Print apparatus utilise various techniques to disperse print agents such as coloring agent (for example comprising an ink, dye or colorant), coatings, heat absorbing agents or the like. Such apparatus may comprise a printhead. An example printhead includes a set of nozzles and a mechanism for ejecting a selected agent as a fluid, for example a liquid, through a nozzle. In such examples, a drop detector may be used to detect whether drops are being ejected from individual nozzles of a printhead. For example, a drop detector may be used to determine whether any of the nozzles are dogged and would benefit from cleaning or whether individual nozzles have failed permanently.
Non-limiting examples will now be described with reference to the accompanying drawings, in which:
The weight parameter may be an indication of the weight of the print agent drop. A drop of print agent dispensed from a printhead has a momentum. The heavier the drop, the higher the momentum and therefore the more quickly the ink drop falls. In addition, according to Stokes law, bigger drops are less deflected by air. Although bigger drops experience more air friction, they also have a higher velocity due to gravitational effects. Thus the velocity of an ink drop is correlated to its weight. While the relationship between velocity and weight may be determined theoretically, in some examples, the relationship between drop weight and drop velocity for a particular fluid may be, or have been, experimentally determined and stored as a look up table. In another example, a predetermined relationship may be recorded in an algorithm.
In some examples, rather than being an indication of the absolute weight, the weight parameter may be a difference between an anticipated weight and a determined weight. In some examples, the weight parameter may comprise a difference between an anticipated velocity and the determined velocity, i.e., where there is an established relationship between velocity and weight, the weight parameter may be expressed in terms of velocity. In some examples, the weight parameter may be expressed as a volume.
Determining a weight parameter may in turn allow other information to be derived. For example, if a drop is lighter than expected, this may indicate a partial blockage or ‘kogation’ of a printhead nozzle. In some inkjet print apparatus, for example, in thermal inkjet printers, a resistor is used to provide a heating element, and over time components of the print agent may accumulate on the resistor, reducing thermal emissions, making them less energy-efficient, and reducing the volume and velocity of drops fired. This effect can be particular prevalent in multipass printing methods where a ‘ramp’ is applied to the amount of print agent ejected across a row of nozzles. As boundary areas may pass under the nozzles on more than one pass, such printing methods may eject less print agent from nozzles toward the ends of a printhead than from the nozzles toward the centre of the printhead to have smoother transitions within the boundary areas. With different levels of usage of the nozzles across the printhead, differing levels of kogation can occur across the nozzles of a printhead.
Kogation can have an impact on image quality and may also result in an over-estimation of print agent usage. A print apparatus may operate on the assumption that print agent drops of a particular size are being ejected, where as in fact, due to kogation or partial blockage, the print agent drops are smaller than anticipated and, as a result, the reserves of print agent may be higher than anticipated. Unless this is taken into account, a user may be told that print agent reserves have been used up when in fact this is not the case.
Block 204 comprises determining a performance parameter for a nozzle of the printhead based on the indication of velocity. For example, a nozzle may be scored based on the speed with which a drop is ejected, with lower speeds being indicative of kogation or partial blockage and therefore indicating a poor performance. This information may for example allow a user (or a print apparatus, on an automatic basis) to take action, such as performing a cleaning operation or replacing a printhead, or may allow compensation algorithms to be used (for example, nozzle(s) adjacent to a nozzle exhibiting poor performance may be used more frequently than the poorly performing nozzle).
In some examples, the method may employ a drop detector. An example of a drop detector 400 is shown in
In other examples, other types of drop detector may be used, for example those based on gamma or beta ray detection, or drop detectors with a mirror which returns the radiation emitted by an emitter to a collocated receiver, or the like.
As is shown in
Each nozzle is associated with a signal which is low (dark shading) when the body of the drop is present and high (lighter shading) when the drop is absent. Intermediate shading shows the presence of some liquid in the sampling volume, which is causing some light attenuation. The light band which can be observed after the dark band in each of
As can be seen in
In
Data corresponding to
As discussed above, depending on the extent and/or the distribution of nozzle degradation, there may be different effects on image quality. For example, a variance in nozzle performance could be determined to derive a performance parameter for the set of nozzles. For example, a set of nozzles emitting drops with an estimated weight or velocity within a threshold percentage (for example, 10%) could be determined to be better performing that a set of nozzles with the same average weight drop but a greater variance. This may therefore provide a performance profile for a set of nozzles. In other examples, the variance may be determined in relation to a localised area, for example, is there a set of n adjacent nozzles having a variance of greater than x %? If so, the nozzles may perform relatively poorly for that region. In another example, if there is a set of m adjacent nozzles having a loss in velocity or weight of more than a threshold y %, this may mean that local compensation for partially blocked nozzles is not likely to succeed and again a relatively poor performance may be expected. The impact of a blocked or partially blocked nozzle on image quality may be different depending on the number of passes of the print mode used (i.e. the number of times the substrate passes under a printhead): a localized problem within the printhead may be more noticeable in a print mode in which there is a relatively low passes print modes than in a print mode in which there is a relatively high number of passes. Thus, instead of or as well as considering individual nozzle performance, the behaviour of a set of nozzles may be considered to determine a performance parameter for the set of nozzles, for example based on the performance profile. A performance profile may for example be used to derive an average weight loss, a variance or some other parameter.
The display 802 is to display the performance indicator(s). In some examples, a performance indicator may be determined for each nozzle. In some examples, determining whether kogation or partial blockage of a particular nozzle will cause an unacceptable degradation in image quality can be difficult. It can be the case that even nozzles in poor health yield reasonable overall image quality, in particular as compensating algorithms may be employed. However, in some circumstances, just a few nozzles in poor health may cause noticeable image quality defects. For a user, interpreting an image defect, and determining if the same image defect is likely to impact a different print job, is a specialised task. By providing performance indicators, for example for each nozzle of a printhead, the task may be considerably simplified. For example, nozzle score data (which may be based on drop presence and shape as well as velocity/weight) may be displayed. In some examples, this may be encoded, for example in a ‘traffic lights’ signal based on threshold parameter, and displayed to a user (for example through a display panel or remotely via the internet).
Display of such data may assist the user in taking decisions about printhead nozzle health and printhead replacement. It may serve to educate users, allowing them to relate nozzle scores to particular image quality issues, which may in turn reduce the printhead replacement rate. In other examples, the performance profile, which may be determined as discussed above, of a set of nozzles may be displayed.
In this example the print apparatus 800 comprises a plurality—in this example, four—print agent reservoirs 804. The processing circuitry 708 comprises four print agent quantity monitors 806, associated with each print agent reservoir 804. Each print agent quantity monitor 806 is to monitor print agent usage by the print apparatus 800 from the associated print agent reservoir 804 wherein the print agent quantity monitors 806 are to determine print agent usage based on the weight parameter.
The print agent quantity monitor 900 may comprise at least one processor or other processing circuitry, which may execute instructions stored on a machine readable storage medium.
Examples in the present disclosure can be provided, at least in part, as methods, systems or a combination of machine readable instructions executed by processing circuitry Such machine readable instructions may be included on a computer readable storage medium (including but is not limited to disc storage, CD-ROM, optical storage, etc.) having computer readable program codes therein or thereon.
The present disclosure is described with reference to flow charts and/or block diagrams of the method, devices and systems according to examples of the present disclosure. Although the flow diagrams described above show a specific order of execution, the order of execution may differ from that which is depicted. Blocks described in relation to one flow chart may be combined with those of another flow chart. It shall be understood that some flow and/or block in the flow charts and/or block diagrams, as well as combinations of the flows and/or diagrams in the flow charts and/or block diagrams can be realized by machine readable instructions.
The machine readable instructions may, for example, be executed by a general purpose computer, a special purpose computer, an embedded processor or processors of other programmable data processing devices to realize the functions described in the description and diagrams. In particular, a processor or processing apparatus may execute the machine readable instructions. Thus functional modules of the apparatus and devices (for example any of the processing circuitry 708, drop counter 902, correction module 904, and/or the print agent volume module 906) may be implemented by a processor executing machine readable instructions stored in a memory, or a processor operating in accordance with instructions embedded in logic circuitry. The term ‘processor’ is to be interpreted broadly to include a CPU, processing unit, ASIC, logic unit, or programmable gate array etc. The methods and functional modules may all be performed by a single processor or divided amongst several processors.
Such machine readable instructions may also be stored in a computer readable storage that can guide the computer or other programmable data processing devices to operate in a specific mode.
Such machine readable instructions may also be loaded onto a computer or other programmable data processing devices, so that the computer or other programmable data processing devices perform a series of operations to produce computer-implemented processing, thus the instructions executed on the computer or other programmable devices realize functions specified by flow(s) in the flow charts and/or block(s) in the block diagrams.
Further, the teachings herein may be implemented in the form of a computer software product, the computer software product being stored in a storage medium and comprising a plurality of instructions for making a computer device implement the methods recited in the examples of the present disclosure.
While the method, apparatus and related aspects have been described with reference to certain examples, various modifications, changes, omissions, and substitutions can be made without departing from the spirit of the present disclosure. It is intended, therefore, that the method, apparatus and related aspects be limited only by the scope of the following claims and their equivalents. It should be noted that the above-mentioned examples illustrate rather than limit what is described herein, and that many implementations may be designed without departing from the scope of the appended claims. Features described in relation to one example may be combined with features of another example.
The word “comprising” does not exclude the presence of elements other than those listed in a claim, “a” or “an” does not exclude a plurality, and a single processor or other unit may fulfil the functions of several units recited in the claims.
The features of any dependent claim may be combined with the features of any of the independent claims or other dependent claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/044507 | 7/28/2016 | WO | 00 |