The present invention relates generally to printing presses and more specifically to web offset printing presses having separable blankets.
U.S. Pat. No. 4,240,346 describes for example a printing press with two blanket cylinders separable from each other to permit a blanket throw off. In such presses, the blankets are offset from a vertical from each other, and in order to pass the web through the blankets when the blankets are offset, lead rolls or air bars are necessary to properly guide the web through the blankets. These guides can mark the printed product and also alter registration of the web between two printing print units, causing deteriorated print quality.
U.S. Pat. Nos. 6,216,592 and 6,019,039 describe printing units with throw-off mechanisms and are hereby incorporated by reference herein.
The present invention provides an offset web print unit comprising:
a plate cylinder;
a blanket cylinder;
a second blanket cylinder;
an autoplating mechanism, and
a throw-off mechanism including a single actuator both for moving the blanket cylinder from the second blanket cylinder and for moving the blanket cylinder to selectively contact the plate cylinder to permit autoplating while the blanket cylinder is thrown-off of the second blanket cylinder.
The present invention also provides a method for autoplating comprising throwing off a blanket cylinder from a second blanket cylinder using an actuator, separating a plate cylinder from the blanket cylinder using the actuator; and plating the plate cylinder with a printing plate, the plating step including removing a used printing plate from the blanket cylinder.
Preferred embodiments of the present invention will be elucidated with reference to the drawings, in which:
The blanket cylinders 44, 46 for each print unit may be thrown-off, as shown for units 22 and 24, so as to separate from each other and from the respective plate cylinder 42, 48. Plate cylinders 42, 48 may move back into contact with the blanket cylinders 44, 46, respectively, during an automatic plate change operation, for example via automatic plate changers 40 and 50, respectively. Automatic plate changers are described in U.S. Pat. Nos. 6,053,105, 6,460,457 and 6,397,751 and are hereby incorporated by reference herein.
A throw-off mechanism 60 is shown schematically for moving the blanket and plate cylinders 46, 48. Blanket cylinder 44 and plate cylinder 42 may have a similar throw-off mechanism. Preferably, each print unit is driven by two motors 70, 72, one driving one of the plate or blanket cylinders 46, 48, and one driving one of the plate cylinder 42 and blanket cylinder 44. The non-driven cylinder may be geared to the driven cylinder on each side of web 30. Each print unit 10, 12 . . . 24 may be the same.
The web path length between the nip rollers 32, 34 advantageously need not change, even when one of the print units has blanket cylinders which are thrown off. Registration may be unaffected by the throw-off. In addition, no web deflectors or stabilizers are needed, such as lead rolls or air rolls to make sure the web does not contact the blanket cylinders 44, 46, which could cause marking.
The throw-off distance D preferably is at least 0.5 inches and most preferably at least 1 inch, i.e. that the web has half an inch clearance on either side of the web. Moreover, the centers of the blanket cylinders 44, 46 preferably are in a nearly vertical plane V, which is preferably 10 degrees or less from perfect vertical. This has the advantage that the throw-off provides the maximum clearance for a horizontally traveling web.
The circumference of the plate cylinder preferably is less than 630 mm, and most preferably is 578 mm.
The creation of the large throw-off distance D is explained with an exemplary embodiment as follows:
When blanket cylinder 44 is in contact with blanket cylinder 46 in a printing position, a first bearer surface 111 of support 102 is in contact with a second bearer surface 112 of support 104, which another bearer surface 109 of the support 102 is not in contact with a bearer surface 110 of support 104. Distance F thus is zero, while a distance G between surfaces 109 and 110 may be 0.0045 inches. Distance H between the axial centers of the axles 144 and 142 may be 7.2463 inches.
In
As shown in
As shown in
The upper plate and blanket throw-off mechanism also have dual bearer surfaces, but since the gravity effects differ, a link can be provided between similar holes 130, 132 in the upper supports so that the raising of the plate cylinder 48 also causes the blanket cylinder 46 to rise.
A wedge 310 can move under support 202 in this position to support blanket support 202 and blanket cylinder 46 in the thrown off position.
As shown in
As shown in
The present invention thus provides for large movement of the blanket and plate cylinders in an effective manner while maintaining auto-plating capability.
This application claims priority to U.S. Provisional Application No. 60/666,360 filed Mar. 30, 2005, and hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60666360 | Mar 2005 | US |