes item sets which tend to be deterministic (not probabilistic) and non-transitive.
Some embodiments analyze data on Web APIs, including their identifier and historic usages, using probabilistic topic modeling to derive latent Web API co-occurrences and recommend APIs to use together.
Some embodiments consider data on Web APIs, including past usages, in the generation of co-occurrence documents. If services co-occur repeatedly, including topic importance and representative Web APIs, the co-occurrence document can reflect this by means of a co-occurrence factor. Web API co-occurrence documents count the number of co-occurrences as co-occurrence factor. By way of example, using co-occurrence documents as input, some embodiments derive co-occurrence topics. Based on co-occurrence topics, some embodiments derive service co-occurrence topic features, including topic importance and representative Web APIs. Given one or a list of Web APIs, some embodiments recommend relevant Web APIs to use therewith.
In some embodiments content characterizing input Web APIs is input and associated with co-occurrence topics, such that derived co-occurrence topic features include descriptive words for a topic (if content about Web APIs was associated with topics).
Some embodiments of the invention recommend APIs to use in an existing context (e.g., considering already selected APIs).
Other existing solutions include: (i) interface matching where the data definitions of an API (input and output) are input and a resulting recommendation is based on the question if output of API A can be input of API B, using syntactic (keyword matching) and semantic (based on ontology) approaches; AI planning and work-based solutions that recommend a composite service, also known as workflow; and content-based solutions e.g., where the input is (natural language) service descriptions, and matching includes both syntactic keyword matching and semantic matching based on an ontology.
In contrast, embodiments of the present invention use a probabilistic topic model to reveal the latent composition patterns of web APIs. Discovered topics are characterized as multinominal distribution over web APIs. A latent topic model can thus reveal: importance of the topic (i.e., what are important composition patterns), important words in the topic (i.e., what are important APIs for a composition pattern), transitive co-occurrences (i.e., while not directly used with API C, API A may be typically combined with API B which may be combined with API C), and (words extracted from what content describing APIs to characterize topics). These items cannot be achieved using existing usage-based recommendation approaches.
In step 108 (online mode), the derived web API co-occurrence topics and features are used to view composition patterns and make recommendations e.g., to an end user via their device.
As shown, Web API usage records (e.g., “mashup j”) in block 202, where Sj1, . . . , SjNM depict usage records provided as input to Web API co-occurrence documents (block 204). For example, these can represent web API usage records for mashup j. By way of example, a mashup can be an application that uses a number of APIs. One usage record could be the source code of the application, which can be used to identify which APIs are used. Another usage record associated with mashup j may be a textual description, which mentions the APIs used. These usage records become input to create “web API co-occurrence documents” (in block 204). By way of further example, SCi1, . . . , SCiNsci can represent “web API co-occurrence documents” for an API. These documents can contain all co-occurrences of API1 with other APIs, which can be found across the “web API usage records” that involve API1 For a given Web API or a set of Web APIs, the expected co-occurrence with other Web APIs can be calculated.
The Web API co-occurrence documents from block 204 are provided to Web API co-occurrence topics (block 206), where e.g., Web APIk1 Pk1 are “API co-occurrence topics”. This example utilizes the notion that APIs are related—i.e., are in the same “topic”—based on their co-occurrence documents. The topics (from block 206) along with (optionally) Web API content information (from block 208), where Wi1, . . . , WiNi, are additional “web API content information” for an API, can be used to determine features of topics (in block 210). This information could be, for example, a textual description of an API. Some embodiments include such information, to recommend related APIs, in consideration of some context. For example, consider an application written in the travel domain. This information can be considered to recommend APIs that go along well with already selected APIs as evidence in the travel domain (e.g., existing travel mashups/apps) suggests. In other words, the topics and additional web API content information can be used (in block 210) to determine the features of topics, e.g., the importance of representative web APIs description words.
The output (of block 210) and the output of web API co-occurrence topics (block 206) can (in some embodiments) be provided to a user device (not depicted) as a ranked list of web APIs (in block 212). Expected co-occurrences can be used to rank Web APIs. In block 214 the user can select (through the user's device) a web API from the list provided and the selection is fed back to the web API co-occurrence topics (block 206).
With reference now also to
Some embodiments of deriving Web API co-occurrence topics and features (step 106 of
By way of example, the following features can be extracted: importance of topics, representative Web APIs in a topic (without being subject to bias due to frequent compositions in one topic), and descriptive words for a topic (if content about Web APIs was associated with topics).
Some embodiments of viewing composition patterns and recommendation (step 108 of
In summary, various existing embodiments show that frequent item set mining is deterministic, not probabilistic; is non-transitive. Frequent item set mining cannot reveal: importance of pattern, important services in the pattern, and transitive patterns. Topic model can reveal importance of the topic, important words (services) in the topic, and transitive co-occurrences.
The system of
As depicted, the components of the system of
Bus 304 may represent one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnects (PCI) bus.
Computer system may include a variety of computer system readable media. Such media may be any available media that is accessible by computer system, and it may include both volatile and non-volatile media, removable and non-removable media.
System memory 306 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory or others. Computer system may further include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage system 308 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (e.g., a “hard drive”). Although not shown, a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”), and an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In such instances, each can be connected to bus 304 by one or more data media interfaces.
Computer system may also communicate (via Input/Output (I/O) interfaces 310) with one or more external devices 316, such as a keyboard, a pointing device, a display 318, and/or one or more other devices that enable a user to interact/interface with the computer system; and/or any devices (e.g., network card, modem, network adaptor 312, etc.) that enable computer system to communicate with one or more other computing systems/devices. Such communication can occur via Input/Output (I/O) interfaces 310 and/or network adaptor 312.
By way of further example, the computer system of
The present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s).
In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.