Not applicable.
The disclosure generally relates to wedge shaped filters, the assembly of wedge shaped filters in a filter housing and method for filtering and coalescing liquids and gas and methods therefor. The wedge shaped filter media may be pleated media therein that are capable of high efficiency filtration as well as easy replacement of the filter element. The wedge shaped filters can be used to filter many types of fluids and fluid mixtures.
Industrial filtration systems generally comprise one or more cylindrical cartridge filters located within corresponding filter housings, and fluids to be filtered (influents) are introduced into the cylindrical filter housings and subsequently into the cylindrical filter elements for the removal of debris, contaminants and particles. These cylindrical filter elements generally have a cylindrical hollow core. Influents flow into to the cylindrical filter element in one of two ways: either to the hollow core and flowing outwards through the media of the cylindrical filter element and exiting the cylindrical filter element (inside to outside flow) or the influent flows from the outside of the cylindrical filter element into a hollow core and then exiting the cylindrical filter element from the core (outside to inside flow), leaving debris, contaminants and particles at the surface of the media and the filtered fluid (effluents) exit the cylindrical filter housing. The cylindrical filter element, while easy to manufacture and use, do not effectively utilize the total space inside the filter housings that contain more than one cylindrical filter element. Unused dead space within the cylindrical filter housing results in less filter media surface area available in the cylindrical filter housing. The effect of the filter media surface area on the filtration cost and efficiency can be significant. Under more optimum conditions, doubling the filter media surface area can result in increasing the dirt holding capacity of the typical filter element by a factor of four (4) which greatly reduces filtration costs and time.
Therefore, there is a need for a new filter element and corresponding filter configuration to increase the volume of fluid that can be filtered in the same size filter housing, or provide a filter system that can filter the same volume of fluid or even more in a smaller housing. The new assembly can be installed in the commonly used cylindrical filter housing, but can be used with filter housings of different shapes that will accommodate a wedge filter such as a square or wedge filter housing. A new assembly and method can be used for liquid/gas separation and liquid/liquid separation in a coalescing process as well as filtration.
This disclosure is for a three dimensional wedge shaped filter element or coalescer element, an assembly with a plurality of wedge shaped filters and methods of filtration using a plurality of wedge shaped filters. The filter element is generally comprised of a wedge shaped top cap, a wedge shaped bottom cap, and pleated filter media extending between the top cap and the bottom cap. The filter media can be a single sheet of filter media folded into pleats, providing a central void inside the pleats for the filtered fluid. The pleated filter media extends from the wedged shaped top cap to the wedge shaped bottom cap. Both caps have side edges the approximate same length and shorter end and longer end to form a wedge. Two rows of pleats gradually decreasing in size from larger to smaller pleats extends from the longer end of the wedge to the smaller end of the wedge with at least one layer of media connecting the outer most largest pleats and the smallest inner pleats providing continuous layer of media forming a central void inside the pleats which can be wedge, triangular or round depending on the pleat configuration. The pleated filter media can be a single sheet of filter folded into pleats, providing a central void inside the pleats. The pleated media can have multiple layers of the same or different materials depending on the desired filter. In some embodiments, the media does not need to be pleated and can be solid media. The bottom cap has a central outlet communicating with the central void created by the pleated media through which the effluent or clean fluid passes. A filter support can also be provided inside the void, extending also from the top cap to the bottom cap to maintain the longitudinal integrity of the filter elements. The filter support is perforated to allow fluid flow inside the void created by the pleated media. The top cap also may have has a handle for easier insertion/removal of individual filter elements. In some embodiments, the wedge shaped filter element may have openings in the top and/or bottom cap. A separate cover for the top opening or hold down mechanism is provided to seal off the opening in the top of the filter.
In another embodiment of the wedge shaped filter is adapted for inside to outside out flow and one of the caps has an opening to receive influent while the other cap is solid. The influent flows from the central void through the pleated filter media so the effluent is collected outside the wedge shaped filter.
This disclosure also includes the filter assembly utilizing the wedge shaped filter elements. In one embodiment for outside to inside flow, the system uses a plurality of the wedge shaped filter elements are arranged in generally circular manner inside a generally cylindrical filter housing with space for fluid flow in between the filter elements, wherein the filter housing has fluid inlet for fluid to pass into the media of the plurality of wedge shaped filter elements. A generally circular separation plate inside the filter housing supports the wedge shaped filter elements. A central core may extend from the top of the filter housing to the separation plate of the filter housing surrounded by the inner sides of the wedge shaped filter elements. The bottom plate has a plurality of openings that communicate with and match the outlet on the bottom cap of each of the wedge shaped filter element to receive the clean fluid.
The increased area of fluid openings in the bottom or separation plate attributed to the wedge shaped filter element effluent openings reduces the pressure drop across the filter, therefore also increasing the filter efficiency. As well known in the field, excessive pressure drop adversely affect the filter's performance. Therefore, by increasing the flow-through area on the separation plate, it is possible to achieve more optimal level of pressure drop for better filter performance.
An outlet in the filter housing is located below the separation plate in the filter housing for receiving the filtered fluid. The wedge shape filter elements are spaced inside the filter housing to allow fluid flow around the wedge shaped filter elements.
For inside to outside flow a similar configuration of the wedge shaped filters is used. An inlet for influent is provided in one of the caps and the other cap is solid. In one embodiment, the filters are mounted under a separation plate inside the cylindrical filter vessel with the opening in the cap communicating with the corresponding openings in the separation plate. Influent enters the vessel above the separation plate and flows thought the opening into the void surrounded by the pleated filter media in each of a plurality of wedge shaped filter elements. The effluent or clean fluid exits the filter media under the separation plate into a chamber and is collected via an outlet in the filter vessel.
The wedge shaped filter can also be used in other configurations to separate gas and liquid mixtures. A cylindrical housing has an inlet near the bottom for the entry of a mixture of the gas and liquid. The housing has a separation plate sealably mounted to the circular inside wall of the housing. There are openings in the separation plate that communicate with a plurality of hollow risers that can be wedge shaped and arranged in a circular manner and are mounted on top of the separation plate. A plurality of wedge shaped coalescer elements are mounted on the top of the hollow risers and have a central void open in the bottom cap and a solid top cap. The gas/liquid mixture enters through the housing, through the openings in the separation plate, through the hollow riser and into the coalescing media through the void. The gas then rises to the top of the housing and is collected through an outlet. The liquid remains in the housing above the separation plate and can be drained or collected as desired. This disclosure also includes the method of gas/liquid separation described herein.
A further embodiment of the invention is a filter assembly that can be operated with a long axis of a housing placed horizontally to separate a mixture of heavy and light fluids assisted by gravity. A fluid inlet located on cylindrical housing with a circular separation plate sealably secured to the inner circumference of the housing. A plurality of wedge shaped coalescers are mounted in a circular manner on the separation plate and enclosed in the housing. Each of the wedge shaped coalescers has a cap with an opening communicating with a central void surrounded by media. The cap is mounted on the separation plate that has openings in communication with the cap openings and further in communication with the void in the filter media. A solid cap is on the opposite end of the wedge shaped filter from the end mounted in separation plate. The fluid to be separated passes through the openings in the separation plate and the cap of the coalescer element mounted thereon into the central void of the wedge shaped filters. The fluid mixture then passes through the media. The fluid mixture is collected in the filter housing on the side opposite the separation plate from the inlet. The lighter fluid floats to the top of the filter housing and the heavier fluid settles to the bottom of the filter housing. The filter housing is provided with an outlet on the top to collect the lighter fluid and an outlet on the bottom to collect the heavier fluid. Another related embodiment utilizes a vertical housing with risers similar to the gas/liquid separation design discussed above. The lighter liquid is collated at the top of the housing, while the heavier liquid settles around the risers above the separation plate and is collected. This invention also includes the method of liquid/liquid separation described herein.
A further embodiment of the invention is a method for filtering fluid. The fluid to be filtered is introduced into cylindrical filter housing with a plurality of wedge shaped filters having top cap and bottom caps with filter media extending from the wedged shaped top cap to the wedge shaped bottom cap with media extending from the top cap to the bottom cap and surrounding a central solid core arranged in circular manner inside the housing. The fluid passes through at least one layer of media and enters the void in the center of the wedge shaped filters wherein said void is closed at the top and bottom by the top cap and bottom cap. The bottom cap has an outlet for the filtered fluid. The filtered fluid is collected from the outlets on the bottom caps of the plurality of wedge shaped filters.
Alternatively, the fluid introduced into the filter housing can be introduced into a central void located in each of the wedge shaped filters and further passed through at least one layer of media surrounding the void. The fluid is collected in a separate chamber of the filter housing and removed.
As used herein, “influent” or “dirty fluid” means the fluid to be introduced to and filtered by the filter.
As used herein “inside to outside flow” means fluid flowing from the inside of a filter to the outside of the filter and can be used interchangeably with “inside to out” or “inside out”.
As used herein “outside to inside flow” means fluid flowing from the outside of a filter to the inside and can be used interchangeably with “outside to in”.
As used herein, “effluent” or “clean fluid” means the clean filtered fluid already passing through the filter media.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or the specification means one or more than one, unless the context dictates otherwise.
The term “about” means the stated value plus or minus the margin of error of measurement or plus or minus 10% if no method of measurement is indicated.
The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or if the alternatives are mutually exclusive.
The terms “comprise”, “have”, “include” and “contain” (and their variants) are open-ended linking verbs and allow the addition of other elements when used in a claim.
The phrase “consisting of” is closed, and excludes all additional elements.
The phrase “consisting essentially of” excludes additional material elements, but allows the inclusions of non-material elements that do not substantially change the nature of the invention.
The present disclosure describes a novel wedge shaped filter element, comprising a solid top cap generally wedge shaped that can have curved outer and inner sides to accommodate placement in a generally cylindrical filter housing; a bottom cap with an outlet therein, said solid bottom cap having a generally wedge shaped with curved outer and inner sides; and pleated filter media extending from the wedged shaped top cap to the wedge shaped bottom cap with two rows of pleats gradually decreasing in size from larger to smaller pleats from the outer side of the wedge to the smaller inner side of the wedge with a layer of media connecting the outer most largest pleats to the smallest inner pleats. This arrangement is used for outside to inside flow.
In another aspect of this disclosure is a filter assembly using a plurality of three-dimensional wedge shaped filter elements for inside to outside flow, outside to inside flow, and/or separation of fluids. An assembly of wedge shaped filter elements may be used for separation and filtration of liquids and gases or as coalescers for separation of the two liquids with different specific gravities.
This disclosure also includes methods for use of the wedge shaped filter elements for filtration of fluids as well as separation of fluids.
From here on, detailed explanation of the wedge shaped filter element, assemblies thereof and method of this invention may be made with reference to the drawings. The number and size of the wedge shaped filter elements can be varied according to the size of filter vessel, type of filtration and/or coalescing or any other variable that needs to be addressed in processing the fluid or fluid mixture. The following examples are intended to be illustrative only, and not unduly limit the scope of the appended claims.
The following description is for the use of the wedge shaped filter element for outside in flow. Please refer to
The filter or coalescing media material is not limited and can be customized depending on the type of filtration or coalescing. The media may be pleated media of cellulose and other natural media or synthetic media including but not limited to polypropylene, polyester, nylon, PTFE, PPS, ECTFE and PVDF. The pleated media may be one layer of material or multiple layers of different materials depending on the needs for filtration or separation. Other types of media including non-pleated depth media polypropylene, polyester, nylon, PTFE, PPS, PVDF, ECTFE, cellulose fiber, glass fiber, and woven wire mesh and ceramic media could be used. The filter may be single use and disposable or reusable after cleaning. This invention is not limited to any type of media used in the wedge shaped filters or coalescers.
Referring now to
A plurality of perforated supports is provided in the filter vessel to correspond with the number of wedge shaped filter elements utilized. One layer of pleated media 101 is shown in the cross section that is part of the continuous pleated media surrounding the perforated support 103. The perforated support 103 extends through an opening in the bottom cap 130 and extends through the void 105 shown in
The bottom cap 121 is shown in cross section and has an outer lip 124 that extends upward to enclose the bottom edge of the pleated media 101. The top cap 111 also has an outer lip 114 that extends downward and encloses the upper edge of the pleated media 101. The ends of the filter media abuts the inside of each of the caps and is secured with an adhesive, potting resin or compounds or any other type of bonding known to those skilled in the art.
Referring now to
Referring to
Refer now to
Each filter element has a top cap 111, on top of which a handle 115 is provided for easier insertion/removal, especially when the filter segment has been in use for a long time and debris accumulates at the bottom of the filter housing. Without the handle 115 it can be more difficult to remove individual filter element 100. The wedge shaped filter elements are raised up in this view that illustrates the use of the handle. The raised wedge shaped filter elements in
There is space between each wedge shaped filter elements 100 to allow influent unfiltered fluid to flow through the filter media 101. The top caps 111 and bottom caps 121 do not block off any fluid from passing through the filter media 101, as there is adequate space between the filter media of the filter elements.
In addition, the increased number of filtered fluid openings in the separation plate effectively reduces the pressure drop across the filter, therefore also increases the filter efficiency. As well known in the field, excessive pressure drop adversely affects a filter's performance. Therefore, by increasing the flow-through space on the separation plate, it is possible to achieve an optimal level of pressure drop for better filter performance.
The wedge shaped filter elements can be arranged in multiple rows as shown in
The efficiency of the disclosure has been tested using the wedge shaped filter elements for filtering solids from liquids.
Table 1 compares various parameters for cellulose pleated media wedge shaped filters compared to cylindrical filters in filter vessels with typical diameters. The 18 inch and 24 inch vessels are illustrated in
The same data is presented in Table 2 for pleated polypropylene media. The same or similar results can be expected for other synthetic media.
A further embodiment of the invention is a method for filtering fluid outside in. The fluid to be filtered is introduced into cylindrical filter housing with a plurality of wedge shaped filters having top cap and bottom caps with pleated filter media extending from the wedged shaped top cap to the wedge shaped bottom cap with two rows of pleats gradually decreasing in size from larger to smaller pleats from the outer side of the wedge to the smaller inner side of the wedge with a layer of media connecting the outer most largest pleats to the smallest inner pleats providing a generally wedge central void inside the pleats. The wedge shaped filter elements are arranged in the circular manner inside the filter housing and the center can be opening or a central core. The fluid passes through a layer of pleated media and enters the void in the center of the wedge shaped filters wherein said void is closed at the top and bottom by the top cap and bottom cap. The bottom cap has an outlet for the filtered fluid. The filtered fluid is collected from the outlets on the bottom caps of the plurality of wedge shaped filters.
Another embodiment the invention is a method for filtering fluid inside to outside. The fluid to be filtered is introduced into cylindrical filter housing with a plurality of wedge shaped filters with the top caps mounted in a separation plate and the top caps having an opening. Pleated filter media is secured to the top cap and has two rows of pleats gradually decreasing in size from larger to smaller pleats from the outer side of the wedge to the smaller inner side of the wedge with a layer of media connecting the outer most largest pleats to the smallest inner pleats providing a generally wedge central void inside the pleats that communicates with the opening in the top cap. The wedge shaped filter element is arranged on the circular manner with shorter edge of the wedge toward the center and the larger see of the wedge to outer perimeter of the filer housing. The fluid passes through a layer of pleated media in the void in the center of the wedge shaped filters and flows out to the bottom of the filter vessel for collection. Basket may be mounted beneath the separation plate around the wedge shaped filter elements to maintain their integrity. The filtered fluid is collected from the bottom of the vessel.
Another embodiment is a method for removing liquid from a gas stream. A mixture of gas and liquid is introduced into a vessel. The gas and liquid mixture passes through a plurality of wedge shaped coalescers from inside to outside of the filter media. The gas is allowed to ascend to the top of the vessel. The liquid is allowed to settle at the bottom of the vessel. The gas is removed from the top of the vessel, while the liquid is removed from the bottom of the vessel. A similar method can be used for outside to inside flow using a plurality of wedge shaped coalescers.
A further embodiment of this disclosure is the method of separating liquids with different specific gravities. The first step in the preferred embodiment is introducing the liquid mixture into a vessel that is on a horizontal axis. The liquid mixture passes though one of a plurality of wedge shaped coalescers from inside to outside the filter media. The lighter filtered fluid floats to the top of the vessel and the heavier filtered fluid to sinks to the top of the vessel after filtration. The lighter fluid is collected from to the top of the vessel and the heavier fluid is collected from the bottom of the vessel. A similar method can be used for outside to inside flow using a plurality of wedge shaped coalescers.
An additional method of this disclosure is the liquid/ liquid separation utilizing the same method as the gas liquid separation described above with a vessel that is upright rather than horizontal.
Another method of this disclosure is the use of wedge shaped filter elements for a swimming pool or spa filter. The fluid to be filtered is introduced into cylindrical filter housing with a spider plate at the top of the filter housing. The water flows through a plurality of wedge shaped filters with pleated filter media extending from the spider cap at the top to the wedge shaped bottom cap with two rows of pleats gradually decreasing in size from larger to smaller pleats from the outer side of the wedge to the smaller inner side of the wedge with a layer of media connecting the outer most largest pleats to the smallest inner pleats providing a generally wedge central void inside the pleats. The wedge shaped filter elements are arranged in the circular manner inside the filter housing and the center can be opening or a central core. The fluid passes through a layer of pleated media and enters the void in the center of the wedge shaped filters wherein said void is closed at the top and bottom by the top cap and bottom cap. The bottom cap has an outlet for the filtered fluid. The filtered fluid is collected from the outlets on the bottom caps of the plurality of wedge shaped filters. The filtered fluid flows out of the filter housing and is returned to the pool or spa.
This application claims priority to U.S. provisional application Ser. No. 62/550,096 filed Aug. 25, 2017, which is incorporated herein in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62550096 | Aug 2017 | US |