The present invention relates to a web separator for a tissue paper winding machine, and more particularly, to a web separator which tears a web by a reverse rotation mechanism.
In a conventional tissue paper winding machine, a core is generally sent by a conveyor to a first winding roller and pushed by a core inserter into a guiding passage to a winding nip, at where a long tape of tissue paper is wound around the core to form a roll of paper, such as a rolled tissue paper. When the winding of a first roll of paper is completed, the tissue paper is torn by a device.
U.S. Pat. No. 5,769,352 discloses a web rewinding machine adaptable to different core diameters. The web winding machine includes an interrupting means which rotates about a rotating element at a speed slightly lower than the speed of the feed of the web material. The interrupting means interrupts the web material and consequently, the web material is torn. Then, a pusher is actuated to push a new core to the entrance of the channel. In the prior art, the rotation direction of the interrupting means is the same as the feeding direction of the web material.
In U.S. Pat. No. 6,877,689, the rewinder apparatus uses a web separator to separate a web material. The web separator may comprise a presser rotating in the same direction as the web material and having a lower speed than that of the web material, or a severing means having blades.
However, in the above conventional tissue paper winding machine, care must be taken for the rotary member to rotate at a speed not equal to that of the first winding roller in order to pull apart the tissue paper utilizing a speed difference. In the case the tissue paper is made of a highly tough material, the speed difference between the rotary member and the first winding roller must be large enough to pull apart the tissue paper.
Moreover, since the rotary member is rotated in a direction the same as the moving direction of the tissue paper in the winding machine, the rotary member does not provide the function of catching a new leading edge of the torn tissue paper for winding the leading edge to a next core.
A primary object of the present invention is to provide a tissue paper winding machine including a web separator which is driven to rotate in a direction reverse to the feeding direction of the tissue paper that hinders the forward movement of the tissue paper and generates a pulling force at the tissue paper which is then pulled apart.
Another object of the present invention is to provide a web separator which includes a plurality of pinch arms connecting to a suction channel and a suction pump for drawing out air from the suction channel and the passages in the pinch arms to generate a suction force, that enables smooth winding of the tissue paper around a next core.
To achieve the above and other objects, the tissue paper winding machine according to the present invention includes a first winding roller and a web separator. A long tape of tissue paper is fed to attach to a lower circumferential surface of the first winding roller and move along a predetermined feeding direction for winding around a first core. The web separator is arranged near and below the first winding roller, and includes a pivot shaft, at least one pinch arm, and a driving mechanism. The pivot shaft has an outer circumferential surface. The pinch arm is connected to the outer circumferential surface of the pivot shaft, and has a connecting end mounted onto the outer circumferential surface of the pivot shaft, and a pressing end radially outward extended from the outer circumferential surface of the pivot shaft. The driving mechanism is connected to the pivot shaft for driving the pinch arm to turn about the pivot shaft in a direction opposite to the feeding direction of the tissue paper, so that the pressing end of the pinch arm is turned to a separation position, at where the pressing end of the pinch arm touches and presses against the circumferential surface of the first winding roller, or away from the separation position. When the pinch arm is driven by the driving mechanism to turn the pressing end to the separation position, the tissue paper passing through between the first winding roller and the pressing end of the pinch arm is clamped thereto, and the pressing end of the pinch arm applied a pulling force against the tissue in a direction reverse to the feeding direction of the tissue paper, so that the tissue paper is pulled apart near the separation position into a trailing edge that is closer to the first core, and a leading edge that is closer to a second core. The trailing edge of the tissue paper is then attached to the tissue paper already wound around the first core to complete a roll of paper.
In a preferred embodiment of the present invention, the pivot shaft of the web separator is a hollow shaft internally defining an axially extended suction channel, and provided on the outer circumferential surface at predetermined positions with at least one aperture communicating with the suction channel. And, the pinch arm is internally provided with at least one passage communicating at two ends with the pressing end and the aperture on the pivot shaft. A suction pump is connected to the pivot shaft for extracting air from the suction channel of the pivot shaft and the passage of the pinch arm, so that a suction force is generated at the pressing end of the pinch arm. When the tissue paper is pulled apart near the separation position, the leading edge of the tissue paper is sucked to the pressing end of the pinch arm and brought to the second core for primarily winding around an outer circumferential surface of the second core.
In another embodiment of the present invention, the tissue paper winding machine further includes an air injection mechanism arranged near and below the first winding roller. When the leading edge of the tissue paper is brought by the pressing end of the pinch arm to primarily wind around the second core, the air injection mechanism is actuated to inject a strong airflow toward the leading edge of the tissue paper for the leading edge to completely wind around the outer circumferential surface of the second core.
With the web separator, the tissue paper on the winding machine may be easily pulled apart with the pinch arm being rotated at any rotation speed, even if the tissue paper is made of a highly tough material. Moreover, with the suction pump, the pinch arm may suck the newly formed leading edge of the pulled apart tissue paper to facilitate smooth winding of the leading edge to a next core.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Please refer to
The core support plates 13 are located near and below the first winding roller 12, such that a channel 3 is defined between the core support plates 13 and the first winding roller 12. A winding nip 19 is defined between the first winding roller 12, the second winding roller 15, and the rider roller 16. A long tape of tissue paper 4 having a predetermined thickness and width is fed to the winding machine 100 via the feed rollers 21, and then moved through the perforation roller 22 which perforates the tissue paper 4 and forms a line of perforation across the tissue paper 4 at fixed intervals. An amount of tail glue and initial glue (not shown in
Please refer to
The driving mechanism 143 is connected to the pivot shaft 141 for driving the pinch arms 142 to turn about the pivot shaft 141 in a direction opposite to a feeding direction of the tissue paper 4. Therefore, the pressing ends 142b of the pinch arms 142 may be turned to or away from a separation position A. When being turned to the separation position A, the pressing ends 142b of the pinch arms 142 touch and press against the circumferential surface of the first winding roller 12. The movement of the pinch arms 142 forms a circular orbit 142d. The driving mechanism 143 includes a transmission means 143a and a motor 143b, and the transmission means 143a is driven by the motor 143b to operate.
Please also refer to
As can be seen from
Please refer to
The second core 6 is carried by one of many carriers 171 of the conveyor 17 to a loading nip of the channel 3 formed between the first winding roller 12 and the core support plates 13. At this point, a core inserter 172 of the conveyor 17 is automatically turned to push the second core 6 into the channel 3, so that the tissue paper 4 is adhered to the second core 6 by the initial glue 42.
Please refer to
Please refer to
Please refer to
The rider roller 16 is connected to an oscillable gripping arm 161. When the oscillable gripping arm 161 is oscillated about a pivot shaft 162 thereof, the rider roller 16 connected to the oscillable gripping arm 161 is brought to move upward and downward along an oscillating orbit (not shown) of the oscillable gripping arm 161. Please refer to
In
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
96127668 | Jul 2007 | TW | national |