The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were severely limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from virtually unlimited sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
Embodiments described herein involve the playback of media items from a webpage by a playback zone of a media playback system. In one embodiment, playback zones in a media playback system are identified when a web-browsing interface is launched. When a webpage is displayed on the web-browsing interface, one or more links to playable media items on the webpage are identified, and the webpage is modified such that one or more representations corresponding to the one or more links are selectable to cause the respective playback media items to be played by one or more of the identified playback zones.
In one example, a selection of a representation will prompt a display of the identified playback zones from which the user can choose a playback zone to play the corresponding media item. In another example, the media item may be added to a playback queue associated with the selected playback zone in addition to, or instead of being immediately played by the selected playback zone.
As indicated above, the present application involves facilitating playback of media items on a webpage by a playback zone of a media playback system. In one aspect, a method is provided. The method involves identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
In another aspect, a device is provided. The device includes a processor, and memory having stored thereon instructions executable by the processor to cause the device to perform functions. The functions include identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform functions. The functions include identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
The present application further involves playing media items on a webpage in a playback zone of a media playback system. In one aspect, a method is provided. The method involves displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The method also involves causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
In another aspect, a device is provided. The device includes a processor, and memory having stored thereon instructions executable by the processor to cause the device to perform functions. The functions include displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The functions also include causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform functions. The functions include displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The functions also include causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be configured to store instructions executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g. according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
As discussed above, embodiments described herein involve playback of media items from a webpage by a playback zone of a media playback system. Method 500 shown in
In addition, for the method 500 and other processes and methods disclosed herein, the flowchart shows functionality and operation of a possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 500 and other processes and methods disclosed herein, each block in
At block 502, the method 500 involves identifying one or more playback zones of a media playback system. In one example, the identification of the one or more playback zones may be performed upon opening or launching a web-browsing interface on a device, such as a computer or mobile device. As described above in section II, each playback zone in the media playback system may include one or more playback devices. In other example, the identification of the one or more playback zones may be performed at some time subsequent to launching the web-browsing interface. For instance, identification may occur upon selecting a media item link, or upon loading a webpage by the web-browsing interface.
In one example, each of the playback devices in the media playback system may be connected to a local area network (LAN) according to a Universal Plug and Play (UPnP) network protocol. As such, each of the playback devices in the media playback system may be discovered by other devices, including the device providing the web-browsing interface, that are also connected to the LAN according to the UPnP network protocol. The one or more playback zones in the media playback system may be identified based on the identified playback devices.
In some cases, other UPnP capable devices, such as printers, NAS devices, and televisions, among others, that are not part of the media playback system may also be discovered according to the UPnP protocol. In such cases, the process of identifying playback zones in the media playback system may further involve filtering out devices that are not part of the media playback system. For instance, devices in the media playback system may each have a device name (or device identification) that is based on a particular naming convention, and discernable from names of devices that are not part of the media playback system. As such, filtering out devices that are not part of the media playback system may involve a search for devices having device names fitting the particular naming convention of devices in the media playback system.
In another example, identification of the one or more playback zones may involve a user account of the user. For instance, the media playback system may be associated with an email address that the user provided when registering the media playback system. As such, if a user logs into the email account or otherwise provides the email address to the web-browsing interface, the media playback system associated with the email address may be identified, and accordingly, playback zones of the media playback system may also be identified. In this embodiment, the device providing the web-browsing interface may not need to be on the same network as the media playback system in order to identify the playback zones in the media playback system. Rather, the web-browsing interface device may need to have access via a wide area network (WAN) for example, to a server where account information associated with the media playback system is stored. In another case, if a controller software application for the media playback system is installed and/or launched on the device providing the web-browsing interface, identifying the playback zones of the media playback system may involve retrieving playback zone information from the controller software application.
In yet another example, identification of the one or more playback zones may involve retrieving previously stored data indicating the one or more playback zones in the media playback system. In one case, during a previous launching of the web-browsing interface, the playback zones of the media playback system were identified as described above, and data indicating the identified playback zones was stored. In one instance, the data indicating the identified playback zones may be stored in a cloud server. In another instance, the data may be stored locally on the web-browsing interface device. In a further instance, the data stored locally on the web-browsing interface device may be stored in association with the controller software application for the media playback system, as discussed above. In another case, a discovery of the playback zones, such as described above, may be performed periodically, and data indicating the identified playback zones may be stored and/or updated. In these cases, the stored data may be retrieved when the web-browsing interface is launched again. Other examples, including variations and combinations of those described above are also possible.
At block 504 in
Identifying a link to a playable media item on the webpage may involve searching the received HTML file for references to playable media items. For instance, if the playback devices of the media playback system are capable of playing files with file extensions .wav, .m4a, and .mp3, then a search may be performed in the received HTML file for references to files having file extensions .wav, .m4a, or .mp3. One having ordinary skill in the art will understand that .wav, .m4a, and .mp3 are only example file extensions, and will appreciate that other file formats for audio and/or visual files may also be playable by devices in the media playback system and accordingly searched for when identifying links to playable media items on the webpage.
When the web-browsing interface displays the website, the link to the media item may be provided in the form of a selectable graphical or textual link representation, among others. In discussions herein, a selection of the link representation or any representation associated with a link may involve one or more mouse-clicks, finger taps or other user interactions on the representation. Other examples are also possible.
In one case, a selection of the link representation may cause media playback software to be launched to play the media item. In another case, a selection of the link representation may cause the web-browsing interface to prompt the user to indicate what the user wishes to do with the media item. For instance, a list of options may be provided for the user to select, including saving the media item, playing the media item with a particular certain media playback software, and opening the media item within the web-browsing interface using some web-browsing interface plug-in application, among other examples.
At block 506, the method involves modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones. Modifying the webpage may involve modifying the received HTML file. In one example, the webpage may be modified before the web-browsing interface displays the webpage. In other words, the web-browsing interface displays only the modified webpage and not the originally received webpage. In another example, the originally received webpage may be initially displayed by the web-browsing interface until modification of the webpage is complete, at which point the web-browsing interface may be updated with the modified webpage. Other examples are also possible.
In some embodiments, causing the media item to be played in the one or more playback zones may involve adding the media content to a playback queue associated with the one or more playback zones. For instance, the media item may be added to the playback queue prior to playback of the media item. As such, in discussions herein, a selection of the representation to cause the media item to be played in the one or more playback zones may cause the media item to be played immediately, cause the media item to be added to the playback queue, or both.
As shown, a selection of the representation 608 may cause the web-browsing interface to prompt the user to indicate what the user wishes to do with the media item by providing a list of executable options 610. The options 610 in this example may include “Open Link in New Tab,” “Open Link in New Window,” and “Copy Link Address” that may have also been available when selecting link representations on the originally received webpage. In this case, however, the options 610 also include “Play to Media System” and “Queue to Media System” which were not available when selecting link representations on the originally received webpage. As previously indicated, selecting “Play to Media System” may cause the media item corresponding to representation 608 to be played by the one or more playback zones in the media playback system, while selecting “Queue to Media System” may cause the media item corresponding to representation 608 to be added to a playback queue associated with the one or more playback zones in the media playback system. Other options that are not shown or discussed may also be in the executable options 610. Further, one having ordinary skill in the art will appreciate that while the displayed position of the options 610 appears to be proximal to the selected representation, display of the options 610 may alternatively be displayed anywhere on the web-browsing interface.
In another example, the representation associated with the link may replace the link representation on the originally received webpage to indicate that the media item can be played in the one or more playback zones.
In yet another example, the representation associated with the link may be in the form of a representative icon proximal to the link representation on the originally received webpage indicating the option to cause the media item to be played in the one or more playback zones.
Referring back to method 500 in
As shown, the playback zones list 612 may include “Playback Zone 1,” “Playback Zone 3,” and “Playback Zone 4.” In one example, the playback zones in the list 612 may be ordered according to alphabetical order of the zone names. In another example, the playback zones in the list 612 may be ordered chronologically according to when each playback zone was created or when each playback zone most recently played media content. In yet another example, the playback zones in the list 612 may be ordered according to physical proximities between the computing device providing the web-browsing interface and the respective one or more playback zones. For instance, if a user is using the web-browsing interface on a tablet or personal computer in “Playback Zone 3”, then “Playback Zone 3” may be listed first. In a further example, if the one or more playback zones were identified based on information retrieved from the controller software application for the media playback system, a playback zone that is currently being accessed via the controller software application running on the web-browsing interface device may be listed first. Other examples are also possible.
In addition, the playback zones in the list 612 may be listed or ordered according to playback states of the playback zones. For instance, playback zones that are not currently playing any media content may be listed first. Along the same lines, an icon or some other graphical effect may be provided in the playback zones list 612 to indicate that certain playback zones are currently playing media content, and other playback zones are not. In some cases, playback zones that are currently playing media content may not be available to play media items from the webpage 600 or 650. In one case, the unavailable playback zone may be grayed out and/or non-selectable. In another case, the unavailable playback zone may not be included in the list 612 at all. In addition to those described and/or suggested above, other selectable representations may be provided while maintaining the same or similar functionalities of playing the corresponding media item or prompting for additional input from the user are also possible.
At block 510 in
As indicated above, the media item may be added to a playback queue associated with the particular playback zone, in addition to, or instead of causing the playback zone to play the media item immediately. In particular, if “Queue to Media System” in options 610 was selected in the examples shown in
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
As indicated above, the present application involves facilitating playback of media items on a webpage by a playback zone of a media playback system. In one aspect, a method is provided. The method involves identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
In another aspect, a device is provided. The device includes a processor, and memory having stored thereon instructions executable by the processor to cause the device to perform functions. The functions include identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform functions. The functions include identifying one or more playback zones of a media playback system upon opening a web-browsing interface, identifying on a webpage, a link to a playable media item, and modifying the webpage such that a representation associated with the link is selectable to cause the media item to be played in the one or more playback zones.
The present application further involves playing media items on a webpage in a playback zone of a media playback system. In one aspect, a method is provided. The method involves displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The method also involves causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
In another aspect, a device is provided. The device includes a processor, and memory having stored thereon instructions executable by the processor to cause the device to perform functions. The functions include displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The functions also include causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
In yet another aspect, a non-transitory computer readable memory is provided. The non-transitory computer readable memory has stored thereon instructions executable by a computing device to cause the computing device to perform functions. The functions include displaying on a web-browsing interface, a representation associated with a link to a media item, and responsive to a first input indicating a selection of the representation, displaying a list of one or more playback zones in a media playback system. The one or more playback zones are identified upon, or subsequent to a launching of the web-browsing interface. The functions also include causing the particular playback zone to play the media item responsive to a second input indicating a selection of a particular playback zone in the list of one or more playback zones.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 14/197,403, filed on Mar. 5, 2014, entitled “Webpage Media Playback,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4296278 | Cullison et al. | Oct 1981 | A |
4816989 | Finn et al. | Mar 1989 | A |
5182552 | Paynting | Jan 1993 | A |
5239458 | Suzuki | Aug 1993 | A |
5299266 | Lumsden | Mar 1994 | A |
5406634 | Anderson et al. | Apr 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5467342 | Logston et al. | Nov 1995 | A |
5491839 | Schotz | Feb 1996 | A |
5553222 | Milne et al. | Sep 1996 | A |
5563946 | Cooper et al. | Oct 1996 | A |
5668884 | Clair, Jr. et al. | Sep 1997 | A |
5673323 | Schotz et al. | Sep 1997 | A |
5751819 | Dorrough | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5774666 | Portuesi | Jun 1998 | A |
5808662 | Kinney et al. | Sep 1998 | A |
5815689 | Shaw et al. | Sep 1998 | A |
5856827 | Sudo | Jan 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5875354 | Charlton et al. | Feb 1999 | A |
5887143 | Saito et al. | Mar 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5946343 | Schotz et al. | Aug 1999 | A |
5956088 | Shen et al. | Sep 1999 | A |
6002862 | Takaike | Dec 1999 | A |
6009457 | Moller | Dec 1999 | A |
6026150 | Frank et al. | Feb 2000 | A |
6031818 | Lo et al. | Feb 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6108686 | Williams, Jr. | Aug 2000 | A |
6128318 | Sato | Oct 2000 | A |
6157957 | Berthaud | Dec 2000 | A |
6175872 | Neumann et al. | Jan 2001 | B1 |
6181316 | Little et al. | Jan 2001 | B1 |
6185737 | Northcutt et al. | Feb 2001 | B1 |
6195436 | Scibora et al. | Feb 2001 | B1 |
6199169 | Voth | Mar 2001 | B1 |
6255961 | Van Ryzin et al. | Jul 2001 | B1 |
6256554 | DiLorenzo | Jul 2001 | B1 |
6308207 | Tseng et al. | Oct 2001 | B1 |
6324586 | Johnson | Nov 2001 | B1 |
6332147 | Moran et al. | Dec 2001 | B1 |
6349339 | Williams | Feb 2002 | B1 |
6351821 | Voth | Feb 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6430353 | Honda et al. | Aug 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6487296 | Allen et al. | Nov 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6526325 | Sussman et al. | Feb 2003 | B1 |
6587127 | Leeke et al. | Jul 2003 | B1 |
6594691 | McCollum et al. | Jul 2003 | B1 |
6598172 | Vandeusen et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6674803 | Kesselring | Jan 2004 | B1 |
6728531 | Lee et al. | Apr 2004 | B1 |
6732155 | Meek | May 2004 | B2 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
6826283 | Wheeler et al. | Nov 2004 | B1 |
6836788 | Kim et al. | Dec 2004 | B2 |
6898642 | Chafle et al. | May 2005 | B2 |
6912610 | Spencer | Jun 2005 | B2 |
6920373 | Xi et al. | Jul 2005 | B2 |
6934766 | Russell | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
7007106 | Flood et al. | Feb 2006 | B1 |
7017118 | Carroll | Mar 2006 | B1 |
7020048 | McComas | Mar 2006 | B2 |
7020791 | Aweya et al. | Mar 2006 | B1 |
7043651 | Aweya et al. | May 2006 | B2 |
7047308 | Deshpande | May 2006 | B2 |
7113833 | Brown et al. | Sep 2006 | B1 |
7113999 | Pestoni et al. | Sep 2006 | B2 |
7115017 | Laursen et al. | Oct 2006 | B1 |
7117451 | Sielken | Oct 2006 | B2 |
7124125 | Cook et al. | Oct 2006 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143141 | Morgan et al. | Nov 2006 | B1 |
7143939 | Henzerling | Dec 2006 | B2 |
7162315 | Gilbert | Jan 2007 | B2 |
7185090 | Kowalski et al. | Feb 2007 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7206367 | Moore | Apr 2007 | B1 |
7209795 | Sullivan et al. | Apr 2007 | B2 |
7218708 | Berezowski et al. | May 2007 | B2 |
7236739 | Chang | Jun 2007 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7281034 | Eyal | Oct 2007 | B1 |
7293060 | Komsi | Nov 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7302468 | Wijeratne | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7324857 | Goddard | Jan 2008 | B2 |
7333519 | Sullivan et al. | Feb 2008 | B2 |
7358960 | Mak | Apr 2008 | B2 |
7372846 | Zwack | May 2008 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7392102 | Sullivan et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7483958 | Elabbady et al. | Jan 2009 | B1 |
7496623 | Szeto et al. | Feb 2009 | B2 |
7496633 | Szeto et al. | Feb 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7574274 | Holmes | Aug 2009 | B2 |
7599685 | Goldberg et al. | Oct 2009 | B2 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657224 | Goldberg et al. | Feb 2010 | B2 |
7657644 | Zheng | Feb 2010 | B1 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7668990 | Krzyzanowski et al. | Feb 2010 | B2 |
7669219 | Scott, III | Feb 2010 | B2 |
7675943 | Mosig et al. | Mar 2010 | B2 |
7676142 | Hung | Mar 2010 | B1 |
7702279 | Ko et al. | Apr 2010 | B2 |
7720096 | Klemets | May 2010 | B2 |
7725533 | Szeto et al. | May 2010 | B2 |
7725551 | Szeto et al. | May 2010 | B2 |
7739271 | Cook et al. | Jun 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7788138 | Viehmann et al. | Aug 2010 | B2 |
7805682 | Lambourne | Sep 2010 | B1 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7865137 | Goldberg et al. | Jan 2011 | B2 |
7885622 | Krampf et al. | Feb 2011 | B2 |
7916877 | Goldberg et al. | Mar 2011 | B2 |
7917082 | Goldberg et al. | Mar 2011 | B2 |
7921369 | Bill | Apr 2011 | B2 |
7934239 | Dagman | Apr 2011 | B1 |
7987294 | Bryce et al. | Jul 2011 | B2 |
7996566 | Sylvain et al. | Aug 2011 | B1 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8023663 | Goldberg | Sep 2011 | B2 |
8028038 | Weel | Sep 2011 | B2 |
8028323 | Weel | Sep 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8086752 | Millington et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8112032 | Ko et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8169938 | Duchscher et al. | May 2012 | B2 |
8200602 | Farrelly | Jun 2012 | B2 |
8214873 | Weel | Jul 2012 | B2 |
8230099 | Weel | Jul 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8271115 | Yoshida | Sep 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8315555 | Ko et al. | Nov 2012 | B2 |
8370678 | Millington et al. | Feb 2013 | B2 |
8423659 | Millington | Apr 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8521316 | Louboutin | Aug 2013 | B2 |
8588949 | Lambourne et al. | Nov 2013 | B2 |
8613385 | Hulet et al. | Dec 2013 | B1 |
8666826 | Narayanan et al. | Mar 2014 | B2 |
8775546 | Millington | Jul 2014 | B2 |
8843500 | Nogues et al. | Sep 2014 | B2 |
8892648 | Durham et al. | Nov 2014 | B1 |
8910265 | Lang et al. | Dec 2014 | B2 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8990701 | Olofsson | Mar 2015 | B2 |
9052810 | Reimann et al. | Jun 2015 | B2 |
9137564 | Reimann | Sep 2015 | B2 |
9165255 | Shetty et al. | Oct 2015 | B1 |
9246866 | Sanders | Jan 2016 | B1 |
9247363 | Triplett et al. | Jan 2016 | B2 |
9286384 | Kuper et al. | Mar 2016 | B2 |
9344292 | Griffiths et al. | May 2016 | B2 |
9374607 | Bates et al. | Jun 2016 | B2 |
9478247 | Chen et al. | Oct 2016 | B2 |
9489383 | Hyman et al. | Nov 2016 | B2 |
9510055 | Kuper et al. | Nov 2016 | B2 |
9524338 | Van et al. | Dec 2016 | B2 |
9696874 | Kulick et al. | Jul 2017 | B2 |
9715500 | Cue et al. | Jul 2017 | B2 |
9756092 | Zhang et al. | Sep 2017 | B2 |
10032233 | Papakipos et al. | Jul 2018 | B2 |
20010009604 | Ando et al. | Jul 2001 | A1 |
20010022823 | Renaud | Sep 2001 | A1 |
20010032188 | Miyabe et al. | Oct 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020002562 | Moran et al. | Jan 2002 | A1 |
20020003548 | Krusche et al. | Jan 2002 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034374 | Barton | Mar 2002 | A1 |
20020042844 | Chiazzese | Apr 2002 | A1 |
20020049843 | Barone et al. | Apr 2002 | A1 |
20020054134 | Kelts | May 2002 | A1 |
20020056117 | Hasegawa et al. | May 2002 | A1 |
20020065926 | Hackney et al. | May 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020073228 | Cognet et al. | Jun 2002 | A1 |
20020090914 | Kang et al. | Jul 2002 | A1 |
20020093478 | Yeh | Jul 2002 | A1 |
20020109710 | Holtz et al. | Aug 2002 | A1 |
20020112244 | Liou et al. | Aug 2002 | A1 |
20020116476 | Eyal et al. | Aug 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020129156 | Yoshikawa | Sep 2002 | A1 |
20020143998 | Rajagopal et al. | Oct 2002 | A1 |
20020163361 | Parkin | Nov 2002 | A1 |
20020165921 | Sapieyevski | Nov 2002 | A1 |
20020178191 | Sielken | Nov 2002 | A1 |
20020188762 | Tomassetti et al. | Dec 2002 | A1 |
20030002609 | Faller et al. | Jan 2003 | A1 |
20030020763 | Mayer et al. | Jan 2003 | A1 |
20030023741 | Tomassetti et al. | Jan 2003 | A1 |
20030035444 | Zwack | Feb 2003 | A1 |
20030041173 | Hoyle | Feb 2003 | A1 |
20030041174 | Wen et al. | Feb 2003 | A1 |
20030043924 | Haddad et al. | Mar 2003 | A1 |
20030066094 | Van Der Schaar et al. | Apr 2003 | A1 |
20030088875 | Gay et al. | May 2003 | A1 |
20030099212 | Anjum et al. | May 2003 | A1 |
20030099221 | Rhee | May 2003 | A1 |
20030105820 | Haims et al. | Jun 2003 | A1 |
20030126211 | Anttila et al. | Jul 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030195964 | Mane | Oct 2003 | A1 |
20030198257 | Sullivan et al. | Oct 2003 | A1 |
20030210796 | McCarty et al. | Nov 2003 | A1 |
20030220973 | Zhu et al. | Nov 2003 | A1 |
20030231871 | Ushimaru | Dec 2003 | A1 |
20030235304 | Evans et al. | Dec 2003 | A1 |
20040001484 | Ozguner | Jan 2004 | A1 |
20040001591 | Mani et al. | Jan 2004 | A1 |
20040008852 | Also et al. | Jan 2004 | A1 |
20040010727 | Fujinami | Jan 2004 | A1 |
20040015252 | Aiso et al. | Jan 2004 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040024925 | Cypher et al. | Feb 2004 | A1 |
20040025185 | Goci et al. | Feb 2004 | A1 |
20040027166 | Mangum et al. | Feb 2004 | A1 |
20040032348 | Lai et al. | Feb 2004 | A1 |
20040066736 | Kroeger | Apr 2004 | A1 |
20040075767 | Neuman et al. | Apr 2004 | A1 |
20040078383 | Mercer et al. | Apr 2004 | A1 |
20040078812 | Calvert | Apr 2004 | A1 |
20040088328 | Cook et al. | May 2004 | A1 |
20040131192 | Metcalf | Jul 2004 | A1 |
20040170383 | Mazur | Sep 2004 | A1 |
20040203378 | Powers | Oct 2004 | A1 |
20040215611 | Jawa et al. | Oct 2004 | A1 |
20040249965 | Huggins et al. | Dec 2004 | A1 |
20040249982 | Arnold et al. | Dec 2004 | A1 |
20040252400 | Blank et al. | Dec 2004 | A1 |
20040261040 | Radcliffe et al. | Dec 2004 | A1 |
20050010691 | Oyadomari et al. | Jan 2005 | A1 |
20050013394 | Rausch et al. | Jan 2005 | A1 |
20050021590 | Debique et al. | Jan 2005 | A1 |
20050047605 | Lee et al. | Mar 2005 | A1 |
20050058149 | Howe | Mar 2005 | A1 |
20050081213 | Suzuoki et al. | Apr 2005 | A1 |
20050108320 | Lord et al. | May 2005 | A1 |
20050114538 | Rose | May 2005 | A1 |
20050125357 | Saadat et al. | Jun 2005 | A1 |
20050155072 | Kaczowka et al. | Jul 2005 | A1 |
20050166157 | Ollis et al. | Jul 2005 | A1 |
20050166258 | Vasilevsky et al. | Jul 2005 | A1 |
20050177643 | Xu | Aug 2005 | A1 |
20050181348 | Carey et al. | Aug 2005 | A1 |
20050195205 | Abrams | Sep 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050234875 | Auerbach et al. | Oct 2005 | A1 |
20050281255 | Davies et al. | Dec 2005 | A1 |
20050283820 | Richards et al. | Dec 2005 | A1 |
20050288805 | Moore et al. | Dec 2005 | A1 |
20050289224 | Deslippe et al. | Dec 2005 | A1 |
20060095516 | Wijeratne | May 2006 | A1 |
20060107237 | Kim | May 2006 | A1 |
20060119497 | Miller et al. | Jun 2006 | A1 |
20060143236 | Wu | Jun 2006 | A1 |
20060168340 | Heller et al. | Jul 2006 | A1 |
20060195462 | Rogers | Aug 2006 | A1 |
20060195479 | Spiegelman et al. | Aug 2006 | A1 |
20060195480 | Spiegelman et al. | Aug 2006 | A1 |
20060253436 | Cook et al. | Nov 2006 | A1 |
20060253782 | Stark et al. | Nov 2006 | A1 |
20060294074 | Chang | Dec 2006 | A1 |
20070033402 | Williams et al. | Feb 2007 | A1 |
20070038999 | Millington et al. | Feb 2007 | A1 |
20070043847 | Carter et al. | Feb 2007 | A1 |
20070048713 | Plastina et al. | Mar 2007 | A1 |
20070049256 | Wassingbo | Mar 2007 | A1 |
20070054680 | Mo et al. | Mar 2007 | A1 |
20070088747 | Cheng et al. | Apr 2007 | A1 |
20070136778 | Birger et al. | Jun 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070143493 | Mullig et al. | Jun 2007 | A1 |
20070169115 | Ko et al. | Jul 2007 | A1 |
20070180137 | Rajapakse | Aug 2007 | A1 |
20070214182 | Rosenberg | Sep 2007 | A1 |
20070224937 | Jung et al. | Sep 2007 | A1 |
20070271232 | Mattox et al. | Nov 2007 | A1 |
20070271388 | Bowra et al. | Nov 2007 | A1 |
20070288470 | Kauniskangas et al. | Dec 2007 | A1 |
20070294131 | Roman et al. | Dec 2007 | A1 |
20070299778 | Haveson et al. | Dec 2007 | A1 |
20080005690 | Van Vugt | Jan 2008 | A1 |
20080016465 | Foxenland | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080052371 | Partovi et al. | Feb 2008 | A1 |
20080059510 | Cardamore et al. | Mar 2008 | A1 |
20080077261 | Baudino et al. | Mar 2008 | A1 |
20080086368 | Bauman et al. | Apr 2008 | A1 |
20080091771 | Allen et al. | Apr 2008 | A1 |
20080109529 | Story | May 2008 | A1 |
20080120429 | Millington et al. | May 2008 | A1 |
20080144861 | Melanson et al. | Jun 2008 | A1 |
20080152165 | Zacchi | Jun 2008 | A1 |
20080154959 | Dunko | Jun 2008 | A1 |
20080194276 | Lin et al. | Aug 2008 | A1 |
20080301280 | Chasen et al. | Dec 2008 | A1 |
20080319833 | Svendsen | Dec 2008 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090031336 | Chavez et al. | Jan 2009 | A1 |
20090041423 | Weber et al. | Feb 2009 | A1 |
20090063414 | White et al. | Mar 2009 | A1 |
20090076881 | Svendsen | Mar 2009 | A1 |
20090076917 | Jablokob et al. | Mar 2009 | A1 |
20090083117 | Svendsen et al. | Mar 2009 | A1 |
20090133069 | Conness et al. | Mar 2009 | A1 |
20090150806 | Evje et al. | Jun 2009 | A1 |
20090157905 | Davis | Jun 2009 | A1 |
20090175429 | Cohen et al. | Jul 2009 | A1 |
20090179867 | Shim et al. | Jul 2009 | A1 |
20090222115 | Malcolm et al. | Sep 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090265426 | Svendsen et al. | Oct 2009 | A1 |
20090307062 | Lutnick et al. | Dec 2009 | A1 |
20090313369 | Wormington et al. | Dec 2009 | A1 |
20100010648 | Bull et al. | Jan 2010 | A1 |
20100017366 | Robertson et al. | Jan 2010 | A1 |
20100017714 | Agarwal et al. | Jan 2010 | A1 |
20100031366 | Knight et al. | Feb 2010 | A1 |
20100036950 | Bae et al. | Feb 2010 | A1 |
20100049835 | Ko et al. | Feb 2010 | A1 |
20100054275 | Noonan et al. | Mar 2010 | A1 |
20100082731 | Haughay et al. | Apr 2010 | A1 |
20100094834 | Svendsen | Apr 2010 | A1 |
20100095332 | Gran et al. | Apr 2010 | A1 |
20100131567 | Dorogusker et al. | May 2010 | A1 |
20100205222 | Gajdos et al. | Aug 2010 | A1 |
20100228740 | Cannistraro et al. | Sep 2010 | A1 |
20100262909 | Hsieh | Oct 2010 | A1 |
20100284389 | Ramsay et al. | Nov 2010 | A1 |
20100299391 | Demarta et al. | Nov 2010 | A1 |
20100299639 | Ramsay et al. | Nov 2010 | A1 |
20100318917 | Holladay et al. | Dec 2010 | A1 |
20110004330 | Rothkopf et al. | Jan 2011 | A1 |
20110066943 | Brillon et al. | Mar 2011 | A1 |
20110087842 | Lu et al. | Apr 2011 | A1 |
20110119706 | Scott et al. | May 2011 | A1 |
20110154173 | Herlein | Jun 2011 | A1 |
20110196888 | Hanson et al. | Aug 2011 | A1 |
20110202430 | Narayanan et al. | Aug 2011 | A1 |
20110202842 | Weatherly et al. | Aug 2011 | A1 |
20110211534 | Schmidt et al. | Sep 2011 | A1 |
20110225417 | Maharajh et al. | Sep 2011 | A1 |
20110238755 | Khan et al. | Sep 2011 | A1 |
20110246383 | Gibson et al. | Oct 2011 | A1 |
20110264732 | Robbin et al. | Oct 2011 | A1 |
20110314388 | Wheatley | Dec 2011 | A1 |
20120029671 | Millington et al. | Feb 2012 | A1 |
20120030366 | Collart et al. | Feb 2012 | A1 |
20120054278 | Taleb et al. | Mar 2012 | A1 |
20120060046 | Millington | Mar 2012 | A1 |
20120071996 | Svendsen | Mar 2012 | A1 |
20120096526 | Brahmanapalli et al. | Apr 2012 | A1 |
20120117168 | Sugiyama et al. | May 2012 | A1 |
20120117185 | Cassidy | May 2012 | A1 |
20120117586 | McCoy et al. | May 2012 | A1 |
20120129446 | Ko et al. | May 2012 | A1 |
20120151320 | McClements, IV | Jun 2012 | A1 |
20120158531 | Dion et al. | Jun 2012 | A1 |
20120159393 | Sethi et al. | Jun 2012 | A1 |
20120206623 | Nakama | Aug 2012 | A1 |
20120210205 | Sherwood et al. | Aug 2012 | A1 |
20120221951 | Kidron | Aug 2012 | A1 |
20120233067 | Matthew et al. | Sep 2012 | A1 |
20120233639 | Zott et al. | Sep 2012 | A1 |
20120272156 | Kerger et al. | Oct 2012 | A1 |
20120284423 | Weel | Nov 2012 | A1 |
20120311635 | Mushkatblat | Dec 2012 | A1 |
20120315884 | Forutanpour et al. | Dec 2012 | A1 |
20120331386 | Hicken et al. | Dec 2012 | A1 |
20130007617 | MacKenzie et al. | Jan 2013 | A1 |
20130024880 | Moloney-Egnatios et al. | Jan 2013 | A1 |
20130031162 | Willis et al. | Jan 2013 | A1 |
20130061296 | Reddy et al. | Mar 2013 | A1 |
20130070093 | Rivera et al. | Mar 2013 | A1 |
20130073584 | Kuper et al. | Mar 2013 | A1 |
20130080599 | Ko et al. | Mar 2013 | A1 |
20130080955 | Reimann et al. | Mar 2013 | A1 |
20130094670 | Millington | Apr 2013 | A1 |
20130128038 | Cok et al. | May 2013 | A1 |
20130129232 | Cok et al. | May 2013 | A1 |
20130130729 | Cok et al. | May 2013 | A1 |
20130159858 | Joffray et al. | Jun 2013 | A1 |
20130173034 | Reimann et al. | Jul 2013 | A1 |
20130174204 | Coburn, IV et al. | Jul 2013 | A1 |
20130191454 | Oliver et al. | Jul 2013 | A1 |
20130191749 | Coburn, IV et al. | Jul 2013 | A1 |
20130198633 | Hyman | Aug 2013 | A1 |
20130246522 | Bilinski et al. | Sep 2013 | A1 |
20130246916 | Reimann et al. | Sep 2013 | A1 |
20130254207 | Coburn, IV et al. | Sep 2013 | A1 |
20130254663 | Bates et al. | Sep 2013 | A1 |
20130310316 | Hellstrom et al. | Nov 2013 | A1 |
20130339397 | Herasymchuk | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20130346859 | Bates et al. | Dec 2013 | A1 |
20140047074 | Chung et al. | Feb 2014 | A1 |
20140052770 | Gran et al. | Feb 2014 | A1 |
20140075308 | Sanders et al. | Mar 2014 | A1 |
20140075316 | Li | Mar 2014 | A1 |
20140081796 | Cohen | Mar 2014 | A1 |
20140093219 | Trivedi | Apr 2014 | A1 |
20140115061 | Reddy et al. | Apr 2014 | A1 |
20140122590 | Svendsen | May 2014 | A1 |
20140181655 | Kumar et al. | Jun 2014 | A1 |
20140201197 | Kumar et al. | Jul 2014 | A1 |
20140204076 | Kuper et al. | Jul 2014 | A1 |
20140208205 | Bartholomew | Jul 2014 | A1 |
20140223099 | Kidron | Aug 2014 | A1 |
20140237361 | Martin et al. | Aug 2014 | A1 |
20140244863 | Bradley et al. | Aug 2014 | A1 |
20140310058 | Aral et al. | Oct 2014 | A1 |
20140310779 | Lof et al. | Oct 2014 | A1 |
20140330951 | Sukoff et al. | Nov 2014 | A1 |
20140337959 | Garmark et al. | Nov 2014 | A1 |
20140341528 | Mahate et al. | Nov 2014 | A1 |
20150046458 | Hu | Feb 2015 | A1 |
20150067054 | Yoo et al. | Mar 2015 | A1 |
20150067871 | Commons et al. | Mar 2015 | A1 |
20150074534 | Didomenico et al. | Mar 2015 | A1 |
20150095170 | Lang et al. | Apr 2015 | A1 |
20150095680 | Gossain et al. | Apr 2015 | A1 |
20150128162 | Ionescu et al. | May 2015 | A1 |
20150185599 | Mullins | Jul 2015 | A1 |
20150186110 | Kannan | Jul 2015 | A1 |
20150220498 | Munoz et al. | Aug 2015 | A1 |
20150286360 | Wachter | Oct 2015 | A1 |
20150310009 | Van Der Heide | Oct 2015 | A1 |
20150312299 | Chen | Oct 2015 | A1 |
20160063011 | Wehbi et al. | Mar 2016 | A1 |
20160082348 | Kehoe et al. | Mar 2016 | A1 |
20160180248 | Regan | Jun 2016 | A1 |
20170169522 | Hyman et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
101410773 | Apr 2009 | CN |
101714156 | May 2010 | CN |
104126309 | Oct 2014 | CN |
0251584 | Jan 1988 | EP |
0672985 | Sep 1995 | EP |
1111527 | Jun 2001 | EP |
1389853 | Feb 2004 | EP |
2007520808 | Jul 2007 | JP |
2009540638 | Nov 2009 | JP |
2011128957 | Jun 2011 | JP |
2011223124 | Nov 2011 | JP |
20010090215 | Oct 2001 | KR |
20050051785 | Jun 2005 | KR |
1020070040592 | Apr 2007 | KR |
20070048922 | May 2007 | KR |
100890993 | Mar 2009 | KR |
20100060498 | Jun 2010 | KR |
20100071724 | Jun 2010 | KR |
20100134164 | Dec 2010 | KR |
20110064635 | Jun 2011 | KR |
20130083012 | Jul 2013 | KR |
199525313 | Sep 1995 | WO |
199961985 | Dec 1999 | WO |
200147248 | Jun 2001 | WO |
200153994 | Jul 2001 | WO |
02052540 | Jul 2002 | WO |
2002052540 | Jul 2002 | WO |
2003093950 | Nov 2003 | WO |
2005013047 | Feb 2005 | WO |
2005079071 | Aug 2005 | WO |
2007023120 | Mar 2007 | WO |
2010018429 | Feb 2010 | WO |
2011100264 | Nov 2011 | WO |
2011157891 | Dec 2011 | WO |
2012056326 | May 2012 | WO |
2012106269 | Aug 2012 | WO |
2013139239 | Sep 2013 | WO |
2014004181 | Jan 2014 | WO |
2014116693 | Jul 2014 | WO |
2014145746 | Sep 2014 | WO |
Entry |
---|
International Bureau, International Preliminary Report on Patentability dated Aug. 18, 2016, issued in connection with International Application No. PCT/US2015/014156, filed on Feb. 3, 2015, 10 pages. |
International Bureau,International Preliminary Report on Patentability dated Sep. 15, 2016, issued in connection with International Application No. PCT/US2015/018850, filed on Mar. 5, 2015, 10 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Apr. 6, 2017, issued in connection with International Application No. PCT/US2015/051968 filed on Sep. 24, 2015, 10 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Apr. 6, 2017, issued in connection with International Application No. PCT/US2015/051975 filed on Sep. 24, 2015, 9 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Apr. 6, 2017, issued in connection with International Application No. PCT/US2015/051983 filed on Sep. 24, 2015, 7 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Apr. 6, 2017, issued in connection with International Application No. PCT/US2015/051989 filed on Sep. 24, 2015, 7 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Apr. 6, 2017, issued in connection with International Application No. PCT/US2015/051993 filed on Sep. 24, 2015, 8 pages. |
International Searching Authority, International Preliminary Report on Patentability dated Feb. 23, 2017, issued in connection with International Application No. PCT/US2015/044218, filed on Aug. 7, 2015, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 6, 2015, issued in connection with International Application No. PCT/US2015/051993, filed on Sep. 24, 2015, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 7, 2015, issued in connection with International Application No. PCT/US2015/051968, filed on Sep. 24, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 16, 2015, issued in connection with International Application No. PCT/US2015/051989 filed on Sep. 24, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 21, 2015, issued in connection with International Application No. PCT/US2015/051983 filed on Sep. 24, 2015, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/051975, filed on Sep. 24, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Apr. 24, 2015, issued in connection with International Application No. PCT/US2015/014156, filed on Feb. 3, 2015, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Aug. 27, 2015, issued in connection with International Application No. PCT/US2015/031934, filed on May 21, 2015, 14 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 27, 2015, issued in connection with International Application No. PCT/US2015/044218, filed on Aug. 7, 2015, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 29, 2015, issued in connection with International Application No. PCT/US2015/018850, filed on Mar. 5, 2015, 13 pages. |
International Searching Authority, International Search Report May 8, 2014, issued in connection with International Application No. PCT/US2014/012534, filed on Jan. 24, 2014, 3 pages. |
International Searching Authority, International Search Report dated Dec. 27, 2012, issued in connection with International Application No. PCT/US2012/047620, filed on Jul. 20, 2011, 3 pages. |
International Searching Authority, Written Opinion dated Dec. 27, 2012, issued in connection with International Application No. PCT/US2012/047620, filed on Jul. 20, 2011, 5 pages. |
International Searhing Authority, International Search Report and Written Opinion dated Feb. 28, 2013, issued in connection with International Application No. PCT/US2012/056467, filed on Sep. 21, 2012, 12 pages. |
Ishibashi et al., “A Group Synchronization Mechanism for Live Media in Multicast Communications,” IEEE Global Telecommunications Conference, 1997, pp. 746-752, vol. 2. |
Ishibashi et al., “A Group Synchronization Mechanism for Stored Media in Multicast Communications,” IEEE Information Revolution and Communications, 1997, pp. 692-700, vol. 2. |
Japanese Patent Office, Notice of Rejection dated Nov. 8, 2016, issued in connection with Japanese Application No. 2015-555237, 6 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Mills David L., “Network Time Protocol (Version 3) Specification, Implementation and Analysis,” Network Working Group, Mar. 1992, 7 pages. |
Mills, David L., “Precision Synchronization of Computer Network Clocks,” ACM SIGCOMM Computer Communication Review, 1994, pp. 28-43, vol. 24, No. 2. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Nilsson, M., “ID3 Tag Version 2,” Mar. 26, 1998, 28 pages. |
Non-Final Office Action dated Nov. 1, 2016, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 21 pages. |
Non-Final Office Action dated Oct. 1, 2015, issued in connection with U.S. Appl. No. 13/748,357, filed Jan. 23, 2013, 18 pages. |
Non-Final Office Action dated Apr. 6, 2016, issued in connection with U.S. Appl. No. 14/297,193, filed Jun. 5, 2014, 26 pages. |
Non-Final Office Action dated May 6, 2015, issued in connection with U.S. Appl. No. 13/748,357, filed Jan. 23, 2013, 17 pages. |
Non-Final Office Action dated Jul. 10, 2017, issued in connection with U.S. Appl. No. 14/297,193, filed Jun. 5, 2014, 33 pages. |
Non-Final Office Action dated Sep. 10, 2015, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 16 pages. |
Non-Final Office Action dated Jan. 12, 2017, issued in connection with U.S. Appl. No. 14/275,112, filed May 12, 2014, 25 pages. |
Non-Final Office Action dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 15 pages. |
Non-Final Office Action dated Dec. 17, 2015, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 18 pages. |
Non-Final Office Action dated Jun. 17, 2016, issued in connection with U.S. Appl. No. 14/495,706, filed Sep. 24, 2014, 19 pages. |
Non-Final Office Action dated May 18, 2016, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 21 pages. |
North American MPEG-2 Information, “The MPEG-2 Transport Stream,” Retrieved from the Internet: URL: http://www.coolstf.com/mpeg/#ts, 2006, pp. 1-5. |
Notice of Allowance dated May 4, 2016, issued in connection with U.S. Appl. No. 13/748,357, filed Jan. 23, 2013, 11 pages. |
Notice of Allowance dated Apr. 6, 2017, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 5 pages. |
Notice of Allowance dated Jan. 12, 2017, issued in connection with U.S. Appl. No. 14/495,595, filed Sep. 24, 2014, 5 pages. |
Notice of Allowance dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 14/495,706, filed Sep. 24, 2014, 8 pages. |
Notice of Allowance dated Dec. 29, 2016, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 5 pages. |
Notice of Allowance dated May 31, 2017, issued in connection with U.S. Appl. No. 14/495,684, filed Sep. 24, 2014, 5 pages. |
Notice of Allowance dated May 4, 2017, issued in connection with U.S. Appl. No. 14/495,595, filed Sep. 24, 2014, 5 pages. |
Advisory Action dated Feb. 1, 2017, issued in connection with U.S. Appl. No. 14/297,193, filed Jun. 5, 2014, 6 pages. |
Advisory Action dated Feb. 3, 2017, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 5 pages. |
Advisory Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 5 pages. |
Akyildiz et al., “Multimedia Group Synchronization Protocols for Integrated Services Networks,” IEEE Journal on Selected Areas in Communications, 1996 pp. 162-173, vol. 14, No. 1. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Benslimane Abderrahim, “A Multimedia Synchronization Protocol for Multicast Groups,” Proceedings of the 26th Euromicro Conference, 2000, pp. 456-463, vol. 1. |
Biersack et al., “Intra- and Inter-Stream Synchronization for Stored Multimedia Streams,” IEEE International Conference on Multimedia Computing and Systems, 1996, pp. 372-381. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Bretl W.E., et al., MPEG2 Tutorial [online], 2000 [retrieved on Jan. 13, 2009] Retrieved from the Internet:, pp. 1-23. |
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 2 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Supplemental Search Report dated Jan. 27, 2016, issued in connection with European Application No. 14743335.3, 8 pages. |
European Patent Office, Examination Report dated Feb. 3, 2017, issued in connection with European Patent Application No. 14743335.3, 5 pages. |
European Patent Office, Extended European Search Report dated Mar. 15, 2017, issued in connection with European Application No. 15758460.8, 9 pages. |
European Patent Office, Extended European Search Report dated Dec. 23, 2016, issued in connnection with European Application No. 15746781.2, 10 pages. |
European Patent Office, Office Action dated Mar. 2, 2017, issued in connection with European Application No. 15775566.1, 7 pages. |
European Patent Office, Office Action dated Apr. 4, 2017, issued in connection with European Application No. 15775897.0, 6 pages. |
European Patent Office, Office Action dated Jan. 13, 2017, issued in connection with European Application No. 15781794.1, 8 pages. |
European Patent Office, Office Action dated Mar. 13, 2017, issued in connection with European Application No. 15781200.9, 5 pages. |
Final Office Action dated Nov. 3, 2016, issued in connection with U.S. Appl. No. 14/495,684, filed Sep. 24, 2014, 16 pages. |
Final Office Action dated Apr. 6, 2016, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 20 pages. |
Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 14/455,651, filed Aug. 8, 2014, 22 pages. |
Final Office Action dated Oct. 7, 2016, issued in connection with U.S. Appl. No. 14/495,595, filed Sep. 24, 2014, 16 pages. |
Final Office Action dated Nov. 8, 2016, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 14 pages. |
Final Office Action dated Feb. 10, 2016, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 21 pages. |
Final Office Action dated Feb. 16, 2017, issued in connection with U.S. Appl. No. 14/495,633, filed Sep. 24, 2014, 15 pages. |
Final Office Action dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 14/275,112, filed May 12, 2014, 19 pages. |
Final Office Action dated Oct. 20, 2016, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2016, 17 pages. |
Final Office Action dated Sep. 30, 2016, issued in connection with U.S. Appl. No. 14/297,193, filed Jun. 5, 2014, 34 pages. |
Final Office Action dated May 31, 2017, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 22 pages. |
Final Office Action dated May 31, 2017, issued in connection with U.S. Appl. No. 14/821,513, filed Aug. 7, 2015, 16 pages. |
First Action Interview Office Action dated Apr. 4, 2016, issued in connection with U.S. Appl. No. 14/275,112, filed May 12, 2014, 8 pages. |
First Action Interview Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 14/495,595, filed Sep. 24, 2014, 6 pages. |
First Action Interview Office Action dated Jul. 11, 2016, issued in connection with U.S. Appl. No. 14/495,684, filed Sep. 24, 2014, 8 pages. |
First Action Interview Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/455,651, filed Aug. 8, 2014, 10 pages. |
First Action Interview Office Action dated Oct. 13, 2016, issued in connection with U.S. Appl. No. 14/495,633, filed Sep. 24, 2014, 8 pages. |
First Action Interview Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/821,513, filed Aug. 7, 2015, 10 pages. |
First Action Interview Office Action dated Jul. 22, 2016, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 8 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 28, 2015, issued in connection with U.S. Appl. No. 14/275,112, filed May 12, 2014, 4 pages. |
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/495,590, filed Sep. 24, 2014, 5 pages. |
Huang C.M., et al., “A Synchronization Infrastructure for Multicast Multimedia at the Presentation Layer,” IEEE Transactions on Consumer Electronics, 1997, pp. 370-380, vol. 43, No. 3. |
International Bureau, International Preliminary Report on Patentability dated Jan. 30, 2014, issued in connection with International Application No. PCT/US2012/047620, filed on Jul. 20, 2012, 7 pages. |
International Bureau, International Preliminary Report on Patentability dated Apr. 3, 2014, issued in connection with International Application No. PCT/US2012/056467, filed on Sep. 21, 2011, 11 pages. |
International Bureau, International Preliminary Report on Patentability, dated Aug. 6, 2015, issued in connection with International Application No. PCT/US2014/012534, filed on Jan. 22, 2014, 6 pages. |
International Bureau, International Preliminary Report on Patentability dated Dec. 15, 2016, issued in connection with International Application No. PCT/US2015/031934, filed on May 21, 2015, 11 pages. |
Chinese Patent Office, First Office Action dated Sep. 4, 2017, issued in connection with Chinese Application No. 2014800172148.0, 16 pages. |
Chinese Patent Office, Second Office Action dated Apr. 11, 2018, issued in connection with Chinese Application No. 201480017214.8, 7 pages. |
European Patent Office, EP Supplemental Search dated Dec. 19, 2017, issued in connection with EP Application No. 15829058.5, 12 pages. |
European Patent Office, European Extended Search Report dated Feb. 5, 2018, issued in connection with EP Application No. 15803430.6, 8 pages. |
European Patent Office, Summons to Attend Oral Proceedings dated Mar. 27, 2018, issued in connection with European Patent Application No. 15781794.1, 11 pages. |
Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 14/275,112, filed May 12, 2014, 20 pages. |
Final Office Action dated Jan. 19, 2018, issued in connection with U.S. Appl. No. 14/297,193, filed Jun. 5, 2014, 32 pages. |
Final Office Action dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 14/495,633, filed Sep. 24, 2014, 21 pages. |
Japanese Patent Office, Full English Translation of Office Action dated Nov. 28, 2017, issued in connection with Japanese Patent Application No. 2016-555529, 2 pages. |
Japanese Patent Office, Office Action dated Nov. 28, 2017, issued in connection with Japanese Patent Application No. 2016-555529, 5 pages. |
Japanese Patent Office, Office Action dated Nov. 7, 2017, issued in connection with Japanese Patent Application No. 2016-550231, 5 pages. |
Non-Final Office Action dated Jun. 21, 2018, issued in connection with U.S. Appl. No. 15/692,090, filed Aug. 31, 2017, 20 pages. |
Non-Final Office Action dated Mar. 23, 2018, issued in connection with U.S. Appl. No. 15/227,074, filed Aug. 3, 2016, 11 pages. |
Non-Final Office Action dated Jan. 24, 2018, issued in connection with U.S. Appl. No. 15/607,267, fied May 26, 2017, 17 pages. |
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 14/821,513, filed Aug. 7, 2015, 17 pages. |
Notice of Allowance dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 6 pages. |
Advisory Action dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 14/173,253, filed Feb. 5, 2014, 4 pages. |
European Patent Office, European Office Action dated Aug. 3, 2017, issued in connection with EP Application No. 15781794.1, 6 pages. |
European Patent Office, European Supplemental Search Report dated Sep. 18, 2017, issued in connection with EP Application No. 15829058.5, 13 pages. |
Non-Final Office Action dated Oct. 3, 2017, issued in connection with U.S. Appl. No. 14/495,633, filed Sep. 24, 2014, 18 pages. |
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/455,651, filed Aug. 8, 2014, 12 pages. |
Notice of Allowance dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 14/495,590, filed Sep. 24, 2014, 10 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Park et al., “Group Synchronization in MultiCast Media Communications,” Proceedings of the 5th Research on Multicast Technology Workshop, 2003, 5 pages. |
Polycom Conference Composer User Guide, copyright 2001, 29 pages. |
Preinterview First Office Action dated May 4, 2016, issued in connection with U.S. Appl. No. 14/455,651, filed Aug. 8, 2014, 7 pages. |
Preinterview First Office Action dated May 4, 2016, issued in connection with U.S. Appl. No. 14/495,659, filed Sep. 24, 2014, 6 pages. |
Preinterview First Office Action dated May 5, 2016, issued in connection with U.S. Appl. No. 14/495,595, filed Sep. 24, 2014, 6 pages. |
Preinterview First Office Action dated May 16, 2016, issued in connection with U.S. Appl. No. 14/495,633, filed Sep. 24, 2014, 6 pages. |
Preinterview First Office Action dated Oct. 19, 2016, issued in connection with U.S. Appl. No. 14/821,513, filed Aug. 7, 2016, 5 pages. |
Preinterview First Office Action dated May 23, 2016, issued in connection with U.S. Appl. No. 14/495,684, filed Sep. 24, 2014, 6 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Rothermel et al., “An Adaptive Stream Synchronization Protocol,” 5th International Workshop on Network and Operating System Support for Digital Audio and Video, 1995, 13 pages. |
Schulzrinne H., et al., “RIP: A Transport Protocol for Real-Time Applications, RFC 3550,” Network Working Group, 2003, pp. 1-89. |
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
U.S. Appl. No. 12/070,933, filed Feb. 22, 2008. “System, Method, and Computer Program for Remotely Managing a Digital Device” Inventor: Jonathan Lang, et al. |
U.S. Appl. No. 13/533,105, filed Jun. 26, 2012. “Systems, Methods, Apparatus, and Articles of Manufacture to Provide a Crowd-Sourced Playlist with Guess Access” Inventor: Paul Bates, et al. |
U.S. Appl. No. 13/533,785, filed Jun. 26, 2012. “Networked Music Playback Including Remote Discovery and Add to Queue” Inventor: Mark Triplett, et al. |
U.S. Appl. No. 13/748,357, filed Jan. 23, 2013. “System and Method for a Media Experience Social Interface” Inventor: Ron Kuper, et al. |
U.S. Appl. No. 13/871,785, filed Apr. 26, 2013. “Systems, Methods, Apparatus, and Articles of Manufacture to Provide Guest Access” Inventor Paul Bates, et al. |
U.S. Appl. No. 13/871,795, filed Jun. 20, 2013. “Systems, Methods, Apparatus, and Articles of Manufacture to Provide Guest Access” Inventor: Paul Bates, et al. |
U.S. Appl. No. 14/173,253, filed Feb. 5, 2014. “Remote Creation of a Playback Queue for a Future Event” Inventor: Jaime Munoz, et al. |
Van Buskirk, Eliot, “Music Needs ‘Connective Tissue’ and Facebook Wants to Build It,” E http://evolver.fm/2011/09/01/music-needs-connective-tissue-and-facebook-wants-to-build-it, 2011, 6 pages. |
Yamaha DME 32 manual: copyright 2001. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Chinese Patent Office, First Office Action dated Jan. 23, 2019, issued in connection with Chinese Application No. 20158001140.5. |
Number | Date | Country | |
---|---|---|---|
20170270202 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14197403 | Mar 2014 | US |
Child | 15612126 | US |