Wedge-shaped heating element and method for producing it

Abstract
The invention relates to a wedge-shaped heating element (or heating wedge) for an apparatus for contact welding of plastic films or plastic sheets (2, 3) and to a method for producing it. In order to provide that the heating element (1) is usable for different plastic materials and has high strength, high abrasion resistance, and high temperature and thermal shock resistance to approximately 800° C., as well as corrosion resistance to the chemical factors that occur in welding various polymer materials, the invention proposes that a ceramic material be used as the material for the heating element (1). In order furthermore to provide that the heating element (1) also has a thermal conductivity that is comparable to metals, it has proved especially advantageous if the heating element (1) comprises a composite material, the latter being composed of a ceramic basic material and a heat-conducting material, in particular a metal or metalloid, so that the heating element (1) on the one hand has the mechanical and chemical properties of the ceramic basic material and also approximately the heat-conducting properties of the heat-conducting metal.
Description

This application claims priority to German Patent Application DE 102004051045.8 filed Oct. 19, 2004, the entirety of which is incorporated by reference herein.


The invention relates to a wedge-shaped heating element for an apparatus for contact welding, especially of plastic films or plastic sheets, and to a method for producing it. In the industry, besides the term “wedge-shaped heating element”, the terms “heating wedge” and “welding wedge” are also customary.


Known heating wedges are typically produced from metals which have the high thermal conductivity required for the welding process. However, it is a disadvantage of these heating wedges that for different plastics, heating wedges of different metals are needed. This requires time-consuming conversion of the welding units when the plastic materials to be welded are changed.


Also, in aluminum or copper heating wedges, in the event of operator error, the relatively high ductility of these materials, leads to mechanical damage to the heating wedges so that they cannot continue to be used, since the resultant scratches and so forth on the surface of the heating wedge lead to imperfect welding seams.


Conversely, steel heating wedges have the disadvantage that they require long warmup times and often do not have good heat distribution, while silver heating wedges are relatively expensive and have severe abrasion.


Moreover, metal heating wedges, when welding robots are used in sealing dumps and in tunnel construction, are subject to severe wear, because of the contaminants (for instance from the soil) that unavoidably occur there.


In welding PVC (polyvinyl chloride), a certain thermal decomposition of the plastic can occur because of the relatively high welding temperatures. As products of decomposition, chlorine and hydrochloric gas, among others, can occur, which have a harmful corrosive effect on the metal heating wedges.


Finally, when plastic films are welded using a metal heating wedge, the various heated films often stick to the metal wedge.







The object of the invention is to disclose a wedge-shaped heating element which can be used for different plastic materials and has not only high strength, high abrasion resistance, and high temperature and thermal shock resistance to approximately 800° C. but also corrosion resistance to the chemical factors (influences) that occur in welding various polymer materials. Moreover, sticking of the plastic to the surface of the particular heating wedge when it is used as intended is to be avoided. The invention also has the object of disclosing a method for producing such a heating element.


With regard to the heating element, this object is attained according to the invention by the characteristics of claim 1, and in terms of the method it is attained by the characteristics of claim 9. Further particularly advantageous features of the invention are disclosed in the dependent claims.


The invention is based substantially on the concept of using a ceramic material as the material for the heating element (or heating wedge). In order to provide that the heating element also has a thermal conductivity that is comparable to metals, it has proved especially advantageous if the heating element comprises a ceramic material or a composite material, the latter being composed of a ceramic basic material and a heat-conducting material, in particular a metal or metalloid, so that the heating element on the one hand has the mechanical and chemical properties of the ceramic basic material and also approximately the heat-conducting properties of the heat-conducting metal or metalloid.


Surprisingly, it has been demonstrated that if such a heating element is used, no sticking of the plastic films to the applicable surface of the heating element occurs. Moreover, the heating elements according to the invention have a lesser weight than comparable heating elements of metal, are acid-resistant and abrasion proof, have optimal heat distribution and a fast warm-up time, and are suitable for practically all plastic materials to be welded.


The production of the heating element with a predetermined required profile, and made of the composite material, is done by means of a suitable process technique, either during the ceramic production process or directly afterward, for instance by liquid- or gas-phase infiltration of a heat-conducting metal, such as aluminum, copper, or silver, resulting in a solid body that is distinguished by a closed microstructure and whose properties are approximately equivalent to the properties of the individual components.


The ceramic material may be a boride, carbide, nitride, or oxide of the elements aluminum, boron, silicon, titanium, tungsten, or zirconium (such as AlN, Al2O3, B4C, BN, SiC, Si3N4, TiB, TiB2, TiC, TiN, WC, and ZrO2) and/or mixed phases and composites of these individual components.


It has proved especially advantageous, as the ceramic material, to use sintered silicon carbide with a density of between 3 and 3.2 g/cm3. This material has extremely good mechanical strength, hardness, and abrasion resistance as well as good chemical resistance to the products of decomposition that are released in the welding of PVC.


To achieve good thermal conductivity as well, it has proved expedient to use a silicon-filtered silicon carbide (SiSiC). Preferably, a ceramic heating wedge of SiC with free silicon in excess is produced for this purpose. A proportion of approximately 85 to 95 weight % of silicon carbide and correspondingly 15 to 5 weight % of free metallic silicon has proved highly suitable. The density of this composite material is preferably between 3.08 and 3.12 g/cm3.


Further details and advantages of the invention will become apparent from the ensuing exemplary embodiment described in conjunction with a drawing.


The drawing shows the schematic side view of an arrangement having an electrically heatable heating wedge 1 according to the invention, two plastic sheets 2 and 3 to be welded together, and two contact-pressure rollers 4, 5 that rotate synchronously in opposite directions.


The heating wedge 1 of the invention comprises a composite material with a basic material of silicon carbide, which to improve the thermal conductivity was infiltrated with silicon by means of gas-phase infiltration. The resultant infiltrated silicon carbide had the following physical values:

Proportion of silicon carbide:ca. 85-95 weight %Microstructure:open porosity0 vol. %Mechanical properties:bending strength180-450 MPahardness (HV)14-25 × 103 Nmm−2Thermal properties:specific thermal capacity650-1000 Jkg−1 K−1 thermal conductivity110-160 Wm−1 K−1 thermal variation (fluctuation) resistance400 Kmaximum usage temperature1380° C.


The infiltrated silicon carbide, as can be seen, has not only very good mechanical properties but also sufficiently good thermal conductivity. Moreover, it exhibits good resistance to the products of decomposition released in the welding of PVC film sheets.


It is understood that the invention is not limited to the exemplary embodiment described above.


List of Reference Numerals






    • 1 Heating element, heating wedge


    • 2, 3 Plastic sheets


    • 4, 5 Contact-pressure rollers




Claims
  • 1. A wedge-shaped heating element for an apparatus for contact welding, in particular of plastic films or plastic sheets, wherein the heating element comprises a ceramic material or a composite material, the latter being composed of a ceramic basic material and a heat-conducting material.
  • 2. The heating element according to claim 1, wherein the ceramic material is a boride, carbide, nitride, or oxide of the elements aluminum, boron, silicon, titanium, tungsten, or zirconium and/or mixed phases and composites of the individual components.
  • 3. The heating element according to claim 1, wherein the ceramic material comprises sintered silicon carbide with a density of between 3 and 3.2 g/cm3.
  • 4. The heating element according to claim 1, wherein the heat-conducting material of the composite material is a heat-conducting metal or metalloid.
  • 5. The heating element according to claim 4, wherein the heat-conducting metal is aluminum, copper or silver.
  • 6. The heating element according to claim 4, wherein the metalloid is silicon.
  • 7. The heating element according to claim 6, wherein the composite material comprises silicon-filtered silicon carbide and preferably has a density of between 3.08 and 3.12 g/cm3.
  • 8. The heating element according to claim 7, wherein the proportion of silicon in the silicon-filtered silicon carbide is between 5 and 15 weight %.
  • 9. A method for producing the heating wedge, comprising a composite material, of claim 1, wherein the heat-conducting metal is introduced into the ceramic material during its production or directly afterward by liquid- or gas-phase infiltration.
  • 10. The heating element according to claim 2, wherein the heat-conducting material of the composite material is a heat-conducting metal or metalloid.
  • 11. The heating element according to claim 10, wherein the heat-conducting metal is aluminum, copper or silver.
  • 12. The heating element according to claim 10, wherein the metalloid is silicon.
  • 13. The heating element according to claim 12, wherein the composite material comprises silicon-filtered silicon carbide and preferably has a density of between 3.08 and 3.12 g/cm3.
  • 14. The heating element according to claim 13, wherein the proportion of silicon in the silicon-filtered silicon carbide is between 5 and 15 weight %.
  • 15. The heating element according to claim 3, wherein the heat-conducting material of the composite material is a heat-conducting metal or metalloid.
  • 16. The heating element according to claim 15, wherein the heat-conducting metal is aluminum, copper or silver.
  • 17. The heating element according to claim 15, wherein the metalloid is silicon.
  • 18. The heating element according to claim 17, wherein the composite material comprises silicon-filtered silicon carbide and preferably has a density of between 3.08 and 3.12 g/cm3.
  • 19. The heating element according to claim 18, wherein the proportion of silicon in the silicon-filtered silicon carbide is between 5 and 15 weight %.
Priority Claims (1)
Number Date Country Kind
DE 102004051045.8 Oct 2004 DE national