The invention relates to facilitating the selection of products such as engineering products and, more particularly, to a web model system and method that quantify a product technical merit index based on product specifications for defined selection factors relative to desired values.
Selecting components such as pumps, motors, control valves and the like for engineering systems is often a challenging task that requires substantial domain knowledge and experience. In considering products for incorporation into engineering systems, important variables differ among product suppliers, and it has been a challenge to confidently determine which product is best suited for the engineering system. For example, in selecting a hydraulic pump, important selection factors may include outlet pressure, speed, flow ratio, and the like. Available products may satisfy requirements for some of the selection criteria while falling short on others. The engineer is thus faced with the task of determining where to compromise in the desired specifications while selecting a product that would be suitable for the intended application.
To date, common features found in e-business websites for engineering products are mainly the catalog search (including filtering) capability. They can search on general technical specifications and pricing information, and some include extensions for searches across multiple suppliers, or searches based on certain interactive questions (like expert systems). Such websites, however, offer little help in quantitatively “comparing” candidate products, and the selection is still dependent upon the user's knowledge and experience to evaluate the candidates. Despite that many websites offer educational materials to assist users in becoming knowledgeable about the products, the evaluation knowledge continues to be a gap between buyers and sellers.
In an exemplary embodiment of the invention, a method of implementing a technical merit index tool over a global network facilitates product selection. The method includes populating via the global network a technical user input section with defined selection factors and desired values for each of the selection factors for a product to be selected, and populating via the global network a product supplier input section with product specifications relating to the defined selection factors. A technical merit index is determined for each candidate product based on a summation of normalized product specifications for each of the defined selection factors relative to the desired values.
In another exemplary embodiment of the invention, a computer system for implementing a technical merit index tool includes at least a first user computer running a computer program that supplies data for populating a technical user input section with defined selection factors and desired values for each of the selection factors for a product to be selected. At least a second user computer running a computer program supplies data for populating a product supplier input section with product specifications relating to the defined selection factors. A web server runs a server program, and the at least first and second user computers and the web server are interconnected by a computer network. The web server receives and processes the technical user input section data and the product supplier input section data and determines a technical merit index for each candidate product based on a summation of normalized product specifications for each of the defined selection factors relative to the desired value. A database server stores all the technical user input section data, the product supplier input section data and technical merit index for each candidate product.
In still another exemplary embodiment of the invention, a method of quantifying product technical merit to facilitate product selection includes the steps of (a) a technical user identifying selection factors for a product to be selected; (b) the technical user establishing a weight factor relating to an importance level for each of the identified selection factors; (c) the technical user defining ranking criteria for each of the identified selection factors including at least two levels as high (H) and low (L); (d) the technical user populating via a global network a technical user input section including the selection factors identified in step (a), the weight factor for each of the identified selection factors established in step (b), and the ranking criteria defined in step (c); (e) a supplier populating via the global network a product supplier input section with product specifications relating to the identified selection factors and supporting documentation; (f) determining a technical merit index for each candidate product based on a summation of normalized product specifications for each of the identified selection factors weighted by the respective weight factor and multiplied by the respective ranking criteria; and (g) selecting one of the candidate products based at least partly on a comparison the technical merit index of each candidate product.
Technical merit index (TMI) focuses on “technical” aspect evaluations in meeting engineering requirements. Examples of technical factors include product performance such as efficiency, internal design/structure, materials of key parts, reliability information like MTBF (mean time between failure) and MTTR (mean time to repair), etc. Non-technical factors such as cost, warranty, terms and conditions, and non-technical personal-preference like color or style, etc. are intentionally left out as they are considered orthogonal to technical factors and should be evaluated in a separate dimension.
A TMI-based web model and method extends the current e-business models on the internet. The model offers users (buyers) technical evaluation knowledge that is specific to the user's requirements. Additionally, the model establishes common protocol on product specification description across different product suppliers (sellers).
In a preferred application, TMI is defined with respect to specific engineering components and applications, such as pumps used for pumping hydraulic fluid (hydraulic pump), for pumping fuel (fuel pump), for pumping lubrication material (lube pump) or control valves for handling liquid fuel or high pressure water, and the like.
With reference to
As shown in
The technical user input section 12 also includes ranking criteria 20 defined for each of the identified selection factors 16. The ranking factors establish boundaries and tolerances around the desired value for each of the selection factors 16. For example, in the hydraulic pump example illustrated in
The product supplier input section 14 includes product specifications typically provided by the product supplier relating to each of the defined selection factors 16. In the example shown in
In analyzing the technical merit index for each of the candidate products, engineering personnel may define a technical qualification threshold as a minimum acceptable technical merit index based on use experience including both success and failure cases and possibly additional statistical analysis such as a linear regression model of the success/failure cases. In the example shown in
If an applicable TMI tool does not exist (NO in step S2), the TMI tool can be developed in a development phase where the component and application are identified (step S8), and a team of experienced personnel or “expert team” is formed to identify critical selection factors 16, weight factors 18, and ranking criteria 20 (steps S9 and S10). Appropriate approvals are obtained (step S11), and the TMI tool is released for access and use (step S12).
From a technical standpoint in the development phase, the TMI tool is developed using a known spreadsheet product (step S13) and the tool can be customized to different applications (step S14).
The web model implementing TMI in the diagrams of
1. The user runs a web browser program on his/her computer.
2. The user connects to the web server computer (e.g., via the Internet). Connection to the web server computer may be conditioned upon the correct entry of a password as is well known.
3. The user requests a page from the web server computer. The user's browser sends a message to the server computer that includes the following:
4. The web server computer receives the user's request and retrieves the requested page, which is composed, for example, in HTML (Hypertext Markup Language) and ASP or JSP forms, etc.
5. The server then transmits the requested page to the user's computer.
6. The user's browser program receives the HTML text and displays its interpretation of the requested page.
Thus, the browser program on the user's computer sends requests and receives the data needed to display the HTML page on the user's computer screen. This includes the HTML file itself plus any graphic, sound and/or video files mentioned in it. Once the data is retrieved, the browser formats the data and displays the data on the user's computer screen. Helper applications, plug-ins, and enhancements such as Java™ enable the browser, among other things, to play sound and/or display video inserted in the HTML file. The fonts installed on the user's computer and the display preferences in the browser used by the user determine how the text is formatted.
If the user has requested an action that requires running a program (e.g., a search), the web server loads and runs the program. This process usually creates a dynamic HTML page “on the fly” that contains the results of the program's action (e.g., the search results), and then sends those results back to the browser.
Browser programs suitable for use in connection with the account management system of the present invention include Netscape® Navigator available from Netscape® Communications Corporation and Internet Explorer available from Microsoft® Corp.
While the above description contemplates that each user has a computer running a web browser, it will be appreciated that more than one user could use a particular computer terminal or that a “kiosk” at a central location (e.g., a cafeteria, a break area, etc.) with access to the web server could be provided.
It will be recognized by those in the art that various tools are readily available to create web pages for accessing data stored on a server and that such tools may be used to develop and implement the account management system described below and illustrated in the accompanying drawings.
A number of program modules may be stored on the hard disk 211, removable magnetic disk 215, optical disk 219 and/or ROM 252 and/or RAM 254 of the system memory 205. Such program modules may include an operating system providing graphics and sound APIs, one or more application programs, other program modules, and program data. A user may enter commands and information into computer system 201 through input devices such as a keyboard 227 and a pointing device 229. Other input devices may include a microphone, joystick, game controller, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 203 through a serial port interface 231 that is coupled to the system bus 207, but may be connected by other interfaces, such as a parallel port interface or a universal serial bus (USB). A monitor 233 or other type of display device is also connected to system bus 207 via an interface, such as a video adapter 235.
The computer system 201 may also include a modem 237 or other means for establishing communications over the wide area network 252, such as the Internet. The modem 237, which may be internal or external, is connected to the system bus 207 via the serial port interface 231. A network interface 256 may also be provided for allowing the computer system 201 to communicate with a remote computing device 250 via a local area network 258 (or such communication may be via the wide area network 252 or other communications path such as dial-up or other communications means). The computer system 201 will typically include other peripheral output devices, such as printers and other standard peripheral devices.
As will be understood by those familiar with web-based forms and screens, users may make menu selections by pointing-and-clicking using a mouse, trackball or other pointing device, or by using the TAB and ENTER keys on a keyboard. For example, menu selections may be highlighted by positioning the cursor on the selections using a mouse or by using the TAB key. The mouse may be left-clicked to select the selection or the ENTER key may be pressed. Other selection mechanisms including voice-recognition systems, touch-sensitive screens, etc. may be used and the invention is not limited in this respect.
It has been a challenge in interpreting product specifications, as different suppliers often describe the product specifications in different ways. Such differences may be as trivial as using different metrics or terminology, or as sophisticated as requiring good knowledge to interpret. For example, MTTR for overall pump versus for bearing only; lifting data for motors with direct drive versus belted drive; etc. All such knowledge can be captured in the TMI tool, which is easy to maintain, validate and understand.
Implementing the TMI tool in a web environment would allow global vendors to easily become prospect product suppliers and thereby to maximize the benefits deploying the technology. With reference to
The web server 36 receives and processes the technical user input section data from the first user computer 32 and the product supplier input section data from the second user computer 33 to determine the technical merit index for each candidate product. The technical merit index is determined as discussed above. The web server 36 communicates the defined selection factors 16 (
The purpose for supporting documentation is allow technical users to verify the data provided by suppliers. Examples of supporting documentation may include product catalogs, or any published documents relating to the candidate products.
With the TMI tool and method, the technical effect is to facilitate the selection of candidate products based on a more objective analysis than previously accomplished, and by enabling a TMI-based web model, additional suppliers can participate and multiple purchasers can process TMI data from a single source of product data.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is related to U.S. application Ser. No. 11/---,--- (attorney docket 839-1786) and U.S. application Ser. No. 11/---,--- (attorney docket 839-1790).