This application relates generally to automated systems and methods for producing product, and more particularly to automated web processing systems such as web converting and packaging systems.
There are various automated systems and methods for producing product. By way of example, automated web converting systems may process material from different rolls of material to form product. The continuous rolls of material are fed as “webs” through web processing components to form a new product that may be an intermediate or final product. Converting processes may include coating, laminating, printing, die cutting, slitting, and the like.
A design goal for these automated systems may be to reduce material waste while maintaining a fast, accurate process. Thus, parts may be closely spaced in one web to reduce waste in the web, but may be required to be further spaced apart on a second web for further processing steps. An example of a system of providing such placement is a pick-and-place apparatus or an island placement apparatus. An example of an island placement apparatus is provided in U.S. Pat. Nos. 7,293,593 and 8,097,110, both entitled “Island Placement Technology.”
Various embodiments provided herein provide an apparatus for processing web that uses a semi-rotary accumulator to change web speed for transferring parts from a first web onto a second web. For example, a first web may run at a first speed entering a first web path through the semi-rotary accumulator. Operation of the semi-rotary accumulator may cause the web speed exiting the first web path within the accumulator to intermittently speed up and slow down. This variable speed web enters a second web path through the semi-rotary accumulator. Operation of the semi-rotary accumulator may transition the variable speed web motion entering the second web path back the first speed when exiting the second web path. A programmed cam motion profile may be used to control timing of the accumulator motion to provide a desired part placement on a second moving web.
An apparatus embodiment may comprise a first idler shaft, a second idler shaft, a third idler shaft, and a fourth idler shaft. The apparatus may further comprise a first movable idler shaft having a first movable axis that is movable between a first axis position and a second axis position, and a second movable idler shaft having a second movable axis that is movable between a third axis position and fourth axis position. At least one linkage connects the first movable idler shaft to the second movable idler shaft. A motor linkage is configured to connect the at least one linkage to at least one motor for providing simultaneous movement of the first and second movable idler shafts. Simultaneous movement of the first movable idler shaft toward the first axis position and the second movable idler shaft toward the third axis position increases a length of the first web path between the first and second idler shafts and decreases a length of the second web path between the third and fourth idler shafts. Simultaneous movement of the first movable idler shaft toward the second axis position and the second movable idler shaft toward the fourth axis position decreases the length of the first web path between the first and second idler shafts and increases the length of the second web path between the third and fourth idler shafts.
An apparatus embodiment may comprise first and second end supports, and first, second, third and fourth idler shafts extending between the first and second end supports. The first idler shaft may be configured to rotate about a first axis in a first fixed position, the second idler shaft may be configured to rotate about a second axis in a second fixed position, the third idler shaft may be configured to rotate about a third axis in a third fixed position, and the fourth idler shaft may be configured to rotate about a fourth axis in a fourth fixed position. The apparatus may further comprise first and second movable idler shafts extending between the first and second end supports, where the first movable idler shaft may be configured to rotate about a first movable axis that is movable between a first axis position and a second axis position, and the second movable idler shaft may be configured to rotate about a second movable axis that is movable between a third axis position and fourth axis position. A first web path length between the first idler shaft and the second idler shaft is longest when the first movable idler shaft is in the first axis position and shortest when the first movable idler shaft is in the second axis position. A second web path length between the third idler shaft and the fourth idler shaft is shortest when the second movable idler shaft is in the third axis position and longest when the second movable idler shaft is in the fourth axis position. A first linkage connects a first side of the first movable idler shaft to a first side of the second movable idler shaft, and a second linkage connects a second side of the second movable idler shaft to a second side of the second movable idler shaft. A motor linkage is configured to connect the first and second linkages to a motor to allow the motor to simultaneously move the first and second movable idler shafts in a first direction, and to simultaneously move the first and second movable idler shafts in a second direction opposite the first direction. The motor linkage may include a drive shaft extending between the first and second end supports where the drive shaft including a first drive shaft pulley proximate the first end support and a second drive shaft pulley proximate the second end support. A first belt is around the first drive shaft pulley and another pulley proximate the first end support. A second belt is around the second drive shaft pulley and another pulley proximate the second end support. A first linear bearing rail is mounted to the first end support. A cooperating first linear bearing block assembly is configured to linearly move along the first linear bearing rail and to connect the first belt to the first linkage. A second linear bearing rail is mounted to the second end support. A cooperating second linear bearing block assembly is configured to linearly move along the second linear bearing rail and to connect the second belt to the second linkage.
A method embodiment may comprise passing a web through a first web path within an apparatus in a first direction to a station, and passing the web from the station through a second web path within the apparatus in a second direction. Passing the web through the first web path may include passing the web past a first idler shaft with a first axis in a first fixed position, a first movable idler shaft with a first movable axis configured to be movable between a first axis position and a second axis position, and a second idler shaft with a second axis in a second fixed position. Passing the web from the station through the second web path may include passing the web past a third idler shaft with a third axis in a third fixed position, a second movable idler shaft with a second movable axis configured to be movable between a third axis position and a fourth axis position, and a fourth idler shaft with a fourth axis in a fourth fixed position. The method embodiment may intermittently decrease and increase speed of the web at the part transfer station, which may include simultaneously moving the first movable idler shaft toward the first axis position and the second movable idler shaft toward the third axis position to decrease speed of the web at the transfer station, and simultaneously moving the first movable idler shaft toward the second axis position and the second movable idler shaft toward the fourth axis position to increase speed of the web at the transfer station.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their equivalents.
The illustrated accumulator 100 further includes a first linkage 124 connecting a first side of the first movable idler shaft 110 to a first side of the second movable idler shaft 112, and a second linkage 126 connecting a second side of the first movable idler shaft 110 to a second side of the second movable idler shaft 112. The first and second linkages 124 and 126 function to maintain a fixed distance between the first and second movable idler shafts 110 and 112, and also function to maintain a parallel orientation of the first and second movable idler shafts 110 and 112 with respect to each other. The illustrated first and second linkages 124 and 126 between the first and second movable idler shafts 110 and 112 are mechanical linkages. Those of ordinary skill in the art will appreciate that the first and second movable idler shafts 110 and 112 may be electrically linked rather than mechanically linked. For example, each of the first and second movable idler shafts 110 and 112 may be controlled by its own motor, and each of these motors may be controlled to move the first and second movable idler shafts 110 and 112 together to maintain a fixed distance between them. The use of a linkage on each side of the movable idler shafts limits deflection in the idler shafts. However, some embodiments may implement a single linkage between the movable idler shafts 110 and 112.
The illustrated accumulator 100 further includes a motor linkage 128 illustrated generally in the exploded view of
The illustrated accumulator 100 further includes a first and second linear bearing rails 150 and 152, and first and second linear bearing block assemblies 154 and 156. The first linear bearing rail 150 is mounted to the first end support 120 and the cooperating first linear bearing block assembly 154 is configured to linearly move along the first linear bearing rail 150. The first linear bearing block assembly 154 is configured to connect the first belt 138 to the first linkage 124. The second linear bearing rail 152 is mounted to the second end support 122 and the cooperating second linear bearing block assembly 156 is configured to linearly move along the second linear bearing rail 152. The second linear bearing block assembly 156 is configured to connect the second belt 140 to the second linkage 126. The illustrated linear bearing block assemblies include a linear bearing block 158 configured to ride on the linear bearing rail, and further includes a bracket 160 connected to the bearing block 158 and a clamp 162 configured to clamp the belt between the clamp 162 and the bracket 160. Furthermore, the linear bearing block assembly may be configured to extend into an opening in the side support to connect the linkage (e.g. 124 or 126). For example, the bracket 160 may be formed with pins 164 configured to fit in opening 166 within the linkage (e.g. 124) to cause the linkage to move with the belt.
The first end support 120 may include a first end plate with a first flat major surface 168, and the second end support 122 may include a second end plate with a second flat major surface 170 facing toward and substantially parallel with the first flat major surface. In the illustrated embodiment, each of the idler shafts is substantially perpendicular to the first and second flat major surfaces. Each of the first and second end plates includes an opening 172 and 174 configured to allow the bracket 160 to extend through the opening to connect with the linkages 124 and 126 and allow linear movement of the linkages 124 and 126 to simultaneously move the first movable idler shaft 110 and the second movable idler shaft 112 in the same direction.
The accumulator 100 may further include a front guard 176 configured to be attached to the second end support and cover the second belt and other moving parts proximate to the second end support. Additionally, the accumulator may include mounting clamps 178 for use to mount and clamp accumulator onto a web processing machine. For example, mounting rods may extend horizontally out from the web processing machine. The top portion of the mounting clamps may rest on the mounting rods, and the bottom portion may be clamped around the mounting rods to secure the accumulator place. As illustrated, the accumulator 100 may also include belt tension adjustment blocks 180 to adjust tension in the drive belts. For example, threaded bolts 182 may be turned to screw into the block to increase tension in the belt, or may be turned to screw out of the block to decrease tension in the belt.
The accumulator may further include additional idlers on shaft 184 useful for providing desired web path into and out of the accumulator. Also, a sensor such as a proximity sensor 186 may be used to detect when the linear bearing block assembly is proximate to the sensor, for use in timing the motion of the first and second movable idler shafts 110 and 112. Other sensor(s) may be used to provide input for the larger web handling system. For example, a reflector 188 may be used to allow a sensor on the larger system to detect that the accumulator has been installed. Additionally, hard stops 190 may be used to limit motion under conditions such as a broken belt, a loss of motion profile, or an actuated emergency stop (“E-Stop”).
The first web may enter the first web path of the accumulator at line speed, and exits the second web path of the accumulator at line speed. However, operation of the accumulator causes the speed of the web to vary at the transfer station. The speed of the first web may match the speed of the second web during the part transfer. However, in order to increase the spacing between parts on the second web, the first web may temporarily decrease in speed between part transfers, may temporarily stop between part transfers, and/or may temporarily reverse directions between part transfers.
The methods illustrated in this disclosure are not intended to be exclusive of other methods within the scope of the present subject matter. Those of ordinary skill in the art will understand, upon reading and comprehending this disclosure, other methods within the scope of the present subject matter. The above-identified embodiments, and portions of the illustrated embodiments, are not necessarily mutually exclusive. These embodiments, or portions thereof, can be combined. In various embodiments, the methods are implemented using a sequence of instructions which, when executed by one or more processors, cause the processor(s) to perform the respective method. In various embodiments, the methods are implemented as a set of instructions contained on a computer-accessible medium such as a magnetic medium, an electronic medium, or an optical medium.
The above detailed description is intended to be illustrative, and not restrictive. Other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
2979557 | Alfred | Apr 1961 | A |
3902376 | Humphrey | Sep 1975 | A |
5281030 | Krnac | Jan 1994 | A |
Number | Date | Country | |
---|---|---|---|
20150083551 A1 | Mar 2015 | US |