The present invention relates generally to software. More specifically, web service generation is described.
Complex software systems are often implemented using applications and platforms from a variety of vendors. In many cases, applications may be shared among various locations, hosts, machines, clients, and other system resources using web services. Web services generally rely upon the use of common protocols or formats such as Web Services Description Language (“WSDL”) to enable applications to be used between disparate platforms from multiple vendors. Platforms may include operating systems, software systems, or other foundation layer software that enables the sharing of data among various applications using formats such as XML. However, there are problems when implementing web services and ensuring a common web service may be integrated for use with different platforms.
Web services are built using common protocols (e.g., WSDL) and often requires significant developer time and labor. Integrating web services to function with different platforms often requires substantial, manual access and modification of source code associated with a particular platform or web service. Adding functionality to an existing web service is also problematic in that source code access and modifications are required. The process of adding functionality to a web service or generating a web service with additional functionality requires manual modification, deletion, or addition of source code in order to build the web service.
When building a web service, a client, host, or other machine or system resource will call an existing web service to retrieve a set of definitions to “learn” how to build the web service. Before, during, and after the call, only the functionality that is defined by the web service can be used by the client. New or different functionality can not be implemented without manually modifying the underlying application source code on the web service.
Thus, what is needed is a solution for extending a web service without changing the implementation of the original web service.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings:
The invention can be implemented in numerous ways, including as a process, an apparatus, a system, a composition of matter, a computer readable medium such as a computer readable storage medium or a computer network wherein program instructions are sent over optical or electronic communication links. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
Generating a web service to enable the addition of functionality before, or after an original web service call is described. Layering functionality or software applications on software platforms developed by disparate vendors is an important and valuable objective. Through the use of a web services wrapping tool, functionality may be automatically added to existing web services without requiring manual access or modification of existing source code associated with native web services.
In some examples, calls may be made from client 102 to web service 108 using a web service switch (not shown), which provides for code-compatibility between client 102 and web service 108. In this example, original web service 104 may be introspected by web service wrapping tool 106 to determine a set of definitions that may be used to establish original web service 104. For example, client 102 requests to establish original web service 104, which may be a word processing, financial, document management, or other type of software-based system. Client 102 calls web service 108, which is passed to original web service 104. When a call is initiated, web service wrapping tool 106 also introspects original web service 104 to build web service 108, as described below in connection with
Functionality is added to web service 108 by web service wrapping tool 106 using WSDL data from original web service 104 and templates 206. As an example, generator 204 may be used to generate templates. Templates may be automatically or user-defined. Users (e.g., developers, architects, administrators, and other personnel with access to system 100 resources) may develop additional functionality to layer on native web services such as original web service 104 without accessing or modifying associated source code. Instead, web service wrapping tool enables layered functionality to be added to native web services, creating a superset of web services that are made available to client 102. Once generated, templates are stored in template library 208, from which a superset of functionality may be built and implemented into web service 108. In other examples, more or fewer components may be used to implement web service wrapping tool 106. Web service 108 is described in greater detail below in connection with
Disparate multiple vendor-developed platforms using a common web service may be modified to implement web service generation, as described above. As an example, the following module illustrates how parameters may be modified to provide for web service generation integration. In some examples, adding a pointer to a particular name space directs web service wrapping tool to namespace for retrieving definitions to build web service 108 with added functionality.
According to one embodiment of the invention, computer system 700 performs specific operations by processor 704 executing one or more sequences of one or more instructions contained in system memory 706. Such instructions may be read into system memory 706 from another computer readable medium, such as static storage device 708 or disk drive 710. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention.
The term “computer readable medium” refers to any medium that participates in providing instructions to processor 704 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as disk drive 710. Volatile media includes dynamic memory, such as system memory 706. Transmission media includes coaxial cables, copper wire, and fiber optics, including wires that comprise bus 702. Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
Common forms of computer readable media includes, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, carrier wave, or any other medium from which a computer can read.
In an embodiment of the invention, execution of the sequences of instructions to practice the invention is performed by a single computer system 700. According to other embodiments of the invention, two or more computer systems 700 coupled by communication link 720 (e.g., LAN, PSTN, or wireless network) may perform the sequence of instructions to practice the invention in coordination with one another. Computer system 700 may transmit and receive messages, data, and instructions, including program, i.e., application code, through communication link 720 and communication interface 712. Received program code may be executed by processor 704 as it is received, and/or stored in disk drive 710, or other non-volatile storage for later execution.
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.