Web-forming section in a paper machine

Information

  • Patent Grant
  • 4614566
  • Patent Number
    4,614,566
  • Date Filed
    Tuesday, January 31, 1984
    40 years ago
  • Date Issued
    Tuesday, September 30, 1986
    37 years ago
Abstract
A web-forming section and method in a paper machine. The web-forming section includes a lower wire loop having an initial lower wire run constituting an initial single-wire dewatering zone of the web-forming section in which the web is dewatered through the lower wire, and an upper wire loop having a joint run with a subsequent run of the lower wire to form a two-wire dewatering zone of the web-forming section within which dewatering takes place substantially through the upper wire. A first open faced forming roll is situated within the upper wire loop so that the two-wire dewatering zone begins and curves upwardly in the region of the first forming roll. A forming shoe within the lower wire loop has a curved deck whose center of curvature is situated on the side of the lower wire loop and further guides the joint run of the upper and lower wires in the two-wire dewatering zone. A second forming roll situated within the lower wire loop after the forming shoe guides the joint run of the upper and lower wires over a downwardly curved sector thereof. According to the method, initial dewatering occurs in the single-wire dewatering zone through the lower wire. In the two-wire dewatering zone, within the range of the first and second forming rolls and the forming shoe situated therebetween, dewatering occurs first within the sector of the first open forming roll in two directions through both the upper and lower wires and primarily through the upper wire. The web is thus substantially dewatered whereupon within the region of the forming shoe, further dewatering takes place primarily upwardly through the upper wire and thereupon the dewatering pressure is further increased within the range of the second forming roll while dewatering continues to take place substantially through the upper wire.
Description

The present invention relates generally to web-forming sections of paper machines.
Specifically, the present invention is directed to a web-forming section which comprises a lower-wire loop having an initial lower wire run situated with respect to a headbox of the paper machine to form an initial single-wire, preferably substantially horizontal, dewatering zone in which the dilute fiber suspension constituting the web-forming stock is dewatered through the lower wire by dewatering means, the web-forming section also comprising an upper wire loop guided by guide and web-forming rolls having a joint run with a subsequent run of the lower wire to form a two-wire dewatering zone within which dewatering of the web takes place substantially upwardly through the upper wire.
Fillers, normally constituted by mineral substances, are often incorporated within paper in order to improve the printing and technical properties of the paper. As is well known, the addition of fillers is accomplished in two ways, i.e., either as a filling into the pulp stock or by means of coating. In the former procedure, the filler is added into the pulp as a sludge before the pulp arrives at the paper machine so that the filler is present in the ready paper mixed in the entire fiber material. In the latter procedure, an appropriate sizing agent, i.e., starch or caseine, is mixed with the filler in a water phase, whereupon the surface of the paper is coated with the mixtures.
The fillers are usually added into the pulp stock in the form of a water sludge. The addition of the fillers takes place, e.g., into the pulper, grinders, or proximate to the headbox of the machine, into an appropriate pulp chest or onto the inlet side of the water-circulating pump. Fillers are used most commonly for printing papers, the addition thereof improving their opacity, whiteness, ink-absorption, and smoothness. Moreover, fillers have a particularly favorable effect on the quality of paper to be glazed.
However, fillers do not adhere well to the fiber network of the stock which is a main reason for the poor retention of fillers therein. For this reason the filtering effect of the fiber network withholding the filler particles becomes an important factor affecting the retention of the fillers. The degree of filtering effect provided by the fiber network is determined by the thickness of the pulp web running on the wire, by the density of the fiber network, by the density of the wire and, moreover, by the draining or dewatering effects applied to the web. The grinding, which fibrillates the fibers, improves the retention of fillers by promoting the formation of a fiber network and the adhesion of the fillers to the fiber.
The retention is also affected by the physical properties of the filler particles, such as their size, shape and density. Larger particles are filtered better than smaller ones which are readily carried through the filtering layer. Heavier particles are filtered to a lesser extent than lighter ones.
Like the fines in paper, such as flours and coloring agents, fillers tend to be unevenly distributed in the direction of the thickness of the paper thereby causing a so-called unequal-sidedness in the paper. The unequal-sidedness of paper manufactured in the fourdrinier machines results from the fillers being washed away along with the water which is drained from the lower portion of the pulp web in the filtrate water whereby the top portion of the web is enriched in fillers relative to the bottom portion of the web.
As is well know, attempts have been made to reduce the problems of unequal-sidedness of paper, not only by means of additives improving the retention of the fillers in the fiber network, but also by means of providing for a gentle dewatering during the initial filtering stage which requires a prolonged draining time and, consequently, a lengthening of the wire or reduction in the speed of the paper machine.
In the case of fourdrinier machines, the difficulties of distribution of fines and fillers are encountered in the manufacture of papers for offset printing. A high content of fillers and fines in the upper face of the paper causes dusting, which is a serious drawback in the offset process. On the other hand, papers manufactured by means of twin or two wire machines are considered well suited for offset printing due to the symmetric distribution of fines within the paper and from the substantially equal washing of both faces of the web resulting from the two-sided dewatering. Thus, it is recognized that due to the more uniform distribution of fines, offset printing on paper manufactured by means of a twin-wire method is more successful than printing on paper manufactured by means of a fourdrinier machine. The quality of offset printing is becoming increasingly important since the letter-press printing method is being increasingly replaced by offset printing.
On the other hand, the filler content of the faces of the paper web cannot in all cases be brought to the desired level by means of a two-wire former and when fourdrinier wires are used, only the upper side of the paper web, i.e., the side facing away from the wire, will have a satisfactory filler content. An unduly lower filler content at the web faces is particularly problematical in the case of so-called SC gravure papers. Although attempts have been made to increase the filler content of the paper faces by increasing the filler content of the pulp in the headbox, such attempts have not proved entirely satisfactory due to the poor retention of the fillers as discussed above and the enriched amount of fillers which occurs in the interior of the paper, characteristic of filler agents. Moreover, the stock in the headbox becomes excessively thick which deteriorates the formation of paper.
In conventional twin-wire formers, or so-called full-gap formers, which are now in common use, the pulp stock is supplied onto the wire part as a thin sludge whereupon a violent dewatering of the pulp stock is begun immediately or after a very short single-wire section, in both directions or in the same directions as in a single-wire section. This results in a considerable quantity of filler agents which have been added to the pulp, e.g., bolus, as well as fine fibers being carried away from the web along with the water being drained therefrom. Of course, this results in a considerable deterioration in the quality of the paper and, in particular, impairs the very properties intended to be provided to the paper by means of the fillers. Moreover, a simultaneous and violent two-sided dewatering also results in a weakening of the mid-portion of the paper web which in turn results in a low internal bond strength.
A two-wire former is disclosed in Finnish Pat. No. 50,648, assigned to applicants' assignee, in which the drawbacks discussed above are attempted to be avoided. This two-wire former is characterized by a single-wire initial portion of the wire part which is sufficiently long so that while a gentle dewatering takes place in the initial portion, the pulp web has time to obtain such a degree of felting prior to a two-wire portion of the wire part that the fibers can no longer be significantly shifted with respect to each other. Moreover, the two-wire portion of the wire part is guided, such as by a draining roll or by a draining box, so as to be curved downwardly whereby water is drained in the curved portion through the upper wire in a direction opposite to the direction of dewatering in the single-wire initial portion by the effects of centrifugal force and of the pressure zone produced by the tensioning between wires. The main objective is to reduce the removal of additives from the pulp web, such as fillers, as well as to reduce the removal of fines from the pulp web and to increase the internal bond strength of the paper being manufactured.
It is well-known that in a conventional fourdrinier machine, dewatering of the web takes place only in the downward direction so that fines and filler agents are removed from the side of the web which faces the wire due to the washing effect of the foils or table rolls. For this reason a web manufactured in such a fourdrinier machine is anisotropic in regard to the properties of its two sides, the upper side of the web being smoother and containing more fines and fillers than the wire side. Moreover, the wire side of the web is left with a mark from the wires.
For the above reasons, paper made by means of two-wire formers is considered superior, especially with respect to printing properties. In such prior art two-wire formers in which no stationary dewatering elements are utilized, formation is usually poor and no pulsations of the dewatering pressure can be produced which would improve the formation. Another drawback of such prior art formers is that the same are not capable of adjusting the ratio of the quantities of water being dewatered through the upper and the lower wire. The desirability of providing the capability for such an adjustment has been expressed on several occasions.
Two-wire formers are also known in the art wherein the dewatering is mainly effected by stationary dewatering elements. However, in such prior art two-wire formers a drawback is present in that filler and fine retention is relatively poor whereas wire wear and power consumption is high.
Recently, modernizations of fourdrinier machines have become common in which one or more upper-wire units are situated above the fourdrinier wire unit by means of which an upward dewatering of the web is achieved with the objective of both increasing the dewatering capacity as well as improving web formation and filler and fine retention. An increased dewatering capacity in turn permits an increase in the speed of the paper machine. A further aim of such modernized fourdrinier machines is to provide the capability of reducing the thickness of the pulp supplied from the headbox which itself is advantageous. In certain cases, old low-speed newsprint machines have been converted or modernized into board machines which produce thick quality paper and boards requiring a high dewatering capacity without increasing the speed of the machine.
As examples of prior art arrangements of the type described above, reference is made to Finnish Patent Application No. 78 2709 (Beloit Walmsley Ltd.) and to British Pat. No. 1,582,342 (Australian Manufacturers Ltd. and Beloit Walmsley Ltd.). Reference is also made to U.S. Pat. No. 4,154,645 and to Finnish Patent Application Nos. 81 0373 and 81 1514, all assigned to applicants' assignee.
With respect to the prior art technology related to the present invention, reference is further made to published Swedish Patent Application No. 308,244 and Finnish Pat. No. 40,436.
A web-forming section including an initial single-wire dewatering zone followed by a two-wire dewatering zone may be designated a "hybrid" former. Hybrid formers are disclosed in U.S. Pat. Nos. 3,846,233; 4,154,645; 4,220,502; and 3,994,774.
SUMMARY OF THE INVENTION
Accordingly, it is a general object of the present invention to provide a new and improved so-called hybrid web-forming section in a paper machine wherein, a single-wire dewatering zone is present within which dewatering takes place downwardly in a relatively gentle manner in accordance with the principles disclosed in said Finnish Pat. No. 50,648, the single-wire dewatering zone being followed by a two-wire dewatering zone within which dewatering takes place substantially upwardly.
It is a particular object of the present invention to provide a new and improved hybrid web-forming section by means of which an improved formation of the web is achieved.
Another object of the present invention is to provide a new and improved hybrid web-forming section capable of providing for an adjustment in the ratio of the quantities of water being expelled through the upper and lower wires thereof making it possible to adjust the distribution of fillers and fines in the web to reduce the anisotropic qualities of the web being formed. In accordance with this object, it is desired to control the amount of downward dewatering taking place with the initial single-wire dewatering zone over wider limits than has been possible previously to thereby allow a sufficiently large proportion of the total dewatering to take place in the upwards direction through the upper wire in the two-wire dewatering zone, to thereby reduce the anisotropic characteristics of the web.
Still another object of the present invention is to provide a new and improved hybrid web-forming section which provides more efficient dewatering, i.e., increased drainage capacity, primarily due to a longer active dewatering zone.
A further object of the present invention is to provide a new and improved hybrid web-forming section which provides better retention for the fillers and fines within the pulp stock. Such retention has been particularly poor in prior art gap formers, especially in those in which stationary dewatering elements are mainly used. Good retention contributes, among other things, to reductions in energy costs and the elimination of the need for increasing the capacity of the headbox which would be otherwise necessary in the case of poor retention.
A further object of the invention is to provide a new and improved hybrid web-forming section wherein, if necessary, up to 50 percent of the water can be drained upwardly through the upper wire.
A still further object of the present invention is to provide a new and improved hybrid web-forming section wherein an improved support and stability of the wire runs within the two-wire dewatering zone is obtained. In this manner web formation is improved and streaks caused by the wire corrugations which would result from an unstable running of the wires are reduced.
Another particular object of the present invention is to provide a new and improved web-forming section which is capable of achieving a higher dry-matter content of the web so that it is possible to either entirely dispense with the use of dry suction boxes or reduce the number of such dry suction boxes thereby making it possible to reduce the power consumption of the forming section and reduce the wear of the wires.
Briefly, in accordance with the present invention, these and other objects are attained by providing a web-forming section and method wherein the pulp stock from the headbox is initially predrained downwardly in a single-wire dewatering zone to facilitate retention of fines and fillers in the web initially formed on the single-wire zone, followed by a two-wire dewatering zone wherein a substantially upward, asymmetric dewatering of the initially formed web is obtained by a first bidirectional, predominantly upward dewatering of the web at a first forming or dewatering roll situated in the region where the upper and lower wires converge to form a two-wire dewatering zone, followed by substantially upward dewatering of the web over a curved forming shoe and followed by further upward dewatering of the web at a second forming roll.
In accordance with the invention, the web-forming section is a so-called hybrid section comprising a lower wire loop having a wire run, the initial part of which forms an initial single-wire, substantially horizontal dewatering zone of the web-forming section within which the dilute fiber suspension constituting the web-forming stock is initially dewatered downwardly for initially forming a fiber network to promote retention of fillers and fines as the web is subsequently dewatered in a two-wire dewatering zone. A run of an upper wire loop forms a joint run with a subsequent part of the wire run of the lower wire loop to form the two-wire dewatering zone within which the initially formed web is dewatered substantially upwardly. According to the invention,
(a) a first dewatering forming roll having an open face is situated inside the loop of the upper wire, the two-wire forming zone beginning in the region of the first dewatering forming roll in which the two-wire dewatering zone is curved upwardly over a sector of the first dewatering forming roll for bidirectionally and predominantly upwardly dewatering the initially downwardly dewatered web through both the upper and lower wires,
(b) a forming shoe situated closely after the first open dewatering forming roll in the direction of web travel within the two-wire dewatering zone and fitted within the loop of the lower wire, the forming shoe having a curved cover structure or deck guiding the joint upper and lower wire runs to dewater the web predominantly upwardly through the upper wire, the center or centers of curvature of the deck being situated on the side of the lower wire loop,
(c) a second forming roll situated closely after the forming shoe in the direction of web travel within the loop of the lower wire and guiding the joint run of the two-wire dewatering zone, the run of the two-wire zone being curved downwardly over a sector of the forming roll wherein the web is further dewatered in the upward direction, and
(d) wherein the upper and lower wires have a joint run over the range of the first and second forming rolls and the forming shoe situated between them, which joint run is arranged such that after an initial downward dewatering has taken place to an appropriate extent through the lower wire within the initial single-wire dewatering zone, dewatering takes place within the two-wire dewatering zone asymmetrically substantially upwardly through the upper wire, first within the sector of the first open forming roll in two directions through both of the upper and lower wires, whereupon within the range of the following forming shoe, dewatering takes place mainly upwardly through the upper wire, and whereupon the dewatering pressure is further increased within the range of the second forming roll with the dewatering continuing mainly through the upper wire for substantially completing the asymmetric dewatering of the web in the two-wire dewatering zone.
In the present application, it will be understood that reference to being curved "upwardly" and "downwardly" means a change in the direction of running of the wires and of the web upwardly or downwardly, respectively.
With respect to the theory of draining through a two-wire curved forming zone, reference is made to the following publications: Papper och Tra 1972, No. 4, pp. 137 to 146, Jouni Koskimies, Jorma Perkinen, Heikki Puolakk, Eero Schultz, Bjorn Wahlstrom: "A Drainage Model for the Forming Zone of a Two-Wire Former" and Pulp and Paper Magazine of Canada, vol. 74, No. 2/February 1973, pp. 72 to 77, E. G. Hauptmann and J. Mardon: "The Hydrodynamics of Curved Wire Formers".
In accordance with the invention, the arrangement of the sequence of rotary and stationary draining elements and the ratios of draining proportions occurring therein is such that an optimum compromise is achieved with respect to the formation, retention and power consumption of the forming section as well as with respect to wire wear. Moreover, the present invention makes it possible to achieve a selective adjustment of the draining or dewatering capacity as well as a selective adjustment of the quantities and ratios of dewatering through the upper and lower wires to thereby achieve the objects of the invention as set forth above.
Many important advantages are provided by the present invention with respect to prior art two-wire formers in which only rotary draining elements are used, such prior art formers constituting the starting point of the invention.
One very important advantage is that an improved formation is obtained through the use of the curved forming shoe as described in greater detail below.
By appropriately selecting the radius of curvature of the shoe and/or through a continuous or stepwise variation in the radius of curvature and/or by adjusting the position of the shoe, it is possible to control the dewatering capacity and even the direction of dewatering provided by the shoe. In this manner, it is possible to adjust the dewatering quantity within the single-wire initial dewatering portion of the forming section within wider limits than has been possible with prior art arrangements so that the dewatering which occurs in the initial single-wire dewatering zone is such that a quantity of water of an appropriate magnitude will remain within the web which will be dewatered through the upper wire in the two-wire dewatering zone by the roll-shoe combination in accordance with the invention.
The use of the curved forming shoe following the first dewatering forming roll in the combination of the invention advantageously prevents the formation of transverse wrinkles in the web by providing an appropriate tension in the joint two-wire run while reducing the length of the free two-wire run between the first forming roll and the forming shoe. The use of the curved shoe enables the covering angle to be reduced thereby allowing the web forming section to have a compact construction. Since the forming shoe is a stationary element, its shape can be chosen with a greater degree of flexibility than in the case of dynamic elements, such as rolls, thereby enabling an optimization with respect to web formation, dewatering, and mechanical effects, such as the lateral stretching of the wires.
The curved cover structure or deck of the shoe may define an open surface constituted by a plurality of parallel, mutually spaced transversely extending lists. This construction produces pulsations in the dewatering pressure as the two-wire run with the web sandwiched therebetween is guided over the forming shoe. Such pressure pulsations improve web formation and enable dewatering through the lower wire in addition to the upward dewatering of the web. Thus, if desired, the drainage or dewatering of the web can be adjusted both with respect to the quantity as well as with respect to the ratio of dewatering through the top and bottom wires by providing suction arrangements with the curved drainage shoe.
Another important advantage provided by the present invention is that a more efficient drainage is obtained due to the longer active draining or dewatering zone. Other advantages are improved retention and a more uniform distribution of filler agents and fines, i.e., an improved symmetry of the web. Still another advantage is a reduced formation of dust on the faces of the web manufactured by a forming section of the present invention during printing relative to that produced in webs manufactured by a forming section of a fourdrinier machine. Still other advantages include a reduction in wire marking in the paper produced using the forming section and considerably lower porosity in such paper relative to the paper produced with a usual fourdrinier machine. The surface and strength properties of the paper are improved and important economies in manufacture are achieved.
A former in accordance with the present invention is particularly well suited for the modernization of fourdrinier machines as well as for new machines.





DESCRIPTION OF THE DRAWINGS
A more complete appreciation of the present invention and many of the attendant advantages thereof will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings in which:
FIG. 1 is a schematic side elevation view of a web-forming section in accordance with the apparatus of the present invention as applied to the modernization or rebuilding of a conventional fourdrinier wire machine for performing the method in accordance with the present invention;
FIG. 2 is a schematic side elevation view of a web-forming section in accordance with the apparatus of the present invention applied in a new paper machine, for performing a method in accordance with the invention;
FIG. 3 is a schematic detail view on an enlarged scale illustrating a forming shoe comprising a component of the web-forming section constructed of a plurality of parallel, mutually spaced transversely extending lists or foils;
FIG. 4 is a schematic side elevation view of the two-wire dewatering zone of the web-forming section shown in FIG. 1, designating its various dimensional parameters;
FIGS. 5a and 5b are schematic side elevation views of the web forming sections shown in FIGS. 1 and 2 respectively and illustrating typical web dewatering percentages which occur at the various dewatering zones and components thereof; and
FIGS. 6a and 6b are schematic side elevation views of pilot web-forming sections used in experimental trials for testing web formation, FIG. 6a constituting a pilot section in accordance with the invention and FIG. 6b constituting a pilot section similar to FIG. 6a but wherein the stationary forming shoe is replaced by a roll.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the embodiment of the invention illustrated in FIG. 1, a conventional fourdrinier forming section of a paper machine comprising a conventional fourdrinier wire loop 10 has been modernized or rebuilt in accordance with the invention to convert it to a hybrid web-forming section. The plane of the substantially horizontal top wire run of the original fourdrinier forming section is designated T-T. The forming section comprises a frame 100 of the existing or original wire part, dry suction boxes 16, a wire drive roll 17, a wire reversing roll 18, and guide rolls 19 which guide the lower run of the wire 10. All of these elements constitute components of the original wire part.
In the modernization or rebuilding of the fourdrinier wire section, a forming shoe 14 having a curved deck 14' is mounted on the existing frame 100. Thereafter in the direction of run of the machine, a smooth-faced, solid-mantle forming roll 15 is mounted on the frame 100 by means of bearing supports 101.
An upper wire unit 45 comprises a frame portion 50 on which various components are mounted. The run of an upper wire loop 20 is guided from an initial region A of a two-wire dewatering zone by an open forming roll 21 having a hollow face 21' followed by the forming shoe 14, then by the second solid-mantle forming roll 15, and then by a first reversing roll 22 situated within the upper wire loop 20. The run of the two-wire dewatering zone returns to be resituated within the original plane T-T of the lower wire 10 in the region of the first reversing roll 22. The two-wire dewatering zone ends at a second reversing roll 23 of the upper wire 20. The upper guide rolls of the upper wire 20 are denoted by reference 24. The rolls 22, 23 and 24 are provided with doctor blades 31.
Prior to the two-wire dewatering zone, which begins at the initial region A and ends at a point before the region designated B, an initial single-wire dewatering zone exists. The initial single-wire dewatering zone is constituted by an initial run 10a of the original wire 10 running in the plane T-T. Dewatering of the web-forming stock takes place in the initial single-wire dewatering zone, also designated 10a, by means of dewatering or drainage means situated between the slice of the headbox (not shown), which need not necessarily be replaced. Within the initial single-wire dewatering zone, dewatering of the web takes place in a downward direction through the run 10a of wire 10. Such dewatering is preferably a relatively gentle dewatering so that the possibilities of good formation and retention are maintained so that a sufficient amount of water will remain in the web for subsequent dewatering or drainage in an upward direction.
As described above, a run of the loop of the upper wire 20 forms a joint run with a part of the wire run of the loop of the wire 10 subsequent to run 10a to form the two-wire dewatering zone within which the web, which has been initially formed in the initial single wire dewatering zone through a downward dewatering is dewatered substantially upwardly. The two-wire dewatering zone begins at a region designated A wherein the lower and upper wires 10 and 20 converge at the first dewatering forming roll 21.
Immediately after the initial region A, the joint run of the wires 10 and 20 and the web sandwiched therebetween is curved upwardly over the sector .alpha. of the open forming roll 21. As discussed below, the magnitude of the sector .alpha. is generally in the range of about 2.degree. to 60.degree.. Within the sector .alpha., the dewatering pressure is produced by the effect of the tensioning between the wires 10 and 20 and by the centrifugal forces which promote dewatering. The web sandwiched between lower and upper wires 10 and 20 is dewatered bidirectionally on the sector of forming roll 21. However, as discussed below, the dewatering of the web takes place predominantly upwardly through upper wire 20 over the sector .alpha. of forming roll 21.
After the sector .alpha., there is a short joint straight, free run of the wires 10 and 20 whereupon the run of the wires 10 and 20 is curved downwardly over the surface 14' of the shoe 14. Within the area of the shoe 14, dewatering of the web takes place under the effect of the compression between the wires 10 and 20 and by the effect of centrifugal forces acting upwardly through the upper wire 20. The web is dewatered predominantly if not entirely upwardly through wire 20 as it passes over shoe 14.
After the trailing edge of the shoe 14, there is another short straight, free joint run of wires 10 and 20 whereupon the joint run of wires 10 and 20 is curved downwardly over the sector .beta. of the forming roll 15, which preferably comprises a solid roll. The web is again dewatered upwardly through wire 20 as it passes over the sector .beta. of solid forming roll 15.
The joint run of the wires 10 and 20 is then curved upwardly over the sector .gamma. of the reversing roll 22 until it joins and becomes resituated in the original plane T-T of the lower wire 10. The twin-wire section terminates at the point prior to or at the region designated B.
The web W remains on the lower wire 10 and is detached therefrom on a downwardly slanting run between the rolls 17 and 18 by the effect of a suction zone 40.alpha. of a pick-up roll 40 whereby the web is transferred onto a pick-up fabric 41 which moves the web further into the press section (not shown).
The dewatering of the web which occurs in the forming section illustrated in FIG. 1 and which comprises a modernized or rebuilt fourdrinier machine will now be described in greater detail with reference to FIGS. 1 and 5a. As noted above, the forming section illustrated in FIGS. 1 and 5a comprises a top or upper wire unit 45 placed on a conventional fourdrinier machine in the manner described above. The length of the initial single-wire dewatering (or predewatering) zone 10a before the two-wire dewatering zone is adjusted in relation to the paper grade and speed range of the machine. Some drainage elements are removed from the existing fourdrinier table and are replaced by the forming shoe 14 and the solid roll 15. The web forming is started on the original fourdrinier section, usually using the existing dewatering elements used prior to the rebuild. The optimum location of the new top or upper wire unit 45 can be predicted by experience and by pilot machine trial runs. The stock W undergoes a gentle downward dewatering over the initial single-wire dewatering zone through the wire run 10a. Referring to FIG. 5a, one example of typical advantageous dewatering percentages and directions at the various points of the web-forming section are illustrated, the indicated percentages being of the total dewatering which occurs in the forming section. It is understood that the indicated percentages are illustrative only and that the dewatering quantities may vary from those indicated by an amount of about plus or minus 10 to 25%. Thus, a total of about 43% of the total dewatering occurs in the single-wire predewatering zone 10a, about 15% occurring at the initial forming board immediately after the headbox with the remaining 28% occurring over the substantial length of the initial single-wire dewatering zone. By the time that the web reaches the end of the predewatering zone 10a, the gentle downward dewatering has occurred to an extent sufficient that the web has obtained a suitable degree of felting, i.e., a degree of felting such that the fibres are unable in subsequent dewatering stages to move substantially with respect to each other.
After the predewatering zone 10a, the web, designated W.sub.0, enters the two-wire section at its initial region A. The joint run of the wires 10 and 20 and the web sandwiched therebetween is curved upwardly over the sector .alpha. of the open forming roll 21. The forming roll 21 preferably is a drilled roll whose surface is countersunk to provide a storage volume for water drained from the web.
When the forming fabrics or wires with the web sandwiched therebetween travel over the sector .alpha. of the face 21' of the open roll 21, a dewatering pressure is developed in the web. The pressure is directly related to the tension in the lower wire 10 and inversely related to the radius of roll 21. A deceleration takes place in the web at a rate which corresponds to the pressure. This causes a redistribution of the fines and fibres within the web and is beneficial with respect to web formation.
Although the dewatering pressure which acts inwardly, i.e., towards the roll 21, is somewhat smaller than that acting outwardly due to the counteraction of the inward dewatering pressure by centrifugal forces, the upward dewatering, i.e., dewatering into the roll 21 through the upper wire 20 is greater than the downward dewatering because of the fact that the web formation in the single-wire dewatering zone causes a high resistance towards downward dewatering. Thus, although the web is dewatered through both wires 10 and 20 as it travels over the sector .alpha. of roll 21, the dewatering which takes place through the upper wire 20 is most preferably about 2 to 4 times the dewatering through the lower wire 10. This drainage distribution is due to the fact that in the single-wire initial dewatering zone 10a a layer of fines and fibres is created which impedes the passage of water in the downward direction. Indeed, under certain circumstances, there may in fact be substantially no dewatering through the lower wire 10 within the sector .alpha. of the roll 21. Under certain circumstances it may be indicated to use a suction zone within the sector .alpha. of the roll 21 which makes it possible to closely control the dewatering and the ratios of dewatering at various points in the web forming section.
Referring to FIG. 5a, it is seen that substantial dewatering occurs over the sector .alpha. of forming roll 21. As indicated, 20% of the total dewatering occurs upwardly through top wire 20 at roll 21 with 10% of the total dewatering occurring downwardly at roll 21 through the lower wire 10.
The joint run of wires 10, 20 with the web sandwiched therebetween then passes over a short straight free run onto the curved cover structure 14' of the forming shoe 14. As discussed below, the curved structure or deck 14' of the forming shoe 14 may comprise a multifoil structure. The dewatering of the web continues mainly upwardly on the surface 14' of forming shoe 14. In this connection, the web has been substantially dewatered prior to reaching the forming shoe 14. Both sides of the web have been formed either on the single-wire dewatering zone or on the forming roll 21 and function as filtering layers for any dewatering which is still to take place. The radius of curvature of the curved deck 14' of the forming shoe 14 is relatively large resulting in a relatively low dewatering pressure acting on the web. These two facts together ensure a relatively gentle dewatering as the web passes over the curved deck 14' of the forming shoe 14. The web is dewatered rather gently as an upward drainage through the top wire 20 under the effect of centrifugal force caused by the curvature of the shoe 14 and by the effect of the tension between the wires 10 and 20. As seen in FIG. 5a, a typical situation is that 16% of the total dewatering occurs as the web passes over the curved forming shoe 14, 12% of which occurs upwardly through the top wire 20 and 4% of which taking place through the lower wire 10.
The final substantial dewatering in the two-wire dewatering zone occurs as the web passes over the sector of the solid, smooth-faced forming roll 15. The pressure causing upward dewatering over the sector .beta. of the forming roll 14 is substantially increased by selecting the radius of the roll 15 so as to be substantially smaller than the radius of curvature R of the curved forming shoe 14. As seen in FIG. 5a, typically about 3% of the total dewatering occurs through the upper wire 20 at the forming roll 15.
Dewatering of the web is completed with conventional flat suction boxes and a couch roll after the two-wire dewatering zone. Because of the high dry matter content of the web after the two-wire dewatering zone, the number of flat suction boxes required is lower with a web forming section in accordance with the present invention and can be used with lower vacuums. This contributes to longer fabric life and savings in drive and vacuum power. The upper wire unit 45 requires only a sufficient drive power to overcome any friction from the bearings and doctors.
The amount of upward dewatering which occurs in the two-wire dewatering zone depends to a great extent on the consistency of the web as it enters the two-wire dewatering zone. For example, with a low consistency web, up to 45% of the total headbox flow can be drained upwardly through the top wire 20. A normal range of operation would be in the range of about 30% to 35% of the total dewatering being in the upward direction. In the illustrative example of FIG. 5a, 35% of the total dewatering occurs through the top wire 20 in the two-wire dewatering zone.
The following features of the embodiment of FIG. 1 should also be noted. The upper wire unit 45 is preferably designed such that the same can be shifted away from its illustrated position as an integral entity such, for example, as for maintenance. When the invention is applied in the modernization of a conventional fourdrinier wire part of a paper machine as shown in FIG. 1, no essential changes need be made to the frame 100 since the forming shoe 14 and the roll 15 can be mounted in a simple and easy manner on the existing frame 100. The upper wire unit 45 comprises a frame 50 to which, for example, supporting means 32 for the first forming roll 21 are mounted, the supporting means 32 being connected to the frame 50 by means of horizontal articulated shafts 33. The open roll 21 is pressed against the lower wire 10 by means of rods 34 which can be shifted by means of worm gears 35. Water collecting means 32' are provided in association with the supporting means 32 by means of which the water escaping from the web W into the open face 21' of the roll 21 is collected. Moreover, in connection with the roll 21, cleaning means (not shown), known per se, such as water jet devices, are provided.
Water collecting means are provided after the forming roll 15 within the upper wire loop 20 mounted on the frame 50 by which water drained from the web within the area of the forming shoe 14 and the second forming roll 15 through the upper wire can be collected. In the illustrated embodiment, the water collecting means comprise a water collecting trough 36 the front edge 30 of the bottom of which is located within the region of a horizontal plane tangent to the uppermost region of the roll 15. The water collecting trough 36 is suspended by means of articulated shaft 37 mounted on the frame 50. The trough 36 is arranged so as to be pivotable around the articulated shafts 37 by means of rods 38 which are operated by a worm gear 39. By means of rods 38 and gear 39, it is possible to adjust the position of the front edge 30 of the trough bottom at an appropriate position with a view toward collecting water drained from the web. The trough 36 includes appropriate devices and channels by which the water is removed through the side of the paper machine. The water level in the trough 36 is designated by reference S.
Referring now to FIG. 2, a preferred embodiment of the present invention as applied to a new paper machine will now be described. The forming section illustrated in FIG. 2 comprises a headbox 110 mounted on a base or footing 111, the web-forming stock in the form of a dilute fiber suspension being supplied through the slice 112 of the box onto the substantially horizontal initial dewatering zone 10a of the forming section constituted by the lower wire 10. Within the initial single-wire dewatering zone 10 a forming board 12 and foil lists 13 are provided. The lower run of the lower wire 10 is guided by guide rolls 10. The forming section further comprises an upper wire unit 45 having a frame 50 to which rolls 21, 23 and 24 are mounted which guide the run of the upper wire loop 20. The two-wire draining or dewatering zone begins at the region designated A, i.e., from the beginning of the sector .alpha. of the open roll 21 which is provided with a hollow face 21'. The sector .alpha. of the roll 21, over which the run of the wires 10 and 20 is curved upwardly, is followed by a forming shoe 14 after a short straight joint run thereof. After the shoe 14, the joint run of the wires 10 and 20 follow a short straight run whereupon the joint run of wires 10 and 20 are turned downwardly over a sector .beta. of the second solid or plain surface forming roll 15. Following the sector .beta., the joint run of wires 10 and 20 are directed downwardly as a straight run over the range of which dry suction boxes 16 are provided within the loop of the lower wire 10. In this manner it is substantially assured that the web W will follow the lower wire 10. The web W is detached in a manner known per se within the run of wire 10 between the rolls 17 and 18 by means of a suction sector 40.alpha. of a pick-up roll 40 whereupon the web is transferred onto the pick-up fabric 41 to be carried into the press section of the paper machine.
The dewatering of the web within the single-wire initial dewatering (predewatering) zone 10a and within the subsequent two-wire dewatering zone between the regions A and B is substantially similar to that described above in connection with the embodiment of FIG. 1.
In this connection reference is made to FIG. 5b wherein typical dewatering percentages and directions for the embodiment of FIG. 2 are illustrated. It is again emphasized that these values are illustrative only and the actual dewatering percentages can vary by as much as 10 to 25% from those shown. In any event, a substantial upward dewatering of the web takes place in the two-wire dewatering zone.
An important difference between the rebuilt fourdrinier machine embodiment of FIG. 1 and the new machine embodiment of FIG. 2 is that after the smooth-face forming roll 15 in the embodiment of FIG. 2, there is no roll which corresponds to the roll 22 which is located within the loop of the upper wire 20 in the case of the FIG. 1 embodiment. Rather, a reversing roll 23 for the upper wire 20 is provided. Another difference between the embodiments of FIGS. 1 and 2 is that between the roll 15 and the drive roll 17 in the embodiment of FIG. 2, there is a straight downwardly slanted joint run of wires 10 and 20 over which run dry suction boxes 16 are located. In the case of either embodiment, the use of dry suction boxes 16 is not essential.
Water collecting means are provided within the upper wire loop 20 in association with the frame 50 of the upper wire unit 45 by which the water which is drained from the web W upwardly through the upper wire 20 is collected. More particularly, a water collecting trough 25 is located above the open roll 21 having the hollow face 21' which has a portion 26 which opens towards the open face 21' of roll 21, the water expelled through the cavities of the face of the roll 21 being collected thereby within the trough 25. The trough 25 is attached to the frame 50 by means of articulated shaft 25'. If necessary, the trough 25 is arranged so as to be pivotable around an articulated shaft 25' to adjust its position. The water collecting means includes a second draining trough 27 mounted on the frame 50 by means of conventional power devices, designated 28. The trough 27 is constituted by an upper wall and a lower wall the front edge 30 of the latter being situated above the joint run of the wires 10 and 20 after the roll 15. The draining trough 27 includes channels 29 through which the water collected is removed at the side of the paper machine.
It is a characteristic feature of the embodiment of the forming section illustrated in FIG. 2, as well as the FIG. 1 embodiment thereof, that the upward dewatering through the upper wire 20 begins within the area of the open-faced forming roll 21, albeit extremely gently at the beginning thereof, and that this dewatering continues within the area of the shoe 14, preferably with the draining pressure increasing in a stepwise or continuous manner over the range of the shoe 14. Such stepwise or continuous increase in the drainage pressure can be achieved, for example, by providing that the radius of curvature of the shoe 14 becomes smaller in a stepwise or continuous manner from the front or leading edge of the shoe towards its rear or trailing edge. Thus, referring to FIG. 2, the radius of curvature R.sub.1 of the leading edge of shoe 14 is significantly larger than the radius of curvature R.sub.2 of the trailing edge. The draining pressure is even further increased within the sector .beta. of the smoothfaced roll 15. Moreover, since there is a straight joint run of the wire 10 and 20 between the sector .alpha. of roll 21 and the forming shoe 14 as well as between the forming shoe and the sector .beta. of the roll 15, over which straight runs the dewatering or draining pressure is immediately reduced to a substantially zero value, a varying pulsation of the draining pressure is thereby obtained which has been found to have a favorable effect on the formation of the web W. It is also noted that in the embodiment of FIG. 2, after the sector .beta. of roll 15 there is no sector which corresponds to the sector .gamma. of the FIG. 1 embodiment. However, drainage through the lower wire 10 is provided in this region by means of dry suction boxes 16 if such drainage is found on the whole to be necessary at this stage of web formation.
It will also be recognized and is of essential importance that the drainage taking place in the upward direction be sufficient in the particular application and, if necessary, adjustable.
According to the invention, a sequence of drainage or dewatering steps are provided wherein the relative magnitudes, directions and pressures can be varied in a favorable manner with a view towards optimizing retention, formation and drainage capacity. Moreover, these objects are accomplished by relatively simple structures whose construction and operation have separately been established and tested in the past.
Referring to FIG. 4, various operational dimensions of the two-wire dewatering zone of the embodiment of the web forming section shown in FIG. 1 are illustrated. Various components of the two-wire zone can be positionally adjusted to vary the respective dimensions in accordance with the particular application as determined by the consistency of the web forming stock, the dewatering percentages desired, the paper grade and the like.
The angle .alpha. of the sector of the open forming roll 21 over which the joint run of the lower and upper wires 10, 20 and web W situated therebetween can be within the range of about 2.degree. to 60.degree. and most advantageously within the range of about 5.degree. to 40.degree.. A typical advantageous value of the angle .alpha. is in the range of between about 20.degree. to 40.degree..
The angle .DELTA. of the curved deck 14' of the forming shoe 14 can be within the range of between about 5.degree. to 35.degree. and most advantageously within the range of about 10.degree. to 25.degree.. A typical advantageous value of the angle .DELTA. is about 20.degree..
The angle .beta. of the sector of the smooth-faced forming roll 15 over which the joint run of wires 10, 20 and the web W situated therebetween pass can be within the range of about 20.degree. to 70.degree. and most advantageously within the range of about 30.degree. to 60.degree.. A typical advantageous value of the angle .beta. is in the range of between about 25.degree. to 50.degree..
The joint free run A between the forming roll 21 and the forming shoe 14 can be within the range of about 100 to 500 mm and most advantageously within the range of between about 200 to 300 mm. A typical advantageous value of the free run A is in the range of between about 200 to 400 mm.
The length B of the free joint run between the forming shoe 14 and the smooth-faced forming roll 15 can be within the range of about 100 to 500 mm and most advantageously within the range of about 200 to 300 mm. Typically used advantageous values of the length B is between about 300 to 400 mm.
Advantageous constructional embodiments of the various drainage or dewatering elements of the web-forming section of the invention will now be described. As mentioned above, the first forming roll 21 must have a relatively open face so that dewatering can take place upwardly through the upper wire 20. The roll 21 may be either a vented roll, a blind-drilled roll or a through-drilled roll. Preferably, the roll 21 is a spiral-groove coated roll constructed of a wound profile band in which the open proportion of the face, i.e., the percentage of the face occupied by grooves or holes over the entire mantle area, is preferably at least about 50%. The open hollow-face roll 21 is preferably covered by a wire sock. In some special applications, the roll 21 may constitute a suction roll.
With respect to the construction of the forming shoe 14, the dewatering pressure P acting on a web as a joint wire run with the web sandwiched therebetween passes over a curved guiding member is known to be equal to T/R, where T is the tension of the covering wire and R is the radius of curvature of the curved guiding member. The dewatering of the web as it passes over the curved deck 14' of the shoe 14 in accordance with the invention is thus influenced by the dewatering pressure, the latter being determined by the tension of the wire 20 which is typically in the range of between about 3 to 8 kilonewtons per meter. The radius of curvature R of the deck 14' of the shoe 14 may be constant or, alternatively, the radius of curvature R may become smaller in the running direction of the web W. The radius of curvature of the deck 14' is advantageously chosen to be in the range of between about 0.4 to 6 meters and preferably within the range of between about 2 to 5 meters. In a preferred embodiment, the shoe 14 has a deck 14' having a radius of curvature R of about 3 m. In a second preferred embodiment, the deck 14' of shoe 14 has a plurality of radii of curvature R which diminish in the running direction of the web, the radius of curvature being about 6 meters at the leading edge and about 0.3 meters at the trailing edge. It is seen that in the case where the deck 14' has diminishing radii of curvature, the dewatering pressure acting on the web increases as it passes over the curved deck.
The deck 14' of shoe 14 which guides the wire 10 may be solid or provided with ribs and an at least partly open hollow-faced deck 14' is preferable, e.g., one that is provided with grooves which extend transversely with respect to the direction of running of the web W. When an open deck 14' of shoe 14 is utilized such as shown in FIG. 3, the grooves or holes formed therein may be connected to a vacuum system and by means of appropriately adjusting the negative pressure within the deck 14' of the shoe it is possible to affect the ratio of quantities of water drained upwardly and downwardly, respectively, at least to some extent. The length of the shoe 14 is preferably such that the contact angle of the lower wire 10 with the deck 14' is about 5.degree. to 45.degree. depending upon the radius of curvature R of the deck. The run of the two-wire section 10, 12 changes its direction downwardly at a corresponding angle of about 5.degree. to 45.degree. within the region of the shoe 14.
The main function of the second solid or smooth-surfaced forming roll 15 is to guide the wires 10 and 11 as well as the web W located between them downwardly as well as to induce some dewatering or drainage through the upper wire 20. Although it is possible to use either a smooth-faced solid-mantle solid roll or an open-faced roll as the roll 15, a smooth solid-mantle roll 15 is considered preferable. When an open roll is used, it is advantageous to use a vented roll without a wire sock placed on it. The diameter of the roll 15 is most preferably within the range of about 600 to 1500 mm. The roll 21 preferably has a diameter within the same range.
In the embodiment of FIG. 1, the lower faces of the rolls 21, 15 and 22 are preferably at substantially the same level, i.e., at the level T-T of the original fourdrinier wire 10. The rolls 21, 15, 22 and 23 are arranged so that the free spaces defined between them are as small as possible it being understood, however, that a sufficiently long forming shoe 14 having an appropriate radius of curvature R can be placed between the rolls 21 and 15 and that a water collecting trough 36 can be placed between the rolls 22 and 23. Moreover, the distance between the rolls 22 and 23 is preferably sufficiently long so as to accommodate one or two dry suction boxes 16.
In the embodiment of FIG. 2, the rolls 21, 15 and 23 are arranged at substantially the same level and such that the free spaces defined between them are as small as possible keeping in mind that sufficient space is provided between the rolls 15 and 23 for a water collecting trough 27 and for one to three suction boxes.
In the embodiment of FIG. 1, preferably one to three dry suction boxes 16 are used while in the embodiment of FIG. 2, two to five dry suction boxes are appropriate.
It should be again emphasized that the dewatering which occurs in the single-wire initial dewatering zone 10a constitutes a gentle downward dewatering so as to obtain a good retention of fillers and/or fines. Moreover, the amount of dewatering which takes place over the single-wire zone 10a must not be excessively large so that a sufficiently large amount of water remains for upward dewatering through the upper wire 20. An adjustment of the quantities and proportions of dewatering taking place in various directions can be accomplished by appropriate selection of the radii and nature of the faces of the rolls 21 and 15, by appropriately selecting the radius of curvature and open nature of the deck 14' of the shoe 14, and through the adjustment of the positions and relative locations of the components 21, 14 and 15. If necessary, a fine adjustment of the final dewatering amounts and of the distribution of fines in the web can be accomplished by means of the dry suction boxes 16.
A web forming section in accordance with the present invention provides the significant advantage of improved web formation and improved retention of fillers and fines in the web. In this connection, experimental trial runs were conducted by the pilot paper machine at the Rautpohja Works of Valmet Oy in Finland. In particular, the web formation obtained in a prior art web forming section incorporating a two-wire dewatering zone without a forming shoe, as illustrated in FIG. 6b, was compared with the web formation obtained in a forming section incorporating a two-wire dewatering zone in accordance with the present invention as shown in FIG. 6a. A "Valmet Formation Tester" was used to compare the web formation obtained in the trial runs. Such a Formation Tester optically measures the web formation, i.e., a small measuring head having a diameter of about 0.2 mm measures the variation of light transmitted through the paper sample produced, the sample being passed evenly over the measuring head. A light source is situated behind the paper, i.e., on the opposite side of the paper from the measuring head. The variation in light transmitted through the paper is converted electrically to a relative reading which corresponds in percentage to the variation or unevenness of formation. The smaller the reading, the more even is the paper formation.
The tests were conducted for three basis weight classes of woodfree fine paper with the following results.
For a basis weight class of 100 g/m.sup.2, the best reading obtained by the web forming section in accordance with the present invention (FIG. 6a) was 5.8% with 98 g/m.sup.2 paper. In the case of the web forming section of FIG. 6b, the best values obtained were 6.7% with 91 g/m.sup.2 paper and 6.8% with 100.5 g/m.sup.2.
For paper in a basis weight class of 70 g/m.sup.2, the best reading for the web forming section in accordance with the present invention (FIG. 6a) was 6.3% with 72 g/m.sup.2 paper while the best reading for the web forming section without a forming shoe (FIG. 6b) was 6.7% with 72 g/m.sup.2 paper.
For paper in a basis weight class below 50 g/m.sup.2, the best reading obtained for the web forming section in accordance with the invention (FIG. 6a) was 8.5% for 49.5 g/m.sup.2 paper while the best reading for the web forming section which did not include a forming shoe (FIG. 6b) was 9.1% for 47 g/m.sup.2 paper.
Accordingly, it has been demonstrated that with woodfree fine papers which have high formation requirements, the web forming section according to the present invention is capable of 0.5 to 1.0 percentage units better formation than a web forming section without a forming shoe such as shown in FIG. 6b. This is considered to conclusively establish that a web forming section constructed in accordance with the present invention is advantageous with respect to web formation.
Moreover, formation measured by the Valmet Formation Tester for standard newsprint manufactured in a machine including a web forming section in accordance with the present invention has ranged from 9.2% to 10%. Newsprint manufactured on a fourdrinier machine using the same furnish had values of about 12%.
Furthermore, the web forming section in accordance with the invention improves retention of fillers and fines within the web. The improved retention and formation are especially striking when it is considered that the drainage capacity provided by a web forming section in accordance with the invention is increased by as much as 35% with respect to an existing fourdrinier forming section.
Referring to FIG. 3, the curved deck 14' of the forming shoe 14 can advantageously be constructed by a plurality of transversely extending lists or foils providing an open surface for the forming shoe. This construction is advantageous in that pulsations in the dewatering pressure on the web occur as the joint wire run passes over the curved deck defined by the series of transversely extending foils. The pulsating dewatering pressure improves web formation and enables dewatering through the lower wire 10.
Moreover, after the web has been dewatered by the elements preceding the forming shoe, a layer of low consistency furnish still exists in the center of the web. The fibres and fines in this layer are redistributed by the pressure pulses generated by the foils or lists of the forming shoe as shown in FIG. 3. As noted above, both sides of the web have been formed either on the single-wire dewatering zone or on the forming roll 21. These formed web sides function as filtering layers for any dewatering which still remains to take place. As noted above, the relatively large radius of the forming shoe results in a low dewatering pressure. These two facts together insure a gentle dewatering of the web as it passes over the curved forming shoe inspite of the pressure pulsations caused by the foils of the forming shoe. The discontinuous drainage on the forming shoe thus further facilitates the improved formation of the web.
Other important advantages are obtained by the web forming section in accordance with the invention.
The web forming section of the present invention also overcomes a problem which generally exists in web forming sections which incorporate two-wire dewatering zones. More specifically, there is a tendency for transverse wrinkles to be formed in the wires as the same pass over relatively long, free two-wire joint runs. For example, various forming sections are illustrated in U.S. Pat. No. 3,150,037 to Lee wherein a relatively long free joint run of the wires exists between a pair of rolls and it is not uncommon for transverse wrinkles to form in the wires over such free runs. Of course, such wrinkling in the wires in turn adversely affects the formation of the web situated therebetween.
It has been found, however, that a web forming section constructed in accordance with the present invention and, in particular, wherein a forming shoe having a curved deck as described above is situated between the forming rolls in the manner described above and wherein the lengths of the free joint wire runs between the first forming roll and the leading edge of the curved forming shoe, designated A in FIG. 4, and between the trailing edge of the curved forming shoe and the second forming roll, designated B in FIG. 4, essentially eliminates the formation of transverse wrinkles in the wires over the free joint runs. Thus, in addition to enhancing the dewatering capacity of the web forming section and improving the web formation, the curved forming shoe creates a tension in the joint wire run which is sufficient to eliminate the possibility of wrinkles forming in the wires over the free joint runs thereof, the free runs having lengths within the ranges described above. This is a significant advantage which results in the formation of a web having significantly improved quality characteristics.
Other significant advantages are achieved by the present invention. For example, a wire mark is usually visible in most paper in the form of a regular variation in the basis weight thereof on a small scale. It has been found that paper produced by a web forming section in accordance with the invention has less wire marking than in paper produced on a conventional fourdrinier machine. This is apparently due to the arrangement of the dewatering elements and the relatively small sectors of the forming rolls wrapped by the joint wire run before and after the curved forming shoe. As mentioned above, the double sided dewatering provided by the web forming section of the invention insures extremely good filler and fine distribution. In particular, the fillers and fines will be distributed substantially symmetrically over the thickness of the formed paper which enables either side of the paper to be printed upon.
It has also been found that paper produced on a web forming section in accordance with the invention has a considerably lower porosity than paper produced on a standard fourdrinier machine. This is a direct result of the improved web formation in the absence of pinholes. Thus, it has been found in trial runs that at constant refining levels, the porosity of woodfree fine paper having a basis weight of 70 g/m.sup.2 produced on a conventional fourdrinier machine is about 750 ml/min. After rebuilding the fourdrinier machine in accordance with the present invention as seen in FIG. 1, the porosity of the same paper is reduced to about 475 ml/min.
The ability of the web forming section of the invention to improve the porosity of the paper produced therein can be utilized, on the other hand, to achieve energy savings by decreasing the amount of refining which would otherwise be done. Thus, in the case described above, in lieu of obtaining a paper having a reduced porosity, the refining in the web forming section can be controlled to achieve the original porsity level, i.e., about 700 ml/min., resulting in approximately a 30% savings in refining energy.
The surface and strength properties of paper produced in the web forming section of the present invention are also significantly improved. The symmetric structure obtained in the paper ensures good printability on both sides of the paper. Loose particles are washed from the surfaces of the paper eliminating any lint problems. Although the strength of the paper is generally determined by the composition of the furnish, it has been found that the improved formation achieved in the web forming section of the invention contributes to an increase in strength of the paper produced.
The forming section of the invention thus produces paper of improved quality and at the same time has an increased production rate. This leads to a more economical manufacture of paper. Additionally, economies can be achieved in drive and vacuum power consumption and, as described above, in refining energy where appropriate.
In summary, a forming section in accordance with the invention provides an improved web formation combined with increased drainage capacity and retention as well as good filler and fine distribution. The formation of transverse wrinkles in the joint run in the two wire dewatering zone is eliminated and reductions are achieved in wire marking on the paper and in its porosity. Surface and strength characteristics of the paper produced in the forming section are improved and economies are achieved in production and power consumption. The forming shoe when provided with a curved deck formed from a plurality of spaced, transverse lists further improves web formation through the production of pulsations in the dewatering pressure and also enables dewatering of the web through the lower wire. Furthermore, the use of a curved shoe enables the covering angle to be reduced contributing to a compact former and, moreover, since the shoe is a static element, as opposed to rolls, its shape can be relatively freely chosen and optimized with respect to formation, dewatering and such mechanical effects as lateral wire stretching.
Another important feature of the forming section of the invention is that by the time the web reaches the leading edge of the forming shoe, it has already been substantially dewatered both on the single-wire dewatering zone and on the open forming roll 21. Indeed, a substantial upward dewatering of the web occurs at the first forming roll 21, the dewatering through the upper wire most advantageously being about 2 to 4 times the amount of water drained through the lower wire 10.
It should also be noted that the web-forming section of the present invention can also be used as a multi-layer web former. For example, several web-forming units 45 of the type illustrated in FIG. 1 can be placed above the fourdrinier wire 10, one after the other, and a separate, secondary headbox arranged for each additional upper wire unit 45. For example, a separate secondary headbox can be situated at the upper run of the upper wire 20 to supply a pulp layer onto the main web supplied from the main headbox onto the lower wire 10.
Obviously, numerous modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the claims appended hereto, the invention may be practiced otherwise than as specifically disclosed herein.
Claims
  • 1. In a paper machine, a web-forming section comprising:
  • a lower wire loop having an initial, substantially horizontal and planar lower wire run constituting an initial substantially horizontal single-wire dewatering zone of the web-forming section in which web-forming stock is initially dewatered or predrained in a downward direction through said lower wire for initially forming a fiber network such that retention of fillers and fines is promoted as the web is subsequently dewatered in a two-wire dewatering zone of the web-forming section;
  • an upper wire loop situated over said lower wire loop having a run which forms a joint wire run with a subsequent run of said lower wire loop following said initial substantially horizontal and planar lower wire run, said joint run constituting a two-wire dewatering zone of the web-forming section within which dewatering takes place predominantly upwardly through said upper wire;
  • first roll means for initially dewatering the web predominantly upwardly through said upper wire immediately upon the web reaching said joint run, said first roll means comprising a first dewatering forming roll having an open face situated inside the upper wire loop, said joint wire run beginning on said first dewatering forming roll where said joint wire run of said two-wire dewatering zone in curved upwardly over a sector of said first dewatering forming roll for bidirectionally dewatering the initially downwardly dewatered web which is carried to said first dewatering forming roll from said initial single-wire dewatering zone both upwardly through said upper wire and downwardly through said lower wire, said upward dewatering through said upper wire on said first forming roll being greater than said downward dewatering through said lower wire;
  • a forming shoe situated inside the lower wire loop closely after said first open dewatering forming roll in the direction of web travel, said forming shoe having a curved deck having one or more centers of curvature situated on the side of the lower wire loop, said joint wire run of said two-wire dewatering zone being guided over a sector of said deck to curve downwardly for dewatering the web at least upwardly through said upper wire;
  • second roll means for dewatering the web at least upwardly through said upper wire, said second roll means comprising a second forming roll situated inside the lower wire loop closely after said forming shoe in the direction of web travel, said joint wire run of said two-wire dewatering zone being guided over a sector of said second forming roll to curve downwardly for dewatering the web at least upwardly through said upper wire;
  • said run of said upper wire loop which forms said joint run being situated entirely in or above the plane of said initial substantially horizontal and planar lower wire run;
  • wherein said joint run of said upper and lower wires extends through the range defined by said first and second forming rolls and said forming shoe situated therebetween, said joint run being arranged such that after the initial downward dewatering occurs in the single-wire dewatering zone through the lower wire, dewatering takes place within the two wire dewatering zone asymmetrically and predominantly upwardly through said upper wire, and whereupon dewatering pressure is further increased within the range of said second forming roll with dewatering continuing to take place through the upper wire to substantially complete the asymmetric dewatering of the web in the two-wire dewatering zone.
  • 2. The combination of claim 1 wherein said web-forming section constitutes a rebuild of an existing fourdrinier wire part in order to improve the dewatering capacity and paper formation achieved by the fourdrinier wire and at the same time to obtain improved retention of fillers and the like, said lower wire loop constituting the original wire of said existing fourdrinier wire part, and wherein said upper wire loop and first dewatering forming roll situated therewithin constitute components of an upper wire unit, said upper wire unit further including a first reversing roll situated within the upper wire loop after said second forming roll in the direction of web travel, the joint run of the upper and lower wires being curved upwardly over a sector of said first reversing roll so as to become substantially horizontal, and wherein a horizontal plane tangential to the lowest point of said first reversing roll is substantially at the level of the plane of the original wire of said existing fourdrinier part so that the joint run of the upper and lower wires substantially coincide with the plane of the original wire of the existing fourdrinier wire part, and wherein the initial single-wire dewatering zone of said web-forming section is constituted by an initial run of the fourdrinier wire part after a headbox.
  • 3. The combination of claim 2 wherein said upper wire unit further includes a second reversing roll situated within the upper wire loop after said first reversing roll in the direction of web travel, the runs of said upper and lower wires separating from their joint fun prior to said second reversing roll.
  • 4. The combination of claim 2 wherein said existing fourdrinier wire part includes a frame, said second forming roll being mounted on said frame of said existing fourdrinier wire part with its axis of rotation positioned substantially at or above the plane of the original wire of the existing fourdrinier part.
  • 5. The combination of claim 2 further including at least one dry suction box situated inside the lower wire loop after said first reversing roll over said sector of which the joint run of the upper and lower wires is guided to substantially coincide with the plane of the original wire of said existing fourdrinier wire part.
  • 6. The combination of claim 1 wherein the open face of said first open forming roll situated inside the upper wire loop and in the region of which said two-wire dewatering zone begins has an open area which is at least 50% of the entire area of said roll.
  • 7. The combination of claim 6 wherein said first open forming roll is selected from the group consisting of a vented roll, a blind-drilled roll, a through-drilled roll, a suction roll and a honeycomb-surfaced roll.
  • 8. The combination of claim 6 wherein said first open forming roll is covered by a wire sock.
  • 9. The combination of claim 1 wherein said curved deck of said forming shoe has a single, constant radius of curvature.
  • 10. The combination of claim 1 wherein said curved deck of said forming shoe has at least two radii of curvature which decrease in size from the leading edge of said deck towards the trailing edge of said deck.
  • 11. The combination of claim 1 wherein said forming shoe has a solid, smooth curved deck.
  • 12. The combination of claim 1 wherein said forming shoe has a hollow-faced deck formed with cavities therein.
  • 13. The combination of claim 12 wherein said cavities in said deck are connected to a suction system for precisely controlling dewatering.
  • 14. The combination of claim 1 wherein said second forming roll which guides the joint run of the upper and lower wires of the two-wire dewatering zone downwardly over a sector thereof is a smooth-faced solid mantle roll.
  • 15. The combination of claim 1 wherein said second forming roll which guides the joint run of the upper and lower wires of the two-wire dewatering zone downwardly over a sector thereof is a hollow-faced roll.
  • 16. The combination of claim 1 wherein at least one upper wire loop is provided above the lower wire and further including secondary headboxes fitted in connection with the upper wire units from which headboxes a pulp layer is supplied onto a main web supplied from a main headbox onto the lower wire.
  • 17. The combination of claim 1 wherein said sector of said first dewatering forming roll over which said joint run of said two-wire dewatering zone is curved upwardly has a magnitude in the range of between about 2.degree. to 60.degree..
  • 18. The combination of claim 17 wherein the magnitude of said sector of said first dewatering forming roll is in the range of between about 5.degree. to 40.degree..
  • 19. The combination of claim 18 wherein the magnitude of said sector of said first dewatering forming roll is in the range of between about 20.degree. to 40.degree..
  • 20. The combination of claim 1 wherein the sector of said curved deck of said forming shoe over which said joint run of said two-wire dewatering zone is curved downwardly has a magnitude in the range of between about 5.degree. to 35.degree..
  • 21. The combination of claim 20 wherein the magnitude of said sector of said forming shoe deck is in the range of between about 10.degree. to 25.degree..
  • 22. The combination of claim 21 wherein the magnitude of said sector of said forming shoe deck is about 20.degree..
  • 23. The combination of claim 1 wherein said sector of said second forming roll over which said joint run of said two-wire dewatering zone is curved downwardly has a magnitude in the range of between about 20.degree. to 70.degree..
  • 24. The combination of claim 23 wherein the magnitude of said sector of said second forming roll is in the range of between about 30.degree. to 60.degree..
  • 25. The combination of claim 23 wherein the magnitude of said sector of said second forming roll is in the range of between about 25.degree. to 50.degree..
  • 26. The combination of claim 1 wherein said joint run of said upper and lower wires in said two-wire dewatering zone passes from said first dewatering forming roll to said forming shoe in a free, unsupported run, the length of said free run being in the range of between about 100 to 500 mm.
  • 27. The combination of claim 26 wherein the length of said free joint run between said first dewatering forming roll and said forming shoe is in the range of between about 200 to 300 mm.
  • 28. The combination of claim 26 wherein the length of said free joint run between said first dewatering forming roll and said forming shoe is in the range of between about 200 to 400 mm.
  • 29. The combination of claim 1 wherein said joint run of said upper and lower wires in said two-wire dewatering zone passes from said forming shoe to said second forming roll in a free-unsupported run, the length of said free run being in the range of between about 100 to 500 mm.
  • 30. The combination of claim 29 wherein the length of said free joint run between said forming shoe and said second forming roll is in the range of between about 200 to 300 mm.
  • 31. The combination of claim 29 wherein the length of said free joint run between said forming shoe and said second forming roll is in the range of between about 300 to 400 mm.
  • 32. The combination of claim 1 wherein said sector of said first dewatering forming roll over which said joint run of said two-wire dewatering zone is curved upwardly has a magnitude in the range of between about 2.degree. to 60.degree.; a sector of said curved deck of said forming shoe over which said joint run of said two-wire dewatering zone is curved downwardly has a magnitude in the range of between about 5.degree. to 35.degree.; said sector of said second forming roll over which said joint run of said two-wire dewatering zone is curved downwardly has a magnitude in the range of between about 20.degree. to 70.degree.; and wherein said joint run of said upper and lower wires in said two-wire dewatering zone passes in a first free, unsupported run from said first dewatering forming roll to said forming shoe, and in a second free, unsupported run from said forming shoe to said second forming roll, the lengths of each of said first and second free joint runs being in the range of between about 100 to 500 mm.
  • 33. The combination of claim 1 wherein the sector of said curved deck of said forming shoe over which said joint run of said two-wire dewatering zone is curved downwardly has at least one radius of curvature of a length in the range of between about 0.4 to 6 meters.
  • 34. The combination of claim 33 wherein the length of said at least one radius of curvature is in the range of between about 2 to 5 meters.
  • 35. The combination of claim 33 wherein the length of said at least one radius of curvature is about 3 meters.
  • 36. The combination of claim 33 wherein the sector of said curved deck of said forming shoe over which said joint run of said two-wire dewatering zone is curved downwardly has a plurality of radii of curvature ranging from about 6 meters at the leading edge thereof to about 0.4 meters at the trailing edge thereof.
  • 37. The combination of claim 33 wherein said upper wire has a tension as said joint wire run is guided over the sector of said curved deck in the range of between about 3 to 8 kilonewtons per meter.
  • 38. In a paper machine, a web-forming section comprising a first wire loop constituting a lower wire of said web-forming section and having a substantially horizontal and planar run constituting an initial single-wire dewatering zone within which the stock to be formed into a web is dewatered in a first stage downwardly through the lower wire by dewatering means for initially forming a fiber network in a manner such that retention of fillers and fines is promoted as the web is in subsequent stages dewatered in the web-forming section, said web-forming section further comprising a second wire loop guided by guiding means and web forming rolls so as to form an upper wire unit having a run which forms a joint run with a subsequent run of said lower wire to define a two-wire dewatering zone within which dewatering takes place substantially through the upper wire, the improvement comprising a combination of the following component arranged so as to be jointly operative as follows:
  • first roll means for initially dewatering the web predominantly upwardly through said upper wire immediately upon the web reaching said joint run, said first roll means comprising a first dewatering forming roll having an open face situated inside the upper wire loop, said joint wire run beginning on a sector of said first dewatering forming roll on which said joint wire run is curved upwardly for bidirectionally dewatering the partially formed web after said single-wire initial dewatering zone through both said upper and lower wires;
  • a forming shoe within the two-wire dewatering zone situated within the lower wire loop after said first open dewatering forming roll in the direction of web travel, said forming shoe having a curved deck structure which guides the joint wire run, said deck structure having one or more centers of curvature situated on the side of said lower loop, the web being dewatered upwardly through said upper wire;
  • second roll means for dewatering the web at least upwardly through said upper wire, said second roll means comprising a second dewatering forming roll situated within the lower wire loop after said forming shoe in the direction web travel and guiding the joint wire run downwardly over a sector of said second dewatering forming roll;
  • said run of said upper wire loop which forms said joint run being situated entirely in or above the plane of said initial substantially horizontal and planar lower wire run
  • wherein the upper and lower wires have a joint run within the range of said first and second forming rolls and said forming shoe situated therebetween, said joint run being arranged such that after the initial dewatering has occurred to an appropriate extent through the lower wire in the initial single-wire dewatering zone, further dewatering takes place within the two-wire dewatering zone asymmetrically substantially upwardly through said upper wire, and thereupon, as dewatering pressure is increased within the range of said second dewatering forming roll, dewatering continues to take place substantially through the upper wire.
Priority Claims (1)
Number Date Country Kind
820742 Mar 1982 FIX
BACKGROUND OF THE INVENTION

This application is a continuation-in-part of application Ser. No. 430,231 filed Sept. 29, 1982, now abandoned.

US Referenced Citations (20)
Number Name Date Kind
2969114 Baxter, Jr. Jan 1961
3149028 Robinson Sep 1964
3232825 Robinson Feb 1966
3311533 De Montigny et al. Mar 1967
3403073 Moran Sep 1968
3438854 Means Apr 1969
3540981 Finnila et al. Nov 1970
3573162 Brezinski Mar 1971
3726758 Parker et al. Apr 1973
3846233 Kankaanpaa Nov 1974
3855057 Hill Dec 1974
3941651 Koski Mar 1976
3992254 Lehtinen Nov 1976
3994774 Halme et al. Nov 1976
4033812 Riihinen Jul 1977
4125428 Phelps Nov 1978
4154645 Kankaanpaa May 1979
4220502 Levanen Sep 1980
4417950 Bubik et al. Nov 1983
4472244 Haltsonen Sep 1984
Foreign Referenced Citations (5)
Number Date Country
1511189 Jan 1966 DEX
2102717 Aug 1971 DEX
1078009 Aug 1967 GBX
1078010 Aug 1967 GBX
1129893 Oct 1968 GBX
Non-Patent Literature Citations (2)
Entry
J. Mardon, et al., The Hydrodynamics of Double Wire Drainage, Norsk Skogindustri, vol. 10, pp. 390-401 (1966).
D. Gustafson, et al., An Experimental Development of the Inverform Method for Forming Paper Grades, Svensk Papperstidning, vol. 67, No. 14, pp. 545-554, Jul. 31, 1964.
Continuation in Parts (1)
Number Date Country
Parent 430231 Sep 1982