Web-based customer prospects harvester system

Information

  • Patent Grant
  • 7096220
  • Patent Number
    7,096,220
  • Date Filed
    Monday, May 21, 2001
    23 years ago
  • Date Issued
    Tuesday, August 22, 2006
    18 years ago
Abstract
A web-based customer lead harvesting system. The system is based on an application service model, with the programming for the system being accessible to users of the system via web browsers and the Internet. The users, who are typically business enterprises, may access the system to search unstructured Internet data to obtain leads for prospective customers. The system accepts criteria from the user that describes a type or types of potential customers, as well as addresses of Internet sites of interest. A crawler process retrieves the web site data, and stores the data in a web archive. A harvester process then searches the Internet data according to the client-provided criteria. The system returns the names or the identifying information about the prospect together with a link to the document that verifies the prospect's match to the criteria.
Description
TECHNICAL FIELD OF THE INVENTION

This invention relates to electronic commerce, and more particularly to a method of acquiring leads for prospective customers, using Internet data sources.


BACKGROUND OF THE INVENTION

Most small and medium sized companies face similar challenges in developing successful marketing and sales campaigns. These challenges include locating qualified prospects who are making immediate buying decisions. It is desirable to personalize marketing and sales information to match those prospects, and to deliver the marketing and sales information in a timely and compelling manner. Other challenges are to assess current customers to determine which customer profile produces the highest net revenue, then to use those profiles to maximize prospecting results. Further challenges are to monitor the sales cycle for opportunities and inefficiencies, and to relate those findings to net revenue numbers.


Today's corporations are experiencing exponential growth to the extent that the volume and variety of business information collected and accumulated is overwhelming. Further, this information is found in disparate locations and formats. Finally, even if the individual data bases and information sources are successfully tapped, the output and reports may be little more than spreadsheets, pie charts and bar charts that do not directly relate the exposed business intelligence to the companies' processes, expenses, and to its net revenues.


With the growth of the Internet, one trend in developing marketing and sales campaigns is to gather customer information by accessing Internet data sources. Internet data intelligence and data mining products face specific challenges. First, they tend to be designed for use by technicians, and are not flexible or intuitive in their operation; secondly, the technologies behind the various engines are changing rapidly to take advantage of advances in hardware and software, and finally, the results of their harvesting and mining are not typically related to specific goals and objectives.


SUMMARY OF THE INVENTION

One aspect of the invention is a web-based computer system for providing, to a business enterprise client, customer lead information from Internet sources. Overall, the system may be described as an application service system, having a crawler process that retrieves specified Internet web site data, and a web archive for storing the unstructured data. A harvester process is programmed to accept client criteria describing business prospects and their attributes, to search unstructured Internet data for prospects matching those criteria and their attributes, and to deliver the results of the search to the client with a link to a document that verifies the prospect's match to the criteria. As with conventional application service systems, it is accessible by client browser systems via the Internet.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the operating environment for a web based lead generator system in accordance with the invention.



FIG. 2 illustrates the various functional elements of the lead generator system.



FIG. 3 illustrates a first embodiment of the prospects harvester.



FIG. 4 illustrates a second embodiment of the prospects harvester.



FIG. 5 illustrates the security features of the lead generator system.





DETAILED DESCRIPTION OF THE INVENTION

Lead Generator System Overview



FIG. 1 illustrates the operating environment for a web-based customer lead generation system 10 in accordance with the invention. System 10 is in communication, via the Internet, with unstructured data sources 11, an administrator 12, client systems 13, reverse look-up sources 14, and client applications 15.


The users of system 10 may be any business entity that desires to conduct more effective marketing campaigns. For example, these users may be direct marketers who wish to maximizing the effectiveness of direct sales calls, or e-commerce web sites who wish to build audiences.


In general, system 10 may be described as a web-based Application Service Provider (ASP) data collection tool. The general purpose of system 10 is to analyze a client's marketing and sales cycle in order to reveal inefficiencies and opportunities, then to relate those discoveries to net revenue estimates. Part of the latter process is proactively harvesting prequalified leads from external and internal data sources. As explained below, system 10 implements an automated process of vertical industry intelligence building that involves automated reverse lookup of contact information using an email address and key phrase highlighting based on business rules and search criteria.


More specifically, system 10 performs the following tasks:

    • Uses client-provided criteria to search Internet postings for prospects who are discussing products or services that are related to the client's business offerings
    • Selects those prospects matching the client's criteria
    • Pushes the harvested prospect contact information to the client, with a link to the original document that verifies the prospects interest
    • Automatically opens or generates personalized sales scripts and direct marketing materials that appeal to the prospects' stated or implied interests
    • Examines internal sales and marketing materials, and by applying data and text mining analytical tools, generates profiles of the client's most profitable customers
    • Cross-references and matches the customer profiles with harvested leads to facilitate more efficient harvesting and sales presentations
    • In the audience building environment, requests permission to contact the prospect to offer discounts on services or products that are directly or indirectly related to the conversation topic, or to direct the prospect to a commerce source.


System 10 provides open access to its web site. A firewall (not shown) is used to prevent access to client records and the entire database server. Further details of system security are discussed below in connection with FIG. 5.


Consistent with the ASP architecture of system 10, interactions between client system 13 and system 10 will typically be by means of Internet access, such as by a web server 29 (see FIG. 2). Authorized client personnel will be able to create and modify profiles that will be used to search designated web sites and other selected sources for relevant prospects.


Client system 13 may be any computer station or network of computers having data communication to lead generator system 10. Each client system 13 is programmed such that each client has the following capabilities: a master user account and multiple sub user accounts, a user activity log in the system database, the ability to customize and personalize the workspace; configurable, tiered user access; online signup, configuration and modification, sales territory configuration and representation, goals and target establishment, and online reporting comparing goals to target (e.g., expense/revenue; budget/actual).


Administration system 12 performs such tasks as account activation, security administration, performance monitoring and reporting, assignment of master userid and licensing limits (user seats, access, etc.), billing limits and profile, account termination and lockout, and a help system and client communication.


System 10 interfaces with various client applications 15. For example, system 10 may interface with commercially available enterprise resource planning (ERP), sales force automation (SFA), call center, e-commerce, data warehousing, and custom and legacy applications.


Lead Generator System Architecture



FIG. 2 illustrates the various functional elements of lead generator system 10. In the embodiment of FIG. 2, the above described functions of system 10 are partitioned between two distinct processes.


A prospects harvester process 21 uses a combination of external data sources, client internal data sources and user-parameter extraction interfaces, in conjunction with a search, recognition and retrieval system, to harvest contact information from the web and return it to a staging data base 22. In general, process 21 collects business intelligence data from both inside the client's organization and outside the organization. The information collected can be either structured data as in corporate databases/spreadsheet files or unstructured data as in textual files.


Process 21 may be further programmed to validate and enhance the data, utilizing a system of lookup, reverse lookup and comparative methodologies that maximize the value of the contact information. Process 21 may be used to elicit the prospect's permission to be contacted. The prospect's name and email address are linked to and delivered with ancillary information to facilitate both a more efficient sales call and a tailored e-commerce sales process. The related information may include the prospect's email address, Web site address and other contact information. In addition, prospects are linked to timely documents on the Internet that verify and highlight the reason(s) that they are in fact a viable prospect. For example, process 21 may link the contact data, via the Internet, to a related document wherein the contact's comments and questions verify the high level value of the contact to the user of this system (the client).


A profiles generation process 25 analyzes the user's in-house files and records related to the user's existing customers to identify and group those customers into profile categories based on the customer's buying patterns and purchasing volumes. The patterns and purchasing volumes of the existing customers are overlaid on the salient contact information previously harvested to allow the aggregation of the revenue-based leads into prioritized demand generation sets. Process 25 uses an analysis engine and both data and text mining engines to mine a company's internal client records, digital voice records, accounting records, contact management information and other internal files. It creates a profile of the most profitable customers, reveals additional prospecting opportunities, and enables sales cycle improvements. Profiles include items such as purchasing criteria, buying cycles and trends, cross-selling and up-selling opportunities, and effort to expense/revenue correlations. The resulting profiles are then overlaid on the data obtained by process 21 to facilitate more accurate revenue projections and to enhance the sales and marketing process. The client may add certain value judgments (rankings) in a table that is linked to a unique lead id that can subsequently be analyzed by data mining or OLAP analytical tools. The results are stored in the deliverable database 24.


Data Sources



FIG. 3 provides additional detail of the data sources of FIGS. 1 and 2. Access to data sources may be provided by various text mining tools, such as by the crawler process 31 or 41 of FIGS. 3 and 4.


One data source is newsgroups, such as USENET. To access discussion documents from USENET newsgroups such as “news.giganews.com”, NNTP protocol is used by the crawler process to talk to a USENET news server such as “news.giganews.com.” Most of news servers only archive news articles for a limited period (giganews.com archives news articles for two weeks), this crawler 31 incrementally downloads and archives these newsgroups periodically in a scheduled sequence. This aspect of crawler process 31 is controlled by user-specified parameters such as news server name, IP address, newsgroup name and download frequency, etc.


Another data source is web-Based discussion forums. The crawler process follows the hyper links on a web-based discussion forum, traverse these links to user or design specified depths and subsequently access and retrieve discussion documents. Unless the discussion documents are archived historically on the web site, the crawler process will download and archive a copy for each of the individual documents in a file repository. If the discussion forum is membership-based, the crawler process will act on behalf of the authorized user to logon to the site automatically in order to retrieve documents. This function of the crawler process is controlled by user specified parameters such as a discussion forum's URL, starting page, the number of traversal levels and crawling frequency.


A third data source is Internet-based or facilitated mailing lists wherein individuals send to a centralized location emails that are then viewed and/or responded to by members of a particular group. Once a suitable list has been identified a subscription request is initiated. Once approved, these emails are sent to a mail server where they are downloaded, stored in system 10 and then processed in a fashion similar to documents harvested from other sources. The system stores in a database the filters, original URL and approval information to ensure only authorized messages are actually processed by system 10.


A fourth data source is corporations' internal documents. These internal documents may include sales notes, customer support notes and knowledge base. The crawler process accesses corporations' internal documents from their Intranet file system or alternately through an ODBC connection. If internal documents are password-protected, crawler process 31 acts on behalf of the authorized user to logon to the file systems or databases and be able to subsequently retrieve documents. This function of the crawler process is controlled by user-specified parameters such as directory path and database ODBC path, starting file id and ending file id, and access frequency. Other internal sources are customer information, sales records, accounting records, and call center digital voice records.


A fifth data source is web pages from Internet web sites. This function of the crawler process is similar to the functionality associated with web-discussion-forums. Searches are controlled by user-specified parameters such as web site URL, starting page, the number of traversal levels and crawling frequency.


Prospects Harvesting From External and Internal Data Sources


Referring to FIG. 3, the prospects harvester process 21 of system 10 may be implemented so as to mine data from both internal and external sources.


Crawler process 31 is a background process (hourly, daily or weekly), operating on any of the sources described above. It performs an incremental newsgroup download and an incremental and traversal web page download. It may provide a robust interface with text fields in relational databases. Crawler process 31 operates in response to use input that specifies a particular web site or sites. Once downloaded, the Internet data is stored in a database 32.


Crawler process 31 may also be used for permission-based email. The crawler technology is applied to identify and extract emails. It applies marketing and business rules to generate email text that elicits permission from prospect. It may pass filtered and opt-in emails to client. This process may be automatically generated or generated manually by the client.


A harvester process 33 provides extraction of contact information from database 32, based on search criteria. Additional features are a thesaurus/synonym search, automatic email cleansing (remove standard “no spam” and distracter characters), comprehensive reverse lookup of value-add business information, and keyword-based sales prospects prioritizing.


A value-add process 34 provides robust and mandatory lead ranking and tracking functionality, operating either on-line or off-line. It reports basic customer and prospect profiling (i.e., purchasing criteria, time to purchase, pricing window or sensitivity). It may export and import from/to third party sales management or contact management system. It provides search and sub search based on keywords and business criteria, configurable synonym search (add/delete/modify list of related/similar word searches). It may prioritize leads based on keywords and business criteria. It reports potential revenue projections, user and management reporting of lead tracking (new, open, closed, results). It may perform auto email authoring that incorporates intelligent information from prospect's web document and internal business rules. It may further provide an enhanced document summary that contains a short synopsis of the web-based document's context.


A reverse look-up process 35 implements a cascade, multi-site web search for contact information on email addresses. It may search and parse a document for information, to include vcf-type data. It may use a standard reverse email lookup. It may perform a web site search, when email can be linked to a valid company/business URL. It may further parse an email address into name to be used in online white or yellow pages search. It is an intelligent process that eliminates obvious incorrect contacts. For example, if it is known that the contact is from Texas, eliminate all contacts that are not from that state/location.


Prospects Harvesting From External Data Sources



FIG. 4 illustrates another implementation of the prospects harvesting process 21 of FIG. 2.


Crawler process 41 collects information and documents from the Internet. It archives these documents collected from different sources whenever necessary to keep a historical view of the business intelligence.


Indexer 42 indexes the documents retrieved by the crawler 41 and provides the interface for the client to perform searches and sub-searches on specific sets of documents. It also facilitates (1) document keyword highlighting, (2) the extraction of key phrases from documents and (3) subsequently generates a summary from those documents. ThemeScape, UdmSearch or similar packages may be used to index, search and present documents. Indexer process 42 provides support for multiple file formats such as HTML, DHTML, plain text (ASCII), Word document, RTF and relational database text fields. Indexer process 42 can either interact with crawler process 41 or access web file archives directly to retrieve documents in different formats (such as Text, HTML and Doc formats). These documents are then indexed and categorized with their keywords and/or key phrases, date of creation, a brief summary of the original documents and links to the original documents. Links may be either URLs, file path or a path to a database field. This indexing process will be performed on an ongoing basis as discussion articles and web pages are incrementally downloaded. The results are stored in a central location in the database for future access.


Harvester process 43 queries the index database 42a using user input keywords, default buyer phrases, synonyms related to the keywords and predefined stop words. The end results of this process are a set of documents linked to the original documents with preliminary ranking based on keyword relevance. Harvester process 43 then follows these links to extract an email address, telephone number and other contact information from the original documents, either through file archives or web pages on the Internet. The latter functions are based on a set of keywords and parameters specified by customers. The resulting information is then subsequently indexed and cleansed. These email addresses are then entered into a relational database that is cross-correlated with keywords, source, time stamp, demographics information and company profile information. The harvesting results may be organized and stored into the prospects database 43a with contact information, original document links and preliminary rankings.


A value-add process 44 adds robust business intelligence to the harvesting process by linking sales prospects with comprehensive and updated business profile information (such as industry, company size, company business focus and company purchasing budget). Key aspects of this value-add service is accomplished through partnerships with business information sources, such as Harte-Hanks, Hoovers and Dunn & Bradstreet. Reverse lookups may be performed against these business information sources. Combined with harvested business intelligence, this additional business profile information allows organizations to utilize personalized conversations with prospects, thus dramatically improving their sales close ratios and reducing the time and effort required to close the sale. The overall ranking of a sales prospect is based on the prospect's business profile, and the keyword relevance in harvested documents. Using a ranking algorithm, highly targeted and highly qualified sales/marketing prospects may be identified.


A mailer process 45 provides an auto-scripting utility for sales people to store pieces of their sales scripts in a knowledge base system. Once stored in the knowledge base they can be copied and pasted into a sales correspondence or used by an auto scripting tool 45a to generate sales correspondence on-the-fly based on the discussion context associated with sales leads. The mailer process 45 provides opt-in/opt-out interface 45b to the harvesting database. When the prospects receive a promotion or other sales correspondence, they will be given the choice to opt-in or opt-out from the lead system if they are not interested in receiving further information.


Security



FIG. 5 illustrates system security. For the security framework to work effectively, the following assumptions are made: database servers exist behind a properly configured firewall, the web server is located outside the firewall in order for users to be able to access the site and login, the application servers exist behind the same firewall, the only allowed traffic from outside the firewall is to the HTTP and HTTPS ports of the application servers. No other access is permitted.


The task of protecting the application servers and the database servers from unauthorized access attempts by individuals outside the firewall are completely owned by the firewall and thus prohibited. The only incoming traffic should be that which is going to HTTP, HTTPS, and perhaps FTP.


The application server must have an entirely open communication channel to the database servers. The application server will connect to the database server using a single logon account and password. It will open as many connections as necessary (all under this single username and password) and will pool all data requests from all users.


For each user and each session, a special “Security Key” 128 byte encoded string is assigned. Implemented both in the database servers, and in the application servers, this Security Key becomes a time-sensitive passcode that will prove the security authenticity of an incoming request. These security keys can expire after a configurable number of minutes, and they can be assigned only to one user and one session at a time. If a user tries to create two sessions, his first session instantly becomes invalid and no longer usable.


Username and password logons are stored in the database server. The application server fetches the user's input in these fields while logging on and reconciles them against the Logons table in the System Database. If a match is found a Security Key is generated, time-stamped, and linked to the user.


Hacking attempts on a username and password are tracked. For a specific account, sequential invalid logon attempts are counted and recorded. If the bad logon count exceeds the maximum, the account becomes “locked” and only a system administrator can unlock it.


To protect the superuser and admin accounts, these accounts can be restricted to a specific IP address or some other means of machine authentication to ensure that outside hackers have no means to hack into the “root” accounts.


Between the application server and database server is plain text no-encryption. Between the application server and the Internet browsers, there can be either no encryption, or any level of SSL encryption. SSL adds CPU load, but for certain areas of the site might be good to have in place.


Operational Scenario


Users will typically be sales representatives whose main objective is to quickly identify high quality leads and determine the reason for such qualification and best method to position their product or service for sale. Users will need to have control over an individual profile, login to their lead site, have a personal workspace which functions as their lead home, view leads on the screen and progressively drill down into: (1) contact information, (2) document summary and (3) original document with highlighted key phrases, perform multi-level searches and sub searches into their lead base by looking at all relevant documents in their set, generate scripted emails or print documents that includes business logic and intelligent extract from the original Internet document, close and rank leads based on subjective criteria, view lead performance reports on those leads within their area, rank leads by time to closure or estimated sale value.


A user session might follow these general steps: Login, User completes descriptors, User suggests sources, Launch search, Download, Cleanse, Harvest, Highlight, Cascade lookup, Prioritize prospects (date, time, rank, etc), Push to desktop, Web export.


System Platform


Referring again to FIGS. 1 and 2, the server functions of system 10 may be partitioned among more than one piece of equipment. Standard server equipment may be used, such as those capable of running Windows 2000 server software. Other software used to implement the invention may include: enterprise software, such as the software manufactured by ORACLE® or COLDFUSION®; search engine software, such as the software manufactured by VERITY® or THUNDERSTONE®; and report generation software, such as the software manufactured by COGNOS® or SEAGATE®.


System 10 is based on a client/server architecture. The server 29 of system 10 can reside on Windows NT/2000 Server, Sun Solaris (Unix), and AIX (Unix) architectures. The client may be any web browser that supports Java 1.1 (or higher) plug-in, such as Microsoft IE 4.0 (or higher), or Netscape Communicator 4.0 (or higher). These web browsers run on most major platforms, such as Windows95/98/NT/2000, Unix (Sun Solaris, AIX, Linux, etc), or OS/2 and MacOS.


OTHER EMBODIMENTS

Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A prospects harvesting system, maintained by an application service provider, for providing contact data representing information about prospective business customers of a product or service provided by a product/service provider, comprising: a web crawler process operable to locate text documents from unstructured participant-based Internet discussion sites, the sites selected from the group of: newsgroups, discussion forums, and mailing lists;an archive database for storing text documents retrieved by the crawler;a harvester process for searching the archive database for primary personal contact data for at least one prospective customer of the product/service provider;wherein the harvester process operates in response to a query from the product/service and locates at least one document in which a participant of the discussion site is discussing a specified product or service, thereby locating a prospective customer having associated primary contact data;wherein the harvester process further provides relevance data associated with each search;wherein the harvester process further provides a link to the document;a reverse lookup process for receiving the primary contact data from the harvester process and for performing a reverse lookup from the primary contact data;wherein the reverse lookup is performed by using the primary contact data to obtain ancillary contact data about the same prospective customer;wherein the reverse lookup is a cascading multi-site process that accesses Internet data sources other than the discussion sites containing the primary contact data;wherein the primary contact data and the ancillary contact data comprise at least two items of data from the following group: name, email address, telephone number, website address, geographical address, place of employment;a value-add process that accesses business profile data about the business of one or more of the prospective customers, from a data source other than the source of the contact data, and ranks each prospective customer, using a ranking algorithm based on the profile data and the relevance data from the harvester process;a validation process for validating all or part of the contact data;a staging database for storing the primary and ancillary contact data;a mailer process for scripting correspondence to prospective customers; anda web server for providing access to the staging database and the mailer process via a web browser operated by the product/service provider.
  • 2. The system of claim 1, wherein the value-add process operates on line by accessing the Internet.
  • 3. The system of claim 1, wherein the value-add process operates off line.
RELATED PATENT APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/206,772, filed May 24, 2000 and entitled “Server Log File System Utilizing Text Mining Methodologies and Technologies”. The present patent application and additionally the following patent applications are each conversions from the foregoing provisional filing: patent application Ser. No. 09/862,832 entitled “Web-Based Customer Lead Generator System” and filed May 21, 2001; patent application Ser. No. 09/865,802 entitled “Database Server System for Web-Based Business Intelligence” and filed May 24, 2001; patent application Ser. No. 09/865,804 entitled “Data Mining System for Web-Based Business Intelligence” and filed May 24, 2001; patent application Ser. No. 09/865,735 entitled “Text Mining System for Web-Based Business Intelligence” and filed May 24, 2001; patent application Ser. No. 09/865,805 entitled “Text Indexing System for Web-Based Business Intelligence” and filed May 24, 2001.

US Referenced Citations (129)
Number Name Date Kind
4914586 Swinehart et al. Apr 1990 A
5619648 Canale et al. Apr 1997 A
5649114 Deaton et al. Jul 1997 A
5659469 Deaton et al. Aug 1997 A
5787422 Tukey et al. Jul 1998 A
5809481 Baron et al. Sep 1998 A
5897622 Blinn et al. Apr 1999 A
5924068 Richard et al. Jul 1999 A
5924105 Punch, III et al. Jul 1999 A
5931907 Davies et al. Aug 1999 A
5974398 Hanson et al. Oct 1999 A
5987247 Lau Nov 1999 A
5999927 Tukey et al. Dec 1999 A
6026433 D'Arlach et al. Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6029164 Birrell et al. Feb 2000 A
6029174 Sprenger et al. Feb 2000 A
6029195 Herz Feb 2000 A
6034970 Levac et al. Mar 2000 A
6055510 Henrick et al. Apr 2000 A
6058398 Lee May 2000 A
6058418 Kobata May 2000 A
6078891 Riordan et al. Jun 2000 A
6105055 Pizano et al. Aug 2000 A
6134548 Gottsman et al. Oct 2000 A
6145003 Sanu et al. Nov 2000 A
6148289 Virdy Nov 2000 A
6151582 Huang et al. Nov 2000 A
6151601 Papierniak et al. Nov 2000 A
6154766 Yost et al. Nov 2000 A
6170011 Macleod Beck et al. Jan 2001 B1
6199081 Meyerzon et al. Mar 2001 B1
6202210 Ludtke Mar 2001 B1
6212178 Beck et al. Apr 2001 B1
6226623 Schein et al. May 2001 B1
6233575 Agrawal et al. May 2001 B1
6236975 Boe et al. May 2001 B1
6256623 Jones Jul 2001 B1
6262987 Mogul Jul 2001 B1
6263334 Fayyad et al. Jul 2001 B1
6282548 Burner et al. Aug 2001 B1
6289342 Lawrence et al. Sep 2001 B1
6332154 Beck et al. Dec 2001 B1
6338066 Martin et al. Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
6381599 Jones et al. Apr 2002 B1
6393465 Leeds May 2002 B1
6401091 Butler et al. Jun 2002 B1
6401118 Thomas Jun 2002 B1
6405197 Gilmour Jun 2002 B1
6430545 Honarvar et al. Aug 2002 B1
6430624 Jamtgaard et al. Aug 2002 B1
6434544 Bakalash et al. Aug 2002 B1
6434548 Emens et al. Aug 2002 B1
6438543 Kazi et al. Aug 2002 B1
6460038 Khan et al. Oct 2002 B1
6460069 Berlin et al. Oct 2002 B1
6473756 Ballard Oct 2002 B1
6477536 Pasumansky et al. Nov 2002 B1
6480842 Agassi et al. Nov 2002 B1
6480885 Olivier Nov 2002 B1
6490582 Fayyad et al. Dec 2002 B1
6490620 Ditmer et al. Dec 2002 B1
6493703 Knight et al. Dec 2002 B1
6510432 Doyle Jan 2003 B1
6516337 Tripp et al. Feb 2003 B1
6519571 Guheen et al. Feb 2003 B1
6529909 Bowman-Amuah Mar 2003 B1
6546416 Kirsch Apr 2003 B1
6555738 Hughes et al. Apr 2003 B1
6557008 Temple, III et al. Apr 2003 B1
6567797 Schuetze et al. May 2003 B1
6567803 Ramasamy et al. May 2003 B1
6574619 Reddy et al. Jun 2003 B1
6578009 Shinozaki Jun 2003 B1
6581054 Bogrett Jun 2003 B1
6598054 Schuetze et al. Jul 2003 B1
6606644 Ford et al. Aug 2003 B1
6609124 Chow et al. Aug 2003 B1
6611839 Nwabueze Aug 2003 B1
6621505 Beauchamp et al. Sep 2003 B1
6625598 Kraffert Sep 2003 B1
6651048 Agrwal et al. Nov 2003 B1
6651055 Kilmer et al. Nov 2003 B1
6651065 Brown et al. Nov 2003 B1
6665658 DaCosta et al. Dec 2003 B1
6668259 Ventura et al. Dec 2003 B1
6677963 Mani et al. Jan 2004 B1
6684207 Greenfield et al. Jan 2004 B1
6684218 Santos et al. Jan 2004 B1
6691105 Virdy Feb 2004 B1
6700575 Bovarnick et al. Mar 2004 B1
6700590 DeMesa et al. Mar 2004 B1
6714979 Brandt et al. Mar 2004 B1
6721689 Markle et al. Apr 2004 B1
6732161 Hess et al. May 2004 B1
6757689 Battas et al. Jun 2004 B1
6769009 Reisman Jul 2004 B1
6772196 Kirsch et al. Aug 2004 B1
6795830 Banerjee et al. Sep 2004 B1
6804704 Bates et al. Oct 2004 B1
6845370 Burkey et al. Jan 2005 B1
6868395 Szlam et al. Mar 2005 B1
20010020242 Gupta et al. Sep 2001 A1
20010052003 Seki et al. Dec 2001 A1
20010054004 Powers Dec 2001 A1
20010056366 Naismith Dec 2001 A1
20020016735 Runge et al. Feb 2002 A1
20020032603 Yeiser Mar 2002 A1
20020032725 Araujo et al. Mar 2002 A1
20020035501 Handel et al. Mar 2002 A1
20020035568 Benthin et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020046138 Fitzpatrick et al. Apr 2002 A1
20020049622 Lettich et al. Apr 2002 A1
20020072982 Barton et al. Jun 2002 A1
20020073058 Kremer et al. Jun 2002 A1
20020087387 Calver et al. Jul 2002 A1
20020107701 Batty et al. Aug 2002 A1
20020116362 Li et al. Aug 2002 A1
20020143870 Rau Oct 2002 A1
20020161685 Dwinnell Oct 2002 A1
20020178166 Hsia Nov 2002 A1
20030040845 Spool et al. Feb 2003 A1
20030065805 Barnes, Jr. Apr 2003 A1
20030083922 Reed May 2003 A1
20030120502 Robb et al. Jun 2003 A1
20030139975 Perkowski Jul 2003 A1
20040002887 Fliess et al. Jan 2004 A1
Foreign Referenced Citations (7)
Number Date Country
1 162 558 Dec 2001 EP
9530201 Nov 1995 WO
9821679 May 1998 WO
9849641 Nov 1998 WO
9966446 Dec 1999 WO
0023929 Apr 2000 WO
0122692 Mar 2001 WO
Provisional Applications (1)
Number Date Country
60206772 May 2000 US