The present invention relates to a winding machine, and more particularly to a winding machine for winding a web material around a core tube to producing a web-wound roll.
Winding machine is commonly used in the pulp and paper industry and textile industry for producing smaller diameter logs or rolls of web material from large diameter parent rolls. For example, winding machines are used in the paper converting industry to produce rolls of toilet paper, kitchen towel and the like.
A conventional winding machine is provided with a presser which has a surface with high coefficient of friction and which exerts a pressure to impede the forward movement of the web material. This results to the tearing off of the web material. Alternatively, a severing means having sharp, saw-toothed blades is used to sever the web material. An example is shown in U.S. Pat. No. 5,979,818 which discloses a rewinding machine for the formation of logs of web materials. In the patent, a material-severing device is provided for severing the web material when the winding of web material is completed.
Either the presser or severing means has to work with a stroke and timing control device, such as an automatic timing control roller, an automatic timing control cam or linkage assembly, etc. The presser is driven to act on the web material at a predetermined severing timing by the stroke and timing control device, such as at pressing timing or clipping timing. Such a design inevitably increases the manufacture cost and complicates the control system.
Moreover, it is necessary to precisely control the timing or stroke for the winding device. Once the presser is damaged, the stroke is offset out of a preset stroke, or the timing control is not correct and lapses from the preset timing, the web material is cut at the improper time and it would result to poor quality of the logs.
Thus, it is desired to provide a winding machine that does not require the installation of any pressing means to simplify the control of the winding machine and the manufacture cost.
A primary object of the present invention is to provide a web material winding machine which is able to tear a web material by arranging a transporting passage. The transporting passage has a dimension that is slightly smaller than the diameter of the core tube. The new working core tube conveying on the transporting passage presses on the web material, generating an interference with the speed of the web material and causing the tearing of the web material. No presser or severing means is needed for severing the web material.
Another object of the present invention is to provide a winding machine that tears the web material to complete a web-wound roll whenever a new core tube is delivered to the transporting passage. No timing control device is needed for controlling the tearing of the web material.
To fulfill the above objects, the present invention provides a web material winding machine. The winding machine comprises a core tube storage tank, a guiding unit, a transmission means, a web material feeding assembly, a gripping assembly and a second gluing mechanism. A core tube is glued with initial glue and conveyed from the guiding unit to the transmission means. Meanwhile, the web material is fed by the web material feeding assembly to the transmission means at a normal speed. The transmission means pushes the core tube to move through a transporting passage to the gripping assembly and the web material is stuck to the core tube. The web material winds around the working core tube at the winding region. When the winding is nearly completed, a new core tube is conveyed to the transporting passage and interferes with the speed of web material, causing the web material to tear along a line of perforations across the web material. A tail glue is applied to the web material of the web-wound roll by the second gluing mechanism and a web-wound roll is produced.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
With reference to the drawings and in particular to
The core tube storage tank 1 contains with a plurality of core tubes 300 and has an opening (not labeled) at the right bottom corner for supplying the core tubes 300. The guiding unit 2 communicates with the opening of the core tube storage tank 1 and includes a guiding passage 21, a first gluing mechanism 22 and a pushing mechanism 23. The first gluing mechanism 22 contains glue. The guiding passage 21 connects the core tube storage tank 1 to the pushing mechanism 23. Through the guiding passage 21, the core tube 300 is conveyed from the core tube storage tank 1 to the platform of the pushing mechanism 23. Then, the first gluing mechanism 22 applies an initial glue to the core tube 300 on the platform of the pushing mechanism 23. The pushing mechanism 23 has a retractable arm that pushes the glued core tube 300 along the platform to the transmission means 3.
The transmission means 3 includes an oscillable feeding arm 31, a roller assembly 32 and a rolling guiding mechanism 33. The feeding arm 31 is located above the pushing mechanism 23 and has a fixed end 311, a pushing end 312 and a pushing roller 313. The feeding arm 31 is pivoted at the fixed end 311 such that the pushing end 312 is movable along a first oscillating orbit I as shown in
The roller assembly 32 includes a first roller 321, a second roller 322 and a third roller 323. The first roller 321 is located nearby the feeding arm 31. The second roller 322 and the third roller 323 are below the first roller 321 and are respectively positioned at the two sides of the first roller 321. A clearance is formed between the first roller 321 and the second roller 322. The clearance is on the oscillating orbit I. A clearance is also formed between the second roller 322 and the third roller 323.
The rolling guiding mechanism 33 is arranged between the second roller 322 and the third roller 323, forming a continuous curved surface between the second roller 322 and the third roller 323. The rolling guiding mechanism 33 and the first roller 321 defines a transporting passage 34 therebetween for conveying the core tube 300.
In order to strengthen the interference action of the new working core tube 300a at the transporting passage 34 to the feeding of web material 200 (as shown in
The web material 200 is fed through the web material feeding assembly 4 to the roller assembly 32. The web material feeding assembly 4 includes a counter roller 41, a perforation roller 42 and a feeding roller 43. The counter roller 41 is provided with at least one counter blade 411, and the perforation roller 42 is provided with a plurality of blades 421 regularly spaced at the periphery of the perforation roller 42. The counter blade 411 of the counter roller 41 operates in coordination with the blades 421 of the perforation roller 42. During operation, the web material 200 is conveyed to the feeding roller 43 through a passage between the counter roller 41 and the perforation roller 42. Meanwhile, the blades 421 of the perforation roller 42 pierce through the web material 200 to the counter blade 411 of the counter roller 41, forming a line of perforations across the web material 200. The perforation roller 42 is driven to rotate at a predetermined speed such that a perforation line is produced at the web material 200 for each predetermined distance. The feeding roller 43 is located below the second roller 322 for feeding the web material 200 to the second roller 322.
The gripping assembly 5 includes an oscillable gripping arm 51 and a gripping roller 52. The gripping arm 51 has a fixed end 511 and a gripping end 512. The gripping end 512 is pivoted at the fixed end 511, such that the gripping end 512 is movable along a second oscillating orbit II as shown in
Please refer to
The cover plate 61 is perforated with a plurality of apertures 611. The injector 62 is provided with a support base 621 and a plurality of injecting needles 622. Each of the injecting needles 622 aligns with an aperture 611 located above. The glue supply 63 comprises a support base 631, a plurality of tubes 632 and a plurality of ducts 633. The tubes 632 are supported on the support base 631. Each of the tubes 632 is connected with a duct 633 which is aligned with an injecting needle 622 above the glue supply 63. The tubes 632 contain glue and supply the glue through the ducts 633 to the injecting needles 622. When a web-wound roll 400 (as shown in
Please refer to
Once entering the transporting passage 34, the core tube 300 contacts the web material 200 and sticks the web material 200 by the initial glue applied by the first gluing mechanism 22, forming a working core tube 300a , as it can be seen from
Please refer to
Please refer to
Accordingly, a pulling force is generated to the web material 200.
At predetermined time, the control means drives the injector 62 and the glue supply 63 to lift up such that the injecting needles 622 reaches the apertures 611 and are close to the web-wound roll 400, and the injecting needles 622 inject tail glue to the web-wound roll 400. After injection, the injector 62 and the glue supply 63 returns to its original position. The upward and downward movement of the injector 62 and the glue supply 63 are achieved by a retractable lifting device. The lifting device may comprise spiral pins, springs or other effective elements.
In the present invention, the tearing of the web material is achieved by the interference action of the new working core tube at the transporting passage. The winding machine tears the web material whenever a new core tube is delivered to the transporting passage. No presser or severing means is required. Hence, no time control device is needed for controlling the working of the presser. The manufacture, operation and maintenance of the winding machine are simplified. It significantly reduces the manufacture, operation and maintenance cost.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
95114469 A | Apr 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4327877 | Perini | May 1982 | A |
5137225 | Biagiotti | Aug 1992 | A |
5248106 | Biagiotti | Sep 1993 | A |
5284304 | Biagiotti | Feb 1994 | A |
5603467 | Perini et al. | Feb 1997 | A |
5653401 | Biagiotti | Aug 1997 | A |
5853140 | Biagiotti | Dec 1998 | A |
6056229 | Blume et al. | May 2000 | A |
6877689 | Butterworth | Apr 2005 | B2 |
6945491 | Gambini | Sep 2005 | B2 |
7175126 | Perini | Feb 2007 | B2 |
7198221 | Betti et al. | Apr 2007 | B2 |
7350739 | Maddaleni et al. | Apr 2008 | B2 |
7360738 | Perini | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
1232980 | Feb 2001 | EP |
1520814 | Apr 2005 | EP |
WO0164563 | Sep 2001 | WO |
WO2004035441 | Apr 2004 | WO |
WO2007083336 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070246595 A1 | Oct 2007 | US |