1. Field of the Invention
The present invention relates to a calibration of a weight measuring apparatus, and more particularly to a weight applying unit for performing a calibration on a weight measuring apparatus comprising a plurality of load sensors and a weight applying method of performing the same.
2. Description of the Background Art
In a weight measuring apparatus, using a load sensor, which is typified by a scale or the like, a calibration is performed on a load sensor-integrated weight measuring apparatus as a finished product, in order to improve an accuracy of measurement results. As a calibration method used for a weight measuring apparatus using a single load sensor, for example, a specific load of a weight is placed on a load platform at a center position thereof, and a calibration is performed based on a detected output of the load sensor. Also, there may be another weight measuring apparatus in which a single load platform is supported by a plurality of load sensors, and detected outputs of the plurality of respective load sensors are added to each other so as to obtain a weight value. Similarly to the weight measuring apparatus using the single load sensor, as a calibration method used for said another weight measuring apparatus comprising the plurality of load sensors, a specific load of a weight is placed on the load platform at a center position thereof, and a calibration is performed based on a total value of the detected outputs of the respective load sensors. Furthermore, as another calibration method, specific loads of weights are respectively placed on a load platform at predetermined positions such as four corners of the load platform, thereby performing a calibration based on detected outputs of the respective load sensors (Japanese Laid-Open Patent Publication No. 3-25325, for example).
In recent years, in the field of home fitness apparatuses or video games, when using the weight measuring apparatus comprising the plurality of load sensors, for example, it is requested that the weight measuring apparatus not only output the weight of a to-be-measured object placed on a load platform, but also recognize a balance state of the to-be-measured object such as the postural balance of a person on the load platform. In order to recognize the balance state of the to-be-measured object (e.g., a state where a human stands on his or her right foot and a greater amount of load is applied to a right side of the load platform), loads applied to the plurality of load sensors must be individually obtained. Further, in order to improve an accuracy of measurement results detected by the respective load sensors, a calibration must be performed on each of the load sensors, instead of performing the calibration based on the total value of the detected outputs of the respective load sensors.
In such a weight measuring apparatus integrated with the plurality of load sensors, as a method of performing a calibration on each of the load sensors, there may be a method in which the specific loads of the weights are placed on a load platform in respective four corners thereof, thereby performing the calibration on each of the load sensors based on an output of each of the load sensors (not based on the total value of the outputs of the respective load sensors), as disclosed in Japanese Laid-Open Patent Publication No. 3-25325.
However, in the aforementioned calibration method in which the weights are respectively placed in the four corners of the load platform, the weights are placed on the load platform, and therefore a load of each of the weights, which naturally should be applied in a perpendicular direction, is to be dispersed in other directions. For example, in the case of a weight measuring apparatus in which a load platform is supported by two load sensors 91 and 92 as shown in
Therefore, an object of the present invention is to provide a weight applying unit for calibration and a weight applying method for calibration, both of which are capable of performing, in a weight measuring apparatus comprising a plurality of load sensors, a proper calibration on each of the load sensors.
The present invention has the following features to attain the object mentioned above. Note that reference numerals and figure numbers are shown in parentheses below for assisting a reader in finding corresponding components in the figures to facilitate the understanding of the present invention, but they are in no way intended to restrict the scope of the invention.
A first aspect is a weight applying unit for calibration used for performing a calibration on a weight measuring apparatus in which a load platform is supported by a plurality of load sensor sections and a weight of a measurement target object placed on the load platform is measured based on a load value detected by each of the plurality of load sensor sections, the weight applying unit for calibration comprising: a support section (51) and a weight applying section (53). The support section supports the weight measuring apparatus. The weight applying section applies predetermined loads to the plurality of load sensor sections, respectively.
According to the first aspect, a load can be individually applied to each of the plurality of load sensor sections.
In a second aspect based on the first aspect, the support section supports a load platform surface of the weight measuring apparatus such that the load platform surface is in a horizontal position. The weight applying section applies the predetermined loads to the plurality of load sensor sections, respectively, in a direction perpendicular to the load platform surface.
According to the second aspect, the load is applied in the direction perpendicular to the load platform surface. Thus, the load can be prevented from being dispersed, thereby making it possible to easily and assuredly apply the load.
In a third aspect based on the second aspect, the support section supports the weight measuring apparatus such that the load platform surface of the weight measuring apparatus faces a gravitational direction. The weight applying section applies the predetermined loads in a downward direction.
According to the third aspect, the load is applied in the gravitational direction. Thus, the load is not to be dispersed, thereby making it possible to more assuredly apply the load.
In a fourth aspect based on the first aspect, values of the predetermined loads applied by the weight applying section to the plurality of load sensor sections, respectively, are the same as one another.
According to the fourth aspect, the loads having the same value as one another are applied to the plurality of load sensor sections, respectively. Thus, it becomes possible to perform a calibration on each of the load sensor sections under the same condition.
In a fifth aspect based on the first aspect, the weight applying unit for calibration further comprises a deflection generating portion (61) for generating deflection by applying a predetermined pressure to a load platform surface of the weight measuring apparatus.
According to the fifth aspect, the load can be applied assuming a condition where the weight measuring apparatus is actually used (i.e., where the deflection is generated). Thus, it becomes possible to perform a more proper calibration.
In a sixth aspect based on the fifth aspect, the support section has a placement table for placing the weight measuring apparatus thereon. The weight measuring apparatus is placed on the placement table such that the load platform surface of the weight measuring apparatus and a load surface of the placement table face horizontally toward each other. Further, the deflection generating portion is a elastic body disposed so as to be interposed between the load surface of the placement table and the load platform surface of the weight measuring apparatus.
According to the sixth aspect, the condition where the weight measuring apparatus is actually used can be easily created. Furthermore, since the elastic body is used, even if a press is applied to an end of the deflection generating portion, the generated deflection of the weight measuring apparatus can be prevented from being hampered. Still furthermore, it becomes possible to prevent the load platform surface of the weight measuring apparatus from being damaged through calibration steps.
In a seventh aspect base on the sixth aspect, the deflection generating portion is an elastic body having a shape simulating an area in which the measurement target object contacts the load platform.
In an eighth aspect based on the sixth aspect, the deflection generating portion is an elastic body having a Shore hardness of Shore A70.
According to the seventh and eighth aspects, the deflection more similar to that under actual usage conditions can be generated.
In a ninth aspect based on the sixth aspect, the deflection generating portion is made of ester polyurethane.
According to the ninth aspect, even if a pressure is applied to an end of the deflection generating portion, the generated deflection of the weight measuring apparatus can be prevented from being hampered. Furthermore, it becomes possible to prevent the load platform surface of the weight measuring apparatus from being damaged through the calibration steps.
In a tenth aspect based on the second aspect, the weight applying unit for calibration further comprises a deflection generating portion (61) for generating deflection by applying a predetermined pressure to a load platform surface of the weight measuring apparatus.
According to the tenth aspect, it becomes possible to obtain an effect similar to that of the fifth aspect.
In an eleventh aspect based on the tenth aspect, the support section has a placement table for placing the weight measuring apparatus thereon. The weight measuring apparatus is placed on the placement table such that the load platform surface of the weight measuring apparatus and a load surface of the placement table face horizontally toward each other. Furthermore, the deflection generating portion is an elastic body disposed so as to be interposed between the load surface of the placement table and the load platform surface of the weight measuring apparatus.
According to the eleventh aspect, it becomes possible to obtain an effect similar to that of the sixth aspect.
In a twelfth aspect based on the eleventh aspect, the deflection generating portion is an elastic body having a shape simulating an area in which the measurement target object contacts the load platform.
According to the twelfth aspect, it becomes possible to obtain an effect similar to that of the seventh aspect.
In a thirteenth aspect based on the third aspect, the weight applying unit for calibration further comprises a deflection generating portion (61) for generating deflection by applying a predetermined pressure to the load platform surface of the weight measuring apparatus.
According to the thirteenth aspect, it becomes possible to obtain an effect similar to that of the fifth aspect.
In a fourteenth aspect based on the thirteenth aspect, the support section has a placement table for placing the weight measuring apparatus thereon. The weight measuring apparatus is placed on the placement table such that the load platform surface of the weight measuring apparatus and a load surface of the placement table face horizontally toward each other. Furthermore, the deflection generating portion is an elastic body disposed so as to be interposed between the load surface of the placement table and the load platform surface of the weight measuring apparatus.
According to the fourteenth aspect, it becomes possible to obtain an effect similar to that of the sixth aspect.
In a fifteenth aspect based on the fourteenth aspect, the deflection generating portion is an elastic body having a shape simulating an area in which the measurement target object contacts the load platform.
According to the fifteenth aspect, it becomes possible to obtain an effect similar to that of the seventh aspect.
In a sixteenth aspect based on the fourth aspect, the weight applying unit for calibration further comprises a deflection generating portion (61) for generating deflection by applying a predetermined pressure to a load platform surface of the weight measuring apparatus.
According to the sixteenth aspect, it becomes possible to obtain an effect similar to that of the fifth aspect.
In a seventeenth aspect based on the sixteenth aspect, the support section has a placement table for placing the weight measuring apparatus thereon. The weight measuring apparatus is placed on the placement table such that the load platform surface of the weight measuring apparatus and a load surface of the placement table face horizontally toward each other. Furthermore, the deflection generating portion is an elastic body disposed so as to be interposed between the load surface of the placement table and the load platform surface of the weight measuring apparatus.
According to the seventeenth aspect, it becomes possible to obtain an effect similar to that of the sixth aspect.
In an eighteenth aspect based on the seventeenth aspect, the deflection generating portion is an elastic body having a shape simulating an area in which the measurement target object contacts the load platform.
According to the eighteenth aspect, it becomes possible to obtain an effect similar to that of the seventh aspect.
In a nineteenth aspect based on the first aspect, the weight applying unit for calibration further comprises a detection value obtaining section and a setting section. The detection value obtaining section obtains a detection value outputted from each of the plurality of load sensor sections to which the predetermined loads are applied, respectively, by the weight applying section. The setting section sets the detection value obtained by the detection value obtaining section in the weight measuring apparatus so as to be associated with each of the load sensor sections which has outputted the detection value.
In a twentieth aspect based on the nineteenth aspect, the weight applying section can calibrate the load value applied to each of the plurality of load sensor sections. The setting section sets, in the weight measuring apparatus, data detected based on a plurality of load values by applying loads having values different from each other.
According to the nineteenth and twentieth aspects, it becomes possible to cause the weight measuring apparatus to store calibration results, thereby improving usability of the weight applying unit for calibration.
A twenty-first aspect is a weight applying method for calibration used for performing a calibration on a weight measuring apparatus in which a load platform is supported by a plurality of load sensor sections, and a calculation process is performed on a load value detected by each of the plurality of load sensor sections so as to measure a weight of a measurement target object placed on the load platform, the weight applying method for calibration comprising: a supporting step (step 1); and a weight applying step (step 4, 5). The supporting step supports the weight measuring apparatus. The weight applying step respectively applies predetermined loads to the plurality of load sensor sections included in the weight measuring apparatus supported by the supporting step.
According to the twenty-first aspect, it becomes possible to obtain an effect similar to that of the first aspect.
According to the present invention, a load can be applied individually to each of the plurality of load sensor sections. Thus, it becomes possible to perform a more proper calibration on each of the load sensor sections.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments to be described below are not limited to the present invention.
Firstly, a principle of a weight applying/calibration method according to a first embodiment will be described. As shown in
Hereinafter, the weight applying/calibration method according to the first embodiment will be described in detail.
Each of the load sensor sections 12 detects a load applied to the load platform 11.
The load cell 23 is a strain gage type load cell, for example. The load cell 23 is a load conversion unit for converting an inputted load into an electrical signal. In the load cell 23, a strain element 23a is deformed in accordance with the inputted load, thereby generating a strain. A strain sensor 23b attached to the strain element 23a converts the strain into a value indicating an electrical resistance change so as to be further converted into a value indicating a voltage change. Therefore, the load cell 23 outputs a voltage signal indicating the inputted load from an input terminal when a voltage is applied from a power terminal.
The housing 27 is formed so as to have a substantially bottomed cylindrical shape by plastic molding, for example.
The weight measuring apparatus 10 further comprises the microcomputer 31 for controlling an operation thereof. The microcomputer 31 includes a ROM, RAM and the like, all of which are not shown, and controls the operation of the weight measuring apparatus 10 in accordance with a program stored in the ROM. Further, the RAM is, for example, a nonvolatile memory such as a flash memory.
An AD converter 32, the connector 13 and a DC-DC converter 33 are connected to the microcomputer 31. The load cells 23 included in the load sensor sections 12, respectively, are connected to the AD converter 32 via respective amplifiers 34.
The connector 13 is provided so as to allow the weight measuring apparatus 10 to communicate with the predetermined external apparatus such as a personal computer or a game apparatus.
Furthermore, a battery 35 is mounted in the weight measuring apparatus 10 for a power supply. In the present embodiment, the external apparatus connected to the weight measuring apparatus 10 by means of the connector 13 controls a power supply to the microcomputer 31. On the other hand, the microcomputer 31 controls a power supply to the load cells 23, the amplifiers 34 and the AD converter 32. To the load cells 23, the amplifiers 34, the microcomputer 31 and the AD converter 32, a power is supplied from the battery 35 via the DC-DC converter 33. The DC-DC converter 33 converts a voltage value of a DC current drawn from the battery 35 into a different voltage value, so as to be outputted to the load cells 23, the amplifiers 34, the microcomputer 31 and the AD converter 32.
When a power is supplied, each of the load cells 23 outputs a signal indicating the inputted load. The signal is amplified by each of the amplifiers 34, and the amplified analog signal is converted by the AD converter 32 into a digital signal so as to be inputted to the microcomputer 31. Identification information of each load cell 23 is assigned to a detection value of the load cell 23 so as to be distinguishable from detection values of the other load cells 23. As described above, the microcomputer 31 can obtain data indicating the detection values of the four respective load cells 23 at the same time. Then, the data indicating the detection values of the respective load cells 23 is transmitted from the microcomputer 31 to the external apparatus via the connector 13.
Next, a weight applying unit used in the first embodiment will be described. The weight applying unit is used for applying weight to the load sensor sections 12.
In
Furthermore, as shown in
The four hook portions 53a to 53d have circular shaped load applying plates 531a to 531d, and attachment portions 532a to 532d for attaching the weights 54 thereto, respectively. As shown in
Each of the weights 54 is detachable from the attachment portion 532. Furthermore, each weight 54 is formed of a plurality of weight parts (541 to 544 in
Each of the hoisting and lowering mechanisms 55 is used to carry the weight 54 in an up and down direction when performing a process of attaching the weight 54 to the attachment portion 532.
Next, the weight applying/calibration method according to the first embodiment will be described. In the first embodiment, a load is directly applied to each of the load sensor sections 12 in such a manner as described above so as to cause the microcomputer 31 of the weight measuring apparatus 10 to store a value outputted from each of the load sensor sections 12, thereby performing a calibration.
Firstly, the weight measuring apparatus 10 is placed on the placement table 51 with a load platform surface of the weight measuring apparatus 10 facing downward (i.e., in an inverted position) (step 1). At this time, the weight measuring apparatus 10 is placed on the placement table 51 such that the load sensor sections 12 are located at positions where the through holes 56a to 56d are provided, respectively. In other words, the weight measuring apparatus 10 is placed on the placement table 51 such that the load sensor sections 12a to 12d are located under the load applying plate 531a to 531d of the hook portions 53a to 53d, respectively.
Then, the connector 13 is connected to the external apparatus (step 2). The external apparatus is used for monitoring a load value outputted from the weight measuring apparatus 10 and causing the microcomputer 31 to write the load value, for example.
Next, in a state where no load (i.e., 0 kg) is applied to each of the load sensor sections 12, a detection value thereof is obtained. Thereafter, the external apparatus causes a RAM of the microcomputer 31 to store the detection value so as to be associated with each of the load sensor sections 12 (step 3).
Then, each of the hoisting and lowering mechanisms 55 is used to lift the weight 54, and the weight 54 having a predetermined weight (e.g., 17 kg) is attached to the attachment portion 532 of each of the four hook portions 53 (step 4). In this state, the weight 54 is supported by each of the hoisting and lowering mechanisms 55. Note that it is preferable that the weights 54 attached to the hook portions 53, respectively, have the same weight as one another.
Next, after attaching the weights 54 to the hook portions 53, respectively, the hoisting and lowering mechanisms 55 are used to simultaneously bring down the weights 54 attached at four locations, respectively (step 5). In this state, the weight 54 attached to each of the hook portions 53 is not supported by the hoisting and lowering mechanism 55. As a result, each of the hook portions 53 is lowered by the weight of the weight 54, and the load applying plate 531 contacts each of the load sensor sections 12 located so as to be opposed thereto, thereby pressing down each of the load sensor sections 12. Thus, it becomes possible to directly apply a load corresponding to the weight of the weight 54 attached to each of the hook portions 53 to each of the load sensor sections 12.
Then, the external apparatus obtains the detection value outputted from each of the load sensor sections 12. Thereafter, the external apparatus causes the RAM of the microcomputer 31 to store the detection value as information on the weight of the currently attached weight 54 (i.e., as a detection value obtained when a load of 17 kg is applied) so as to be associated with each of the load sensor sections 12 (step 6).
Such a process of applying a desired load to each of the load sensor sections 12 and causing the microcomputer 31 to store a detection value of each of the load sensor sections 12 to which the desired load is currently applied (steps 4 to mentioned above) is repeated by using a load having a desired weight value. For example, loads of 34 kg, 68 kg and 102 kg are sequentially applied to each of the load sensor sections 12, and the microcomputer 31 is caused to store a detection value detected when each of the loads is applied to each of the load sensor sections 12.
When the weight measuring apparatus 10 calibrated in such a manner as described above is actually used, a value detected by each of the load sensor sections 12 and the data as shown in
As described above, in the present embodiment, a load can be independently applied to each of the four load sensor sections 12. Thus, a more proper calibration can be performed on each of the load sensor sections 12, thereby making it possible to improve a measurement accuracy of the weight measuring apparatus 10. As a result, in the case where a balance state of a measurement target object is detected based on an output value of each of the load sensors, for example, it becomes possible to more accurately recognize the balance state of the measurement target object.
In the above embodiment, as a mechanism to apply a load to each of the load sensor sections 12, the weight measuring apparatus 10 is placed on the placement table 51 in an inverted position, and then the weight 54 is attached to the hook portion 53, thereby applying a load to each of the load sensor sections 12. However, the present invention is not limited thereto. Other mechanisms may also be used if they directly apply a load to each of the load sensor sections 12. For example, the weight measuring apparatus 10 may be placed on the placement table 51 without being inverted such that a load is applied to each of the load sensor sections 12 through the through hole 56 so as to press up the weight measuring apparatus 10 from below.
In the above embodiment, the external apparatus is used to cause the microcomputer 31 to store the data indicating the detection value outputted from the load cell 23. However, a function corresponding to the external apparatus may be embedded in the weight applying unit 50. For example, a connection section electrically connectable to the connector 13 of the weight measuring apparatus 10, a control section having a calculation control function such as a CPU, and an operation section for transmitting an instruction to the control section may be mounted in the weight applying unit 50. Then, a process as shown in step 6 mentioned above may be performed by means of the control section. In such an example as described above, it is unnecessary to prepare an external apparatus in a separate manner.
Next, a second embodiment of the present invention will be described with reference to
Specifically, the calibration according to the first embodiment assumes that a load applied to each load sensor section 12 (load cell 23) is measured when the load sensor section 12 is in a horizontal state. However, under actual usage conditions, the load applied to each load sensor section 12 is measured when the load cell 23 is inclined in its entirety due to the aforementioned deflection. Therefore, since the calibration is performed assuming that the load sensor section 12 is in a horizontal state, a measurement error between an actual weight and a detection value thereof is generated. Thus, in the second embodiment, a calibration is performed in a state where the aforementioned deflection is taken into consideration, in other words, in a state similar to an actual usage state where the load cell 23 is inclined in its entirety.
Next, a principle of the weight applying/calibration method according to the second embodiment will be described. Note that the weight applying unit 50 according to the second embodiment is the same as that of the first embodiment except for a deflection generating member 61 to be described below. Therefore, the same components as those of the first embodiment will be denoted by the same reference numerals and will not be further described below. In the second embodiment, when the weight measuring apparatus 10 is placed on the placement table 51 in such a manner as described above, the deflection generating member 61 (to be described later in detail) is disposed so as to be interposed between the placement table 51 and the weight measuring apparatus 10.
Hereinafter, the deflection generating member 61 will be described in detail.
Next, a material of the deflection generating member 61 will be described. The material used for the deflection generating member 61 has preferably elasticity to some extent. This is because even when a stress is applied to an end of the deflection generating member 61 in a state where a load is applied to the weight measuring apparatus 10 and deflection is generated, the stress would be dispersed if the deflection generating member 61 had the elasticity, thereby not hampering the deflection of the weight measuring apparatus 10. Furthermore, with the elasticity, the load platform surface of the weight measuring apparatus 10 can be prevented from being damaged through calibration steps. In the present embodiment, the deflection generating member 61 is made of ester polyurethane as an example. Specifically, the ester polyurethane has a specific gravity of 1.20, a Shore hardness of Shore A70 (i.e., approximately a hardness of a rubber ball used in baseball), a tensile strength of 31.3 Mpa, an elongation of 650%, a heat resistance of 70° C., and a cold resistance of −20° C.
Then, a difference between an effect produced when a calibration is performed with the deflection generating member 61 and an effect produced when a calibration is performed without the deflection generating member 61 will be described with reference to
For example, when the weight of 34 kg is placed, “difference from reference value” is “−0.191” in
Also, in
As described above, in the present embodiment, a calibration is performed with the deflection generating member 61, thereby making it possible to create a state more similar to actual usage conditions. Therefore, a proper calibration can be performed, and thus a measurement accuracy of the weight measuring apparatus 10 also can be improved accordingly.
In the second embodiment, the aforementioned deflection is generated by interposing an elastic member (the deflection generating member made of polyurethane) between the placement table 51 and the weight measuring apparatus 10. However, the present invention is not limited to the above example of such a member interposed between the placement table 51 and the weight measuring apparatus 10 if the deflection is generated. For example, a through hole may be provided through the placement table 51 at a position where the deflection generating member 61 is to be disposed, so as to create a mechanism to mechanically apply pressure to the load platform 11 through the through hole from below.
While the invention has been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is understood that numerous other modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-283445 | Oct 2007 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 12/010,033, filed Jan. 18, 2008 (now U.S. Pat. No. 8,387,437) which claims priority to the disclosure of Japanese Patent Application No. 2007-283445, filed Oct. 31, 2007. The entire content of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
588172 | Peters | Aug 1897 | A |
688076 | Ensign | Dec 1901 | A |
D188376 | Hotkins et al. | Jul 1960 | S |
3184962 | Gay | May 1965 | A |
3217536 | Motsinger et al. | Nov 1965 | A |
3424005 | Brown | Jan 1969 | A |
3428312 | Machen | Feb 1969 | A |
3712294 | Muller | Jan 1973 | A |
3752144 | Weigle, Jr. | Aug 1973 | A |
3780817 | Videon | Dec 1973 | A |
3826145 | McFarland | Jul 1974 | A |
3869007 | Haggstrom et al. | Mar 1975 | A |
4058178 | Shinohara et al. | Nov 1977 | A |
4104119 | Schilling | Aug 1978 | A |
4136682 | Pedotti | Jan 1979 | A |
4246783 | Steven et al. | Jan 1981 | A |
4296931 | Yokoi | Oct 1981 | A |
4337050 | Engalitcheff, Jr. | Jun 1982 | A |
4404854 | Krempl et al. | Sep 1983 | A |
4488017 | Lee | Dec 1984 | A |
4494754 | Wagner, Jr. | Jan 1985 | A |
4558757 | Mori et al. | Dec 1985 | A |
4569519 | Mattox et al. | Feb 1986 | A |
4574899 | Griffin | Mar 1986 | A |
4577868 | Kiyonaga | Mar 1986 | A |
4598717 | Pedotti | Jul 1986 | A |
4607841 | Gala | Aug 1986 | A |
4630817 | Buckleu | Dec 1986 | A |
4658921 | Karpa | Apr 1987 | A |
4660828 | Weiss | Apr 1987 | A |
4680577 | Straayer et al. | Jul 1987 | A |
4688444 | Nordstrom | Aug 1987 | A |
4691694 | Boyd et al. | Sep 1987 | A |
4711447 | Mansfield | Dec 1987 | A |
4726435 | Kitagawa et al. | Feb 1988 | A |
4739848 | Tulloch | Apr 1988 | A |
4742832 | Kauffmann et al. | May 1988 | A |
4742932 | Pedragosa | May 1988 | A |
4800973 | Angel | Jan 1989 | A |
4838173 | Schroeder et al. | Jun 1989 | A |
4855704 | Betz | Aug 1989 | A |
4880069 | Bradley | Nov 1989 | A |
4882677 | Curran | Nov 1989 | A |
4893514 | Gronert et al. | Jan 1990 | A |
4907797 | Gezari et al. | Mar 1990 | A |
4927138 | Ferrari | May 1990 | A |
4970486 | Gray et al. | Nov 1990 | A |
4982613 | Becker | Jan 1991 | A |
D318073 | Jang | Jul 1991 | S |
5044956 | Behensky et al. | Sep 1991 | A |
5049079 | Furtado et al. | Sep 1991 | A |
5052406 | Nashner | Oct 1991 | A |
5054771 | Mansfield | Oct 1991 | A |
5058422 | Shimauchi | Oct 1991 | A |
5065631 | Ashpitel et al. | Nov 1991 | A |
5089960 | Sweeney, Jr. | Feb 1992 | A |
5103207 | Kerr et al. | Apr 1992 | A |
5104119 | Lynch | Apr 1992 | A |
5112045 | Mason et al. | May 1992 | A |
5116296 | Watkins et al. | May 1992 | A |
5118112 | Bregman et al. | Jun 1992 | A |
5151071 | Jain et al. | Sep 1992 | A |
5195746 | Boyd et al. | Mar 1993 | A |
5197003 | Moncrief et al. | Mar 1993 | A |
5199875 | Trumbull | Apr 1993 | A |
5203563 | Loper, III | Apr 1993 | A |
5207426 | Inoue et al. | May 1993 | A |
5259252 | Kruse et al. | Nov 1993 | A |
5269318 | Nashner | Dec 1993 | A |
5299810 | Pierce et al. | Apr 1994 | A |
5303715 | Nashner et al. | Apr 1994 | A |
5360383 | Boren | Nov 1994 | A |
5362298 | Brown et al. | Nov 1994 | A |
5368546 | Stark et al. | Nov 1994 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5431569 | Simpkins et al. | Jul 1995 | A |
5462503 | Benjamin et al. | Oct 1995 | A |
5466200 | Ulrich et al. | Nov 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5474087 | Nashner | Dec 1995 | A |
5476103 | Nahsner | Dec 1995 | A |
5541621 | Nmngani | Jul 1996 | A |
5541622 | Engle et al. | Jul 1996 | A |
5547439 | Rawls et al. | Aug 1996 | A |
5551445 | Nashner | Sep 1996 | A |
5551693 | Goto et al. | Sep 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
D376826 | Ashida | Dec 1996 | S |
5584700 | Feldman et al. | Dec 1996 | A |
5591104 | Andrus et al. | Jan 1997 | A |
5613690 | McShane et al. | Mar 1997 | A |
5623944 | Nashner | Apr 1997 | A |
5627327 | Zanakis | May 1997 | A |
D384115 | Wilkinson et al. | Sep 1997 | S |
5669773 | Gluck | Sep 1997 | A |
5689285 | Asher | Nov 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5697791 | Nasher et al. | Dec 1997 | A |
5713794 | Shimojima et al. | Feb 1998 | A |
5716274 | Goto et al. | Feb 1998 | A |
5721566 | Rosenberg et al. | Feb 1998 | A |
5746684 | Jordan | May 1998 | A |
5785630 | Bobick et al. | Jul 1998 | A |
D397164 | Goto | Aug 1998 | S |
5788618 | Joutras | Aug 1998 | A |
5792031 | Alton | Aug 1998 | A |
5800314 | Sakakibara et al. | Sep 1998 | A |
5805138 | Brawne et al. | Sep 1998 | A |
5813958 | Tomita | Sep 1998 | A |
5814740 | Cook et al. | Sep 1998 | A |
5820462 | Yokoi et al. | Oct 1998 | A |
5825308 | Rosenberg | Oct 1998 | A |
5832417 | Petrucelli et al. | Nov 1998 | A |
D402317 | Goto | Dec 1998 | S |
5846086 | Bizzi et al. | Dec 1998 | A |
5853326 | Goto et al. | Dec 1998 | A |
5854622 | Brannon | Dec 1998 | A |
5860861 | Lipps et al. | Jan 1999 | A |
5864333 | O'Heir | Jan 1999 | A |
5872438 | Roston | Feb 1999 | A |
5886302 | Germanton et al. | Mar 1999 | A |
5888172 | Andrus et al. | Mar 1999 | A |
5889507 | Engle et al. | Mar 1999 | A |
D407758 | Isetani et al. | Apr 1999 | S |
5890995 | Bobick et al. | Apr 1999 | A |
5897469 | Yalch | Apr 1999 | A |
5901612 | Letovsky | May 1999 | A |
5902214 | Makikawa et al. | May 1999 | A |
5904639 | Smyser et al. | May 1999 | A |
D411258 | Isetani et al. | Jun 1999 | S |
5912659 | Rutledge et al. | Jun 1999 | A |
5919092 | Yokoi et al. | Jul 1999 | A |
5921780 | Myers | Jul 1999 | A |
5921899 | Rose | Jul 1999 | A |
5929782 | Stark et al. | Jul 1999 | A |
5947824 | Minami et al. | Sep 1999 | A |
5976063 | Joutras et al. | Nov 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5980429 | Nashner | Nov 1999 | A |
5984785 | Takeda et al. | Nov 1999 | A |
5987982 | Wenman et al. | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5993356 | Houston et al. | Nov 1999 | A |
5997439 | Ohsuga et al. | Dec 1999 | A |
6001015 | Nishiumi et al. | Dec 1999 | A |
6007428 | Nishiumi et al. | Dec 1999 | A |
6010465 | Nashner | Jan 2000 | A |
D421070 | Jang et al. | Feb 2000 | S |
6037927 | Rosenberg | Mar 2000 | A |
6038488 | Barnes et al. | Mar 2000 | A |
6044772 | Gaudette et al. | Apr 2000 | A |
6063046 | Allum | May 2000 | A |
6086518 | MacCready, Jr. | Jul 2000 | A |
6102803 | Takeda et al. | Aug 2000 | A |
6102832 | Tani | Aug 2000 | A |
D431051 | Goto | Sep 2000 | S |
6113237 | Ober et al. | Sep 2000 | A |
6147674 | Rosenberg et al. | Nov 2000 | A |
6152564 | Ober et al. | Nov 2000 | A |
D434769 | Goto | Dec 2000 | S |
D434770 | Goto | Dec 2000 | S |
6155926 | Miyamoto et al. | Dec 2000 | A |
6162189 | Girone et al. | Dec 2000 | A |
6167299 | Galchenkov et al. | Dec 2000 | A |
6190287 | Nashner | Feb 2001 | B1 |
6200253 | Nishiumi et al. | Mar 2001 | B1 |
6203432 | Roberts et al. | Mar 2001 | B1 |
6216542 | Stockli et al. | Apr 2001 | B1 |
6216547 | Lehtovaara | Apr 2001 | B1 |
6220865 | Macri et al. | Apr 2001 | B1 |
D441369 | Goto | May 2001 | S |
6225977 | Li | May 2001 | B1 |
6227968 | Suzuki et al. | May 2001 | B1 |
6228000 | Jones | May 2001 | B1 |
6231444 | Goto | May 2001 | B1 |
6239806 | Nishiumi et al. | May 2001 | B1 |
6241611 | Takeda et al. | Jun 2001 | B1 |
6244987 | Ohsuga et al. | Jun 2001 | B1 |
D444469 | Goto | Jul 2001 | S |
6264558 | Nishiumi et al. | Jul 2001 | B1 |
6280361 | Harvey et al. | Aug 2001 | B1 |
D447968 | Pagnacco et al. | Sep 2001 | S |
6295878 | Berme | Oct 2001 | B1 |
6296595 | Stark et al. | Oct 2001 | B1 |
6325718 | Nishiumi et al. | Dec 2001 | B1 |
6330837 | Charles et al. | Dec 2001 | B1 |
6353427 | Rosenberg | Mar 2002 | B1 |
6354155 | Berme | Mar 2002 | B1 |
6357827 | Brightbill et al. | Mar 2002 | B1 |
6359613 | Poole | Mar 2002 | B1 |
D456410 | Ashida | Apr 2002 | S |
D456854 | Ashida | May 2002 | S |
D457570 | Brinson | May 2002 | S |
6387061 | Nitto | May 2002 | B1 |
6388655 | Leung | May 2002 | B1 |
6389883 | Berme et al. | May 2002 | B1 |
6394905 | Takeda et al. | May 2002 | B1 |
6402635 | Nesbit et al. | Jun 2002 | B1 |
D459727 | Ashida | Jul 2002 | S |
D460506 | Tamminga et al. | Jul 2002 | S |
6414251 | Edwards et al. | Jul 2002 | B1 |
6421056 | Nishiumi et al. | Jul 2002 | B1 |
6436058 | Krahner et al. | Aug 2002 | B1 |
D462683 | Ashida | Sep 2002 | S |
6454679 | Radow | Sep 2002 | B1 |
6461297 | Pagnacco et al. | Oct 2002 | B1 |
6470302 | Cunningham et al. | Oct 2002 | B1 |
6482010 | Marcus et al. | Nov 2002 | B1 |
6510749 | Pagnacco et al. | Jan 2003 | B1 |
6514145 | Kawabata et al. | Feb 2003 | B1 |
6515593 | Stark et al. | Feb 2003 | B1 |
6516221 | Hirouchi et al. | Feb 2003 | B1 |
D471594 | Nojo | Mar 2003 | S |
6539771 | Davidson et al. | Apr 2003 | B1 |
6543769 | Podoloff et al. | Apr 2003 | B1 |
6546817 | Aoki | Apr 2003 | B1 |
6563059 | Lee | May 2003 | B2 |
6568334 | Gaudette et al. | May 2003 | B1 |
6603082 | Delbrück et al. | Aug 2003 | B1 |
6616579 | Reinbold et al. | Sep 2003 | B1 |
6621015 | Kusumoto et al. | Sep 2003 | B2 |
6624802 | Klein et al. | Sep 2003 | B1 |
6632158 | Nashner | Oct 2003 | B1 |
6636161 | Rosenberg | Oct 2003 | B2 |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6638175 | Lee et al. | Oct 2003 | B2 |
6663058 | Peterson et al. | Dec 2003 | B1 |
6676520 | Nishiumi et al. | Jan 2004 | B2 |
6676569 | Radow | Jan 2004 | B1 |
6679776 | Nishiumi et al. | Jan 2004 | B1 |
6697049 | Lu | Feb 2004 | B2 |
6719667 | Wong et al. | Apr 2004 | B2 |
6726566 | Komata | Apr 2004 | B2 |
6764429 | Michalow | Jul 2004 | B1 |
6797894 | Montagnino et al. | Sep 2004 | B2 |
6811489 | Shimizu et al. | Nov 2004 | B1 |
6813966 | Dukart | Nov 2004 | B2 |
6817973 | Merril et al. | Nov 2004 | B2 |
D500100 | van der Meer | Dec 2004 | S |
6846270 | Etnyre | Jan 2005 | B1 |
6859198 | Onodera et al. | Feb 2005 | B2 |
6872139 | Sato et al. | Mar 2005 | B2 |
6872187 | Stark et al. | Mar 2005 | B1 |
6888076 | Hetherington | May 2005 | B2 |
6913559 | Smith | Jul 2005 | B2 |
6936016 | Berme et al. | Aug 2005 | B2 |
D510391 | Merril et al. | Oct 2005 | S |
6975302 | Ausbeck, Jr. | Dec 2005 | B1 |
6978684 | Nurse | Dec 2005 | B2 |
6991483 | Milan et al. | Jan 2006 | B1 |
D514627 | Merril et al. | Feb 2006 | S |
7004787 | Milan | Feb 2006 | B2 |
D517124 | Merril et al. | Mar 2006 | S |
7011605 | Shields | Mar 2006 | B2 |
7033176 | Feldman et al. | Apr 2006 | B2 |
7038855 | French et al. | May 2006 | B2 |
7040986 | Koshima et al. | May 2006 | B2 |
7070542 | Reyes et al. | Jul 2006 | B2 |
7083546 | Zillig et al. | Aug 2006 | B2 |
7100439 | Carlucci | Sep 2006 | B2 |
7121982 | Feldman | Oct 2006 | B2 |
7126584 | Nishiumi et al. | Oct 2006 | B1 |
7127376 | Nashner | Oct 2006 | B2 |
7163516 | Pagnacco et al. | Jan 2007 | B1 |
7179234 | Nashner | Feb 2007 | B2 |
7195355 | Nashner | Mar 2007 | B2 |
7202424 | Carlucci | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7270630 | Patterson | Sep 2007 | B1 |
7307619 | Cunningham et al. | Dec 2007 | B2 |
7308831 | Cunningham et al. | Dec 2007 | B2 |
7331226 | Feldman et al. | Feb 2008 | B2 |
7335134 | LaVelle | Feb 2008 | B1 |
RE40427 | Nashner | Jul 2008 | E |
7416537 | Stark et al. | Aug 2008 | B1 |
7472439 | Lemire et al. | Jan 2009 | B2 |
7530929 | Feldman et al. | May 2009 | B2 |
8079251 | Miyanaga | Dec 2011 | B2 |
8574080 | Yamazaki et al. | Nov 2013 | B2 |
20010001303 | Ohsuga et al. | May 2001 | A1 |
20010018363 | Goto et al. | Aug 2001 | A1 |
20010032742 | Yoshida | Oct 2001 | A1 |
20010050683 | Ishikawa et al. | Dec 2001 | A1 |
20020055422 | Airmet et al. | May 2002 | A1 |
20020080115 | Onodera et al. | Jun 2002 | A1 |
20020185041 | Herbst | Dec 2002 | A1 |
20030010543 | Montagnino | Jan 2003 | A1 |
20030054327 | Evensen | Mar 2003 | A1 |
20030056995 | Johnson | Mar 2003 | A1 |
20030069108 | Kaiserman et al. | Apr 2003 | A1 |
20030107502 | Alexander | Jun 2003 | A1 |
20030176770 | Merril et al. | Sep 2003 | A1 |
20030178233 | Montagnino et al. | Sep 2003 | A1 |
20030193416 | Ogata et al. | Oct 2003 | A1 |
20040038786 | Kuo et al. | Feb 2004 | A1 |
20040041787 | Graves | Mar 2004 | A1 |
20040077464 | Feldman et al. | Apr 2004 | A1 |
20040099513 | Hetherington | May 2004 | A1 |
20040110602 | Feldman | Jun 2004 | A1 |
20040127337 | Nashner | Jul 2004 | A1 |
20040148089 | Schmidt et al. | Jul 2004 | A1 |
20040163855 | Carlucci | Aug 2004 | A1 |
20040180719 | Feldman et al. | Sep 2004 | A1 |
20040259688 | Stabile | Dec 2004 | A1 |
20050070154 | Milan | Mar 2005 | A1 |
20050076161 | Albanna et al. | Apr 2005 | A1 |
20050130742 | Feldman et al. | Jun 2005 | A1 |
20050202384 | DiCuccio et al. | Sep 2005 | A1 |
20060097453 | Feldman et al. | May 2006 | A1 |
20060161045 | Merril et al. | Jul 2006 | A1 |
20060205565 | Feldman et al. | Sep 2006 | A1 |
20060211543 | Feldman et al. | Sep 2006 | A1 |
20060217243 | Feldman et al. | Sep 2006 | A1 |
20060223634 | Feldman et al. | Oct 2006 | A1 |
20070021279 | Jones | Jan 2007 | A1 |
20070027369 | Pagnacco et al. | Feb 2007 | A1 |
20070155589 | Feldman et al. | Jul 2007 | A1 |
20070219050 | Merril | Sep 2007 | A1 |
20070251749 | Breed et al. | Nov 2007 | A1 |
20080012826 | Cunningham et al. | Jan 2008 | A1 |
20080228110 | Berme | Sep 2008 | A1 |
20080261696 | Yamazaki et al. | Oct 2008 | A1 |
20090093315 | Matsunaga et al. | Apr 2009 | A1 |
20090099315 | Kipke et al. | Apr 2009 | A1 |
20110070953 | Konishi | Mar 2011 | A1 |
20110077899 | Hayashi et al. | Mar 2011 | A1 |
20110207534 | Meldeau | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
40 04 554 | Aug 1991 | DE |
195 02 918 | Aug 1996 | DE |
297 12 785 | Jan 1998 | DE |
0 275 665 | Jul 1988 | EP |
0 299 738 | Jan 1989 | EP |
0 335 045 | Oct 1989 | EP |
0 519 836 | Dec 1992 | EP |
1 870 141 | Dec 2007 | EP |
2 472 929 | Jul 1981 | FR |
2 587 611 | Mar 1987 | FR |
2 604 910 | Apr 1988 | FR |
2 647 331 | Nov 1990 | FR |
2 792 182 | Oct 2000 | FR |
2 801 490 | Jun 2001 | FR |
2 811 753 | Jan 2002 | FR |
2 906 365 | Mar 2008 | FR |
1 209 954 | Oct 1970 | GB |
2 288 550 | Oct 1995 | GB |
44-23551 | Oct 1969 | JP |
55-95758 | Dec 1978 | JP |
54-73689 | Jun 1979 | JP |
55-113472 | Sep 1980 | JP |
55-113473 | Sep 1980 | JP |
55-125369 | Sep 1980 | JP |
55-149822 | Nov 1980 | JP |
55-152431 | Nov 1980 | JP |
60-79460 | Jun 1985 | JP |
60-153159 | Oct 1985 | JP |
61-154689 | Jul 1986 | JP |
62-034016 | Feb 1987 | JP |
63-158311 | Oct 1988 | JP |
63-163855 | Oct 1988 | JP |
63-193003 | Dec 1988 | JP |
02-102651 | Apr 1990 | JP |
2-102651 | Apr 1990 | JP |
2-238327 | Sep 1990 | JP |
3-25325 | Feb 1991 | JP |
3-103272 | Apr 1991 | JP |
03-107959 | Nov 1991 | JP |
6-063198 | Mar 1994 | JP |
6-282373 | Oct 1994 | JP |
7-213741 | Aug 1995 | JP |
7-213745 | Aug 1995 | JP |
7-241281 | Sep 1995 | JP |
7-241282 | Sep 1995 | JP |
7-275307 | Oct 1995 | JP |
7-302161 | Nov 1995 | JP |
8-43182 | Feb 1996 | JP |
08-131594 | May 1996 | JP |
8-182774 | Jul 1996 | JP |
08-182774 | Jul 1996 | JP |
8-184474 | Jul 1996 | JP |
08-184474 | Jul 1996 | JP |
8-215176 | Aug 1996 | JP |
08-244691 | Sep 1996 | JP |
2576247 | Jan 1997 | JP |
9-120464 | May 1997 | JP |
9-168529 | Jun 1997 | JP |
9-197951 | Jul 1997 | JP |
9-305099 | Nov 1997 | JP |
11-309270 | Nov 1999 | JP |
2000-146679 | May 2000 | JP |
U3068681 | May 2000 | JP |
U3069287 | Jun 2000 | JP |
2000-254348 | Sep 2000 | JP |
3172738 | Jun 2001 | JP |
2001-178845 | Jul 2001 | JP |
2001-286451 | Oct 2001 | JP |
2002-112984 | Apr 2002 | JP |
2002-157081 | May 2002 | JP |
2002-253534 | Sep 2002 | JP |
2003-79599 | Mar 2003 | JP |
3722678 | Nov 2005 | JP |
2005-334083 | Dec 2005 | JP |
3773455 | May 2006 | JP |
2006-167094 | Jun 2006 | JP |
3818488 | Sep 2006 | JP |
2006-284539 | Oct 2006 | JP |
3128216 | Dec 2006 | JP |
2008-49117 | Mar 2008 | JP |
WO 9111221 | Aug 1991 | WO |
WO 9212768 | Aug 1992 | WO |
WO 9840843 | Sep 1998 | WO |
WO 0012041 | Mar 2000 | WO |
WO 0057387 | Sep 2000 | WO |
WO 0069523 | Nov 2000 | WO |
WO 0229375 | Apr 2002 | WO |
WO 02057885 | Jul 2002 | WO |
WO 2004051201 | Jun 2004 | WO |
WO 2004053629 | Jun 2004 | WO |
WO 2005043322 | May 2005 | WO |
WO 2008099582 | Aug 2008 | WO |
Entry |
---|
European Office Action issued for European Patent Application No. 10172026.6-2213, dated Feb. 3, 2012. |
Addlesee, M.D., et al., “The ORL Active Floor,” IEEE—Personal Communications, Oct. 1997. |
Baek, Seongmin, et al., “Motion Evaluation for VR-based Motion Training,” Eurographics 2001, vol. 20, No. 3, 2001. |
Biodex Medical Systems, Inc.—Balance System SD Product Information—http://www.biodex.com/rehab/balance/balance—300feat.htm. |
Chen, I-Chun, et al., “Effects of Balance Training on Hemiplegic Stroke Patients,” Chang Gung Medical Journal, vol. 25, No. 9, pp. 583-590, Sep. 2002. |
Dingwell, Jonathan, et al., “A Rehabilitation Treadmill with Software for Providing Real-Time Gait Analysis and Visual Feedback,” Transactions of the ASME, Journal of Biomechanical Engineering, 118 (2), pp. 253-255, 1996. |
Geiger, Ruth Ann, et al., “Balance and Mobility Following Stroke: Effects of Physical Therapy Interventions With and Without Biofeedback/Forceplate Training,” Physical Therapy, vol. 81, No. 4, pp. 995-1005, Apr. 2001. |
Harikae, Miho, “Visualization of Common People's Behavior in the Barrier Free Environment,” Graduate Thesis—Master of Computer Science and Engineering in the Graduate School of the University of Aizu, Mar. 1999. |
Hodgins, J.K., “Three-Dimensional Human Running,” Proceedings: 1996 IEEE International Conference on Robotics and Automation, vol. 4, Apr. 1996. |
Kim, Jong Yun, et al., “Abstract—A New VR Bike System for Balance Rehabilitation Training,” Proceedings: 2001 IEEE Seventh International Conference on Virtual Systems and Multimedia, Oct. 2001. |
McComas, Joan, et al., “Virtual Reality Applications for Prevention, Disability Awareness, and Physical Therapy Rehabilitation in Neurology: Our Recent Work,” School of Rehabilitation Sciences, University of Ottawa—Neurology Report, vol. 26, No. 2, pp. 55-61, 2002. |
NeuroCom International, Inc.—Balance Manager Systems/Products—http://resourcesonbalance.com/neurocom/products/index.aspx. |
NeuroCom International, Inc.—Neurogames—http://resourcesonbalance.com/neurocom/products/NeuroGames.aspx. |
Nicholas, Deborah 5, “Balance Retraining After Stroke Using Force Platform Feedback,” Physical Therapy, vol. 77, No. 5, pp. 553-558, May 1997. |
Nintendo Co., Ltd.—Aerobic Exercise Rhythm Boxing—http://www.nintendo.co.jp/wii/rfnj/training/aerobics/aerobics07.html. |
Redfern, Mark, et al., “Visual Influences of Balance,” Journal of Anxiety Disorders, vol. 15, pp. 81-94, 2001. |
Sackley, Catherine, “Single Blind Randomized Controlled Trial of Visual Feedback After Stroke: Effects on Stance Symmetry and Function,” Disavility and Rehabilitation, vol. 19, No. 12, pp. 536-546, 1997. |
Tossavainen, Timo, et al., “Postural Control as Assessed with Virtual Reality,” Acta Otolaryngol, Suppl 545, pp. 53-56, 2001. |
Tossavainen, Timo, et al., “Towards Virtual Reality Simulation in Force Platform Posturography,” MEDINFO, pp. 854-857, 2001. |
Tsutsuguchi, Ken, et al., “Human Walking Animation Based on Foot Reaction Force in the Three-Dimensional Virtual World,” The Journal of Visualization and Computer Animation, vol. 11, pp. 3-16, 2000. |
Wong, Alice, et al., “The Devlopment and Clinical Evaluation of a Standing Biofeedback Trainer,” Journal of Rehabilitation Research and Development, vol. 34, No. 3, pp. 322-327, Jul. 1997. |
Yang, Ungyeon, et al., “Implementation and Evaluation of ‘Just Follow Me’: An Immersive, VR-Based, Motion-Training System,” Presence, vol. 11, No. 3, pp. 304-323, 2002. |
European Search Report issued for European Patent Application No. 11155149.5—2213, dated Apr. 21, 2011. |
Nintendo Co., Ltd. and Nintendo of America's Opposition to IA Labs CA, LLC's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), including the Appendix of Exhibits and Exhibits A-R, 405 pages. |
Declaration of R. Lee Rawls in Support of Nintendo Co., Ltd. and Nintendo of America Inc.'s Opposition to IA Labs CA. LLC'a Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), including Exhibits 1, 3-12, 193 pages. |
Declaration of Tyler. C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), 7 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs Ca, LLC, (Plaintiff) v. Nintendo Co., Ltd, et al., (Defendant), United. States District Court for the District of Maryland Southern Division (May 16, 2011), Appendix of Exhibits, 2 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 1, 36 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 2, 40 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd, et al., (Defendant), United States District Court for the District of Maryland Southern Division (May .16, 2011), Exhibit 3, 85 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed, R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs Ca, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 4, 10 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 5, 9 pages |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd, and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 6, 17 pages. |
,Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs Ca, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 7, 16 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd, and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 8, 45 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co,, Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd, et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 9, 4 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 10, 22 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiffs Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 11, 27 pages |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd, and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 12, 3 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 13, 7 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et a., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 14, 22 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 15, 45 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. snd Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 16, 42 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co,, Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 17, 19 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd, and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 18, 27 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 19, 13 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ, P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 20, 29 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. aand Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd, et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 21, 25 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed, R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 22, 11 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ, P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 23, 20 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co,, Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 24, 7 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd. and Nintendo of American Inc.'s Opposition to Plaintiff's Motion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 25, 80 pages. |
Declaration of Tyler C. Peterson Pursuant to Fed. R. Civ. P. 56(D) in Support of Nintendo Co., Ltd, and Nintendo of American Inc.'s Opposition to Plaintiff's otion for Partial Summary Judgment, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (May 16, 2011), Exhibit 26, 32 pages. |
U.S. Trademark U.S. Appl. No. 74/402,755, filed Jun. 14, 1993, 43 pages. |
“AccuSway Dual Top: for Balance and Postural Sway Measurement,” AMTI: Force and Motion, ISO 9001:2000, 2 pages. |
Borzelli G., Cappozzo A., and Papa E., “Inter- and intra-individual variability of ground rejection forces during sit-to-stand with principal component analysis,” Medical Engineering & Physics 21 (1999), pp. 235-240. |
Chiari L., Cappello A., Lenzi D., and Della Croce U, “An Improved Technique for the Extraction of Stochasitc Parameters from Stabilograms,” Gait and Posture 12 (2000), pp. 225-234. |
Cutlip R., Hsiao H., Garcia R., Becker E., Mayeux B., “A comparison of different postures for scaffold end-frame disassembly,” Applied Ergonomics 31 (2000), pp. 507-513. |
Davis K.G., Marras W.S., Waters T.R., “Evaluation of spinal loading during lowering and lifting,” The Ohio State University, Biodynamics Laboratory, Clinical Biomechanics vol. 13, No. 3, 1998 pp. 141-152. |
Rolf G. Jacob, Mark S. Redfern, Joseph M. Furman, “Optic Flow-induced Sway in Anxiety Disorders Associated with Space and Motion Discomfort,” Journal of Anxiety Disorders, vol. 9, No. 5, 1995, pp. 411-425. |
Jorgensen M.J., Marras W.S., “The effect of lumbar back support tension on trunk muscle activity,” Clinical Biomechanics 15 (2000), pp. 292-294. |
Deborah L. King and Vladimir M. Zatsiorsky, “Extracting gravity line displacement from stabilographic recordings,” Gait & Posture 6 (1997), pp. 27-38. |
Kraemer W.J., Volek J.S., Bush J.A., Gotshalk L.A., Wagner P.R., Gómez A.L., Zatsiorsky V.M., Duzrte M., Ratamess N.A., Mazzetti S.A., Selle B.J., “Influence of compression hosiery on physiological responses to standing fatigue in women,” The Human Performance Laboratory, Medical & Science in Sports & Exercise, 2000, pp. 1849-1858. |
Papa E. and Cappozzo A., “A telescopic inverted-pendulum model of the musculo-skeletal system and its use for the analysis of the sit-to-stand motor task,” Journal of Biomechanics 32 (1999), pp. 1205-1212. |
Balance System, BalanceTrak 500, & Quantrem, ZapConnect.com: Medical Device Industry Portal, http://www.zapconnect.com/products/index/cfm/fuseaction/products, 2 pages. (Retrieved Apr. 5, 2011). |
BERTEC: Dominate Your Field, Physician's Quick Guide, Version 1.0.0, Feb. 2010, 13 pagee. |
BERTEC: Dominate Your Field, Balancecheck Screener, Version 1.0.0, Feb. 2010, 35 pages. |
BERTEC: Dominate Your Field, Balancecheck Trainer, Version 1.0.0, Feb. 2010, 37 pages. |
BERTEC Corporation—Balancecheck Standard Screener Package, http://bertec.com/products/balance-systems/standard-screener-html, 1 page. (Retrieved Apr. 12, 2011). |
BERTEC Corporation—Balance Systems: Balancecheck Advanced balance assessment & training products for the balance professional, http://bertec.com/products/balance-systems.html, 1 page. (Retrieved. Mar. 31, 2011). |
BERTEC Corporation—Balancecheck Mobile Screener Package: Portable balance screening with full functionality, http://bertec.com/products/balance-systems/mobile-screener .html, 1 page. (Retrieved Mar. 31, 2011). |
BERTEC Corporation—Balancecheck Standard Screener & Trainer Package: Advanced balance screening and rehabilitation system, http://bertec.com/products/balance-systems/standard-screener-trainer.html, 1 page, (Retrieved Mar. 31, 2011). |
U.S. Trademark U.S. Appl. No. 75/136,330, filed Jul. 19, 1996, 47 pages. |
BERTEC: Dominate Your Field, Digital Acquire 4, Version 4.0.10, Mar. 2011, 22 pages. |
BERTEC: Dominate Your Field, Bertec Force Plates, Version 1.0.0, Sep. 2009, 31 pages. |
BERTEC: Dominate Your Field, Product Information: Force Plate FP4060-08:Product Details and Specifications, 4 pages. |
BERTEC: Dominate Your Field, Product Information: Force Plate FP4060-10:Product Details and Specifications, 2 pages. |
U.S. Trademark U.S. Appl. No. 73/542,230, filed Jun. 10, 1985, 52 pages. |
Brent L. Arnold and Randy J. Schmitz, “Examination of Balance Measures Produced by the Biodex Stability System,” Journal of Athletic Training, vol. 33(4), 1998, pp. 323-327. |
Trademark Registration No. 1,974,115 filed Mar. 28, 1994, 8 pages. |
ICS Balance Platform., Fall Prevention: Hearing Assessment, Fitting Systems, Balance Assessment, Otometrics: Madsen, Aurical, ICS, 2 pages. |
U.S. Trademark U.S. Appl. No. 75/471,542, filed Apr. 16, 1998, 102 pages. |
VTI Force Platform, Zapconnect.com: Medical Device Industry Portal, http://zapconnect.com/products/index.cfm/fuseaction/products, 2 pages. (Retrieved Apr. 5, 2011). |
Amin M., Gi.rardi M,, Konrad H.R., Hughes L., “A Comparison of Electronystagmorgraphy Results with Posturography Findings from the BalanceTrak 500,” Otology Neurotology, 23(4), 2002, pp. 488-493. |
Girardi M., Konrad H.R., Amin M., Hughes L.F., “Predicting Fall Risks in an Elderly Population: Computer Dynamic Posturography Versus Electronystagmography Test Results,” Laryngoscope, 111(9), 2001, 1528-32. |
Dr. Guido Pagnacco, Publications, 1997-2008, 3 pages. |
College of Engineering and Applied Science: Electrical and Computer Engineering, University of Wyoming, Faculty: Guido Pagnacco, http://wwweng.uwyo.edu/electrical/faculty/Pagnacco.html, 2 pages. (Retrieved Apr. 20, 2011). |
EyeTracker, IDEAS, DIFRA, 501(k) Summary: premarket notification, Jul. 5, 2007, 7 pages. |
Vestibular technologies, copyright 2000-2004, 1 pages. |
Scopus preview—Scopus—Author details (Pagnacco, Guido), http:www.scopus.com/authid/detail.url?authorId=6603709393, 2 pages. (Retrieved Apr. 20, 2011). |
Vestibular Technologies Company Page, “Vestibular technologies: Helping People Regain their Balance for Life,” http:www.vestibtech.com/AboutUs.html, 2 pages. (Retrieved Apr. 20, 2011). |
GN Otometrics Launces ICS Balance Platform: Portable system for measuring postural sway, http://audiologyonline.com/news/pf—news—detail.asp?news—id=3196, 1 page. (Retrieved Mar. 31, 2011). |
U.S. Trademark U.S. Appl. No. 75/508,272, filed Jun. 25, 1998, 36 pages. |
U.S. Trademark U.S. Appl. No. 75/756,991, filed Jul. 21, 1999, 9 pages. |
U.S. Trademark U.S. Appl. No. 76/148,037, filed Oct. 17, 2000, 78 pages. |
Vestibular technologies, VTI Products: BalanceTRAK User's Guide, Preliminary Version 0.1, 2005, 34 pages |
U.S. Trademark U.S. Appl. No. 76/148,037, filed Oct. 17, 2000, 57 pages. |
Vestibular Technologies, Waybackmachine, http://vestibtech.com/balancetrak500.html, 7 pages. (Retrieved Mar. 30, 2011). |
Vestibular Technologies, 2004 Catalog, 32 pages. |
The Balance Trak 500—Normative Data, 8 pages. |
State of Delaware: The Official Website of the First State, Division of Corporations—Online Services, http://delecorp.delaware.gov/tin/controller, 2 pages. (Retrieved Mar. 21, 2011). |
Memorandum in Support of Plaintiff IA Labs' Motion for Partial Summary Judgment on Defendants' Affirmative Defense and Counterclaim That U.S. Patent No. 7,121,982 ss Invalid Under 35 U.S.C. §§ 102 and 103, IA Labs CA, LLC, (Plaintiff) v. Nintendo Co., Ltd. et al., (Defendant), United States District Court for the District of Maryland Southern Division (Apr. 27, 2011), 17 pages. |
Interface. Inc.—Advanced Force Measurement—SM Calibration Certificate Installation Information. 1984. |
Hugh Stewart, “Isometric Joystick: A Study of Control by Adolescents and Young Adults with Cerebral Palsy,” The Australian Occupational Therapy Journal, Mar. 1992, vol. 39, No. 1, pp. 33-39. |
Raghavendra S. Rao, et al., “Evaluation of an Isometric and a Position Joystick in a Target Acquisition Task for Individuals with Cerebral Palsy,” IEEE Transactions on Rehabilitation Engineering, vol. 8, No, 1, Mar. 2000, pp. 118-125. |
D. Sengupta, et al., “Comparative Evaluation of Control Surfaces for Disabled Patients,”Proceedings of the 27th Annual Conference on Engineering in Medicine and Biology, vol. 16, Oct. 6-10, 1974, p. 356. |
Ian Bogost, “The Rhetoric of Exergaming,”The Georgia Institute of Technology, 9 pages (date unknown). |
Ludonauts, “Body Movin',” May 24, 2004, http://web.archive,orgiweb/20040611131903/http:/www.ludonauts.com; retrieved Aug. 31, 2010, 4 pages. |
Atari Gaming Headquarters—AGH's Atari Project Puffer Page, http://www.atarihq.com/othersec/puffer/index.html, retrieved Sep. 19, 2002, 4 pages. |
Michael Antonoff, “Real estate is cheap here, but the places you'd most want to visit are still under construction,” Popular Science, Jun. 1993, pp. 33-34. |
Steve Aukstakalnis and David Blatner. “The Art and Science of Virtual Reality—Silicon Mirage,” 1992, 197-207. |
Electronics, edited by Michael Antonoff, “Video Games—Virtual Violence: Boxing Without Bruises,” Popular Science, Apr. 1993, p. 60. |
Stuart F. Brown. “Video cycle race,” Popular Science, May 1989, p. 73. |
Scanning the Field for Ideas, “Chair puts Player on the Joystick,” Machine Design, No. 21, Oct. 24, 1991, XP 000255214, 1 page. |
Francis Hamit, “Virtual Reality and the Exploration of Cyberspace,” University of MD Baltimore County. 1993, 4 pages. |
Innovation in Action—Biofeed back Motor Control, Active Leg Press—IsoLegPress, 2 pages (date unknown). |
Ric Manning, “Videogame players get a workout with the Exertainment,” The Gizmo Page from the Courier Journal Sep. 25, 1994, 1 page. |
Tech Lines, Military—Arcade aces and Aviation—Winging it, Popular Mechanics, Mar. 1982, p. 163. |
Sarju Shah, “Mad Catz Universal MC2 Racing Wheel: Mad Catz MC2 Universal,” Game Spot, posted Feb. 18, 2005, 3 pages. |
Joe Skorupa, “Virtual Fitness,” Sports Science, Popular Mechanics, Oct. 1994. 3 pages. |
AGH Musuem—Suncom Aerobics Joystick; http://atarihq.com/museum/2678/hardware/aerobics.html, (retrieved date unknown) 1 page. |
Nintendo Zone—The History of Nintendo (1889-1997), retrieved Aug. 24, 1998 pp. 1. 9-10. |
The Legible City, Computergraphic Installation with Dirk Groeneveld, Manhattan version (1989), Amsterdam version (1990), Karlsruhe version (1991), 3 pages. |
The New Exertainment System. Its All About Giving Your Members Personal Choices, Life Fitness, Circle Reader Service Card. No. 28, 1995, 1 page. |
The Race Begins with $85, Randal Windracer, Circle Reader Service Card No. 34, 1990, 1 page. |
Universal S-Video/Audio Cable; Product #5015, MSRP 9.99; http://www.madcatz.com/Default.asp?Page=133&CategoryImg=Universal Cables, retrieved May 12, 2005, 1 page. |
Tom Dang, et al., “interactive Video Exercise System for Pediatric Brain Injury Rehabilitation,” Assistive Technology Research Center, Rehabilitation Engineering Service, National Rehabilitation Hospital, Proceedings of the RESNA 20th Annual Conference, Jun. 1998. 3 pages. |
Linda S. Miller, “Upper Limb Exerciser,” Biometrics Ltd—Unique Solutions for Clinical and Research Applications. 6 pages (date unknown). |
Raymond W. McGorry, “A system for the measurement of grip forces and applied moments during hand toot use,” Liberty Mutual Research Center for Safety and Health, Applied Ergonomics 32 (2001) 271-279. |
NordicTrack's Aerobic Cross Trainer advertisment as shown in “Big Ideas—for a Little Money: Great Places to Invest $1,000 or Less,” Kiplinger's Personal Finance Magazine, Jul. 1994, 3 pages. |
Maurice R. Masliah, “Measuring the Allocation of Control in 6 Degree of Freedom Human-Computer Interaction Tasks,” Graduate Department of Mechanical and Industrial Engineering, University of Toronto, 2001, 177 pages. |
Leigh Ann Roman, “Boing! Combines Arcade Fun with Physical Training,” Memphis—Health Care News: Monitoring the Pulse of Our Health Care Community, Sep. 20, 1996, One Section. 1 page. |
“No More Couch Potato Kids,” as shown in Orange Coast, Sep. 1994, p. 16. |
Gary L. Downey, et al., “Design of an Exercise Arcade for Children with Disabilities,” Resna, Jun. 26-30, 1998, pp. 405-407. |
Frank Serpas, et al., “Forward-dynamics Simulation of Anterior Cruciate Ligament Forces Developed During Isokinetic Dynamometry,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 5 (1), 2002, pp. 33-43. |
Carolyn Cosmos, “An ‘Out of Wheelchair Experience’”, The Washington Post, May 2, 2000, 3 pages. |
“Look Ma! No Hands!”, The Joyboard—Power Body Control, (date unknown). |
David H. Ahl, “Controller update,” Creative Computing, vol. 9, No, 12, Dec. 1983, p. 142. |
Ian Bogost, “Water Cooler Games—The Prehistory of Wii Fii,” Videogame Theory, Criticism, Design, Jul. 15, 2007, 2 pages. |
Jeremy Reimer, “A history of the Amiga, part 2: The birth of Amiga,” last updated Aug. 12, 2007, 2 pages. |
The Amiga Joyboard (1982) image, Photos: Fun with plastic—peripherals that changed gaming; http://news.cnet.com/2300-27076—3-10001507-2.html (retrieved Jul. 23, 2010), 1 page. |
The Amiga Power System Joyboard, Amiga history guide, http://www.arnigahistory.co.uk/joyboard.html (retrieved Jul. 23, 2010), 2 pages. |
“Joyboard,” Wikipedia—the free encyclopedia. http://en.wikipedia.org/wiki/Joyboard (retrieved Jul. 26, 2010). 2 pages. |
“Dance Dance Revolution,” Wik.ipedia - the free encyclopedia, http://en.wikipeclia.orgiwiki/Dance Dance Revolution (retrieved Jul. 23, 2010), 9 pp.,. |
“Cure for the couch potato,” Kansas City Star (MO), Jan. 2, 2005, WLNR 22811884, 1 page |
JC Fletcher, “Virtually Overlooked: The Power Pad games,” Joystiq, http://www.joystiq.com/2007/09/20/virtually-overlooked-the-power-pad-games/ (retrieved Jul. 26, 2010), 3 pages. |
Family Fun Fitness, Nintendo Entertainment System, BANDAI, (date unknown). |
“Power Pad/Family Fun and Fitness/Family Trainer,” http://www.gamersgraveyard.com/repository/nes/peripherals/powerpad.html (retrieved Jul. 26, 2010), 2 pages. |
“Power Pad Information,” Version 1.0 (Sep. 23, 1999) http://www.gamersgraveyard.com/repository/nes/peripherals/powerpad.txt (retrieved Jul. 26, 2010), 2 pages. |
Wii+Power+Pad.jpg (image), http://bpl.blogger.com/—,J5LEiGp54I/RpZbNpnLDgl/AAAAAAAAAic/Gum6DD3Umjg/s1600-h/Wii+Power+Pad.jpg (retrieved Jul. 26, 2010), 1 page. |
Vs. Slalom—Videogame by Nintendo, KLOV—Killer List of Video Games, http://www.arcade-museum.com/garne—detail.php?game id=10368 (retrieved Jul. 26, 2010), 3 pages. |
“Nintendo Vs. System,” Wikipedia—the free encyclopedia, http://en.wikipedia.org/wiki/Nintendo—Vs.—System (retrieved Jul. 26, 2010), 3 pages. |
Vs. Slalom—Step Up to the Challenge, Nintendo, (date unknown). |
Vs. Slalom - Live the Thrill, Nintendo, (date unknown). |
Vs. Slalom—Operation Manual, MDS(MGS), Nintendo, 4 pages, (date unknown). |
HyperspaceArcade.com - Specialists in Arcade Video Game Repair and Restoration, littp://www.hyperspaceareacle.com/VSTypes.html (retrieved Jul. 3, 2010), 3 pages. |
Vs. Slalom—Attachment Pak Manual; For installation in: VS. UniSystem (UPRIGHT) and Vs. DualSystem (UPRIGHT), TM of Nintendo of America Inc., 1986, 15 pages. |
Leiterman, “Project Puffer; Jungle River Cruise,” Atari, Inc., 1982, 2 pages. |
Letterman, “Project Puffer: Tumbleweeds,” Atari, Inc., 1982, 1 page. |
Jerry Smith, “Other input Devices,” Human interface Technology Laboratory, 2 pages. (date unknown). |
!Trevor Meers, “Virtually There: VR Entertainment Transports Players to Entrancing New Worlds,” Smart Computing, !vol. 4. Issue 11, Nov. 1993, 6 pages. |
“Dance Aerobics,” Moby Games, Feb. 12, 2008, 2 pages |
“Hard Drivin',” KLOV—Killer List of Video Games, The International Arcade Museum, http://www.arcade-museum.com, 6 pages, (date unknown). |
“The World's First Authentic Driving Simulation Game!”, Hard Drivin'—Get Behind the Wheel and Feel the Thrill (image), Atari games Corporation, 1 page, (date unknown). |
Electronic Entertainment. Expo (E3) Overview, Giant Bomb—E3 2004 (video game concept), http://www.giantbomb.com/3-2004/92/3436/ (retrieved Sep. 3, 2010), 3 pages. |
Guang Yang Amusement, Product Name: Live Boxer, 1 page, (date unknown). |
Family Fun Fitness: Basic Set (Control Mat and Athletic World Game Pak), Nintendo Entertainment System, Bandai, (date unknown). |
Roll &. Rocker (image), 1 page, (date unknown). |
Roll &. Rocker, Enteractive (image), 2 pages, (date unknown). |
Michael Goldstein, “Revolution on Wheels—Thatcher Ulrich,” Nov.-Dec. 1994, 3 pages. |
“Playboy on the Scene: Ride On!”, 1 page, (date unknown). |
Candace Putnam, “Software for Hardbodies: A virtual-reality hike machine takes you out on the open road,” Design, 1 page, (date unknown). |
Rachel, “No-Sweat Exercise—Can you get healthier without really trying?” Fitness, 1 page, (date unknown). |
Fitness article, Sep. 1994, p. 402-404. |
“Wired Top 10: Best. Selling Toys in Jun. 1994,” Wired Sep. 1994, 1 page. |
“Top Skater,” Sega Amusements U.S.A, Inc. 1 page, (date unknown). |
Katharine Alter, et al., “Video Games for Lower Extremity Strength Training in Pediatric Brain Injury Rehabilitation,” National Rehabilitation Hospital, 18 pages, (date unknown). |
Cateye Recumbent Game-Bike Pro: Latest Technology in Exercise Bikes, beyondmoseying.com High Performance Exercise Equipment, 2 pages. (advertisement: no date). |
Fitness Fun, while Exercising and Getting FIT for Kids, Teens and Adults, (advertisement, no date). |
Warranty Information and Your Joyboard: How it Works, Amiga. Corporation, date unknown, 2 pages. |
Complaint for Patent Infringement, IA Labs CA, LLC v. Nintendo Co., Ltd. and Nintendo of America, Inc., United States District Court for the District of Maryland Northern. Division (Apr. 2, 2010). 317 pages. |
Plaintiff IA Labs CA, LLC's Opening Claim Construction Brief, IA Labs CA, LLC. v. Nintendo Co., Ltd and Nintendo of America, Inc., United States District Court for the District of Maryland Southern Division (Dec. 13, 2010), 36 pages. |
Nintendo Co., Ltd. and Nintendo of America Inc.'s Opening Claim Construction Brief, IA Labs CA, LLC v. Nintendo Co., Ltd and Nintendo of America, Inc., United States District Court for the District of Maryland Southern Division (Dec. 13, 2010), 55 pages. |
Plaintiff IA Labs CA, LLC's Response Claim Construction Brief, IA Labs CA, LLC v. Nintendo Co., Ltd. and Nintendo of America, Inc., United States District Court for the District of Maryland-Southern Division (Jan. 6, 2011), 49 pages. |
Nintendo Co., Ltd. and Nintendo of America Inc.'s Closing Claim Construction Brief, IA Labs CA, LLC v. Nintendo Co., Ltd. and Nintendo of America, Inc., United States District Court for the. District of Maryland Southern Division (Jan. 6, 2011), 25 pages. |
Expert Report of Lee Rawls, Nov. 2, 2010, 37 pages (redacted). |
United States Office Action issued for related U.S. Patent Appl. No. 12/010,033, dated Apr. 4, 2012. |
Number | Date | Country | |
---|---|---|---|
20110281650 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12010033 | Jan 2008 | US |
Child | 13192183 | US |