The present invention generally relates to sets of iron golf clubs, and more particularly, to sets of iron golf clubs that are comprised of significant tungsten weighting to maximize the MOI about an axis through the CG that is parallel to the shaft axis.
In conventional sets of iron golf clubs, each club includes a shaft with a club head attached to one end and a grip attached to the other end. The club head includes a face for striking a golf ball. The angle between the face and a vertical plane is called the loft. In general, the greater the loft of the golf club is in a set, the greater the launch angle and the less distance the golf ball will travel when hit.
A set of irons generally includes individual irons that are designated as number 3 through number 9, and a pitching wedge. The iron set is generally complimented by a series of wedges, such as a lob wedge, a gap wedge, and/or a sand wedge. Sets can also include a 1 iron and a 2 iron, but these clubs are generally sold separately from the set. Each iron has a shaft length that usually decreases through the set as the loft for each club head increases, from the long irons to the short irons. The length of the club, along with the club head loft and center of gravity impart various performance characteristics to the ball's launch conditions upon impact. The initial trajectory of the ball generally extends between the impact point and the apex or peak of the trajectory. In general, the ball's trajectory for long irons, like the 3 iron, is a more penetrating, lower trajectory due to the lower launch angle and the increased ball speed off of the club. Short irons, like the 8 iron or pitching wedge, produce a trajectory that is substantially steeper and less penetrating than the trajectory of balls struck by long irons. The mid irons, such as the 5 iron, produce an initial trajectory that is between those exhibited by balls hit with the long and short irons.
Iron club heads are categorized into several different types: including muscle back, cavity back and hollow irons. In general, muscle back irons have an evenly distributed weight through the length of the iron from heel to toe. Thus, they have a very solid feel, but low Moment of Inertia, MOI, about the vertical axis extending through the face center. Cavity back irons generally have a thinner section in the center of the back of the club and more mass around the perimeter, thus they are cavity back. The cavity back irons, in general, have a greater MOI about the vertical axis extending through the face center. Finally, hollow irons generally have thinner faces and have mass that is located further back from the face and on the perimeter, creating an even larger MOI than cavity back irons.
The present invention is directed to a set of golf clubs comprising at least a first club head having a loft between about 15 and 25 degrees (long irons), a second club head having a loft of between about 26 and 35 degrees (mid irons), and a third club head having a loft of about 36 degrees or greater (short irons). In the inventive set, at least the long iron is optimized for Moment of Inertia (MOI) about an axis that is parallel to the shaft axis and extends through the center of gravity (CG). More specifically, the long iron is preferably made of steel and comprises a heel, a toe, a topline, a sole, a hosel defining the shaft axis, a front face and a back wall. The long iron also includes a toe weight member formed of tungsten that is coupled to an upper toe portion of the back wall. Preferably, the toe weight member comprises between about 10% to 30% of the long iron's mass and the center of gravity of the toe weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from the axis that is parallel to the shaft axis that extends through the iron's center of gravity. The long iron also includes a heel weight member formed of tungsten that is coupled a lower portion of the hosel. Preferably, the heel weight member comprises about 5% to 20% of the long iron's mass and the center of gravity of the heel weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from the axis parallel to the shaft axis that extends through the iron's center of gravity.
In a more preferred embodiment, the set includes a mid iron preferably made of steel that also comprises a heel, a toe, a topline, a sole, a hosel defining a shaft axis, a front face and a back wall. Like the long iron, the mid iron preferably comprises a toe weight member formed of tungsten that is coupled to the upper toe portion of the mid iron back wall. The mid iron toe weight member also comprises about 10% to 30% of the mid iron's mass, and the center of gravity of the toe weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from an axis parallel to the shaft axis that extends through the mid iron's center of gravity. The mid iron also preferably includes a heel weight member formed of tungsten that is coupled a lower portion of the hosel. Preferably, the heel weight member comprises about 5% to 20% of the mid iron's mass and the center of gravity of the heel weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from the axis parallel to the shaft axis that extends through the mid iron's center of gravity.
In a preferred embodiment, the toe weight members for the long iron and the mid iron are at least about 30 grams each such that the MOI of the irons about the axis parallel to the shaft axis that extends through the irons' center of gravities are greater than about 200 kg-mm2 and, more preferably, greater than about 230 kg-mm2. Preferably, the long iron has a blade length of about 74 mm to 85 mm and the mid iron has a blade length of about 74 mm to 82 mm.
Another embodiment of the present invention is a set of golf clubs comprising at least a long iron having a loft between about 15 and 25 degrees, a mid iron having a loft of between about 26 and 35 degrees, and a short iron having a loft of about 36 degrees or greater where the long iron is comprised of a heel, a toe, a topline, a sole, a hosel defining a shaft axis, a front face insert and a back wall creating a hollow interior between the front face insert and the back wall. The long iron has a toe weight member formed of tungsten that is coupled into an upper toe portion of the hollow interior. Again, the toe weight member preferably comprises about 10% to 30% of the long iron's mass and the center of gravity of the toe weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from the axis parallel to the shaft axis that extends through the iron's center of gravity. The long iron also is comprised of a heel weight member formed of tungsten that is coupled in the lower heel portion of the hollow interior. Preferably, the heel weight member comprises about 5% to 20% of the long iron's mass and the center of gravity of the heel weight member is spaced at least about 28 mm, and preferably more than about 30 mm, from the axis parallel to the shaft axis that extends through the iron's center of gravity.
In a preferred embodiment of the invention, the set also includes a mid iron that has a body preferably made of steel and comprises a second heel, a second toe, a second topline, a second sole, a second hosel defining a second shaft axis, a second front face insert and a second back wall defining a second hollow interior between the face insert and the back wall. A second toe weight member that is formed of tungsten is coupled to the upper toe portion of the second hollow interior and preferably comprises about 10% to 30% of the second club head mass. Further, the center of gravity of the second toe weight member is also spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the second shaft axis that extends through the mid iron's center of gravity. The mid iron also preferably includes a heel weight member formed of tungsten and coupled in the lower heel portion of the hollow interior. The heel weight member comprises about 5% to 20% of the mid iron's club head mass and its center of gravity is spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the second shaft axis that extends through the mid iron's center of gravity.
In a preferred set, the toe weight members of the long iron and the mid iron are at least about 30 grams such that the Moment of Inertia about the axis parallel to the shaft axis that extends through the iron's center of gravity is greater than about 230 kg-mm2 for both the long iron and the mid iron. Preferably, the long iron has a blade length of about 74 mm to 85 mm and the mid iron has a blade length of about 74 mm to 82 mm and is equal to or shorter than the long iron.
In yet another embodiment of the present inventions a set of golf clubs comprises at least a long iron, a mid iron and a short iron where the long iron has a body made of steel and comprises a heel, a toe, a topline, a sole, a hosel defining a shaft axis, a front face insert and a back wall defining a first hollow interior between the face insert and the back wall. A toe weight member, formed of tungsten, is coupled into an upper toe portion of the first hollow interior and comprises about 10% to 30% of the long iron's club head mass. The center of gravity of the toe weight member is spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the shaft axis that extends through the long iron's center of gravity. In this embodiment, a heel weight member, formed of tungsten, is coupled in a front, lower portion of the hosel. The heel weight member comprises about 5% to 20% of the long iron's club head mass and has a center of gravity that is spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the shaft axis that extends through the long iron's center of gravity.
In a preferred embodiment, the set of irons also includes a mid iron having a body made of steel that comprises a second heel, a second toe, a second topline, a second sole, a second hosel defining a second shaft axis, a second front face insert and a second back wall defining a second hollow interior. The mid iron has a toe weight member formed of tungsten that is coupled to the upper toe portion of the hollow interior and comprises about 10% to 30% of the mid iron's club head mass. The center of gravity of the toe weight member is spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the second shaft axis that extends through the mid iron's center of gravity. The mid iron is further comprised of a heel weight member formed of tungsten and coupled in the front, lower portion of the second hosel. The heel weight member comprises about 5% to 20% of the mid iron's club head mass and has a center of gravity that is spaced at least about 28 mm, and more preferably, about 30 mm from the axis parallel to the second shaft axis that extends through the mid iron's center of gravity.
As illustrated in the accompanying drawings and discussed in detail below, the present invention is directed to an improved set of iron-type golf clubs, wherein the clubs have tungsten weight members that form a significant portion of the club heads' mass and are positioned to maximize the Moment of Inertia of the iron about an axis that is parallel to the shaft axis and extends through the center of gravity.
Referring to
As shown, the distance from the center of gravity for the heel weight member to axis APSACG is substantially greater than the distance of the toe weight member from the axis APSACG.
As shown in
Furthermore, the irons in the set have a scoreline width (SLW) that progressively decreases in length from long irons to short irons in the set and can have a scoreline to toe width (SLTW) that progressively increases from long irons to short irons within the set. More particularly, in a preferred embodiment, the SLW decreases by at least about 0.1 mm per club (or per 4 degrees of loft). Thus, the SLW for the long iron is greater than the SLW for the mid iron and the SLW for the mid iron is greater than the SLW for the short iron.
Each of the irons has a center of gravity, CG, a hosel length, HL, and a shaft axis, SA, that is also defined by the hosel bore. The clubs according to the present invention are optimized for a maximum moment of inertia, MOI, about an axis that extends parallel to the SA and extends through the CG, APSACG. The CG of the club is preferably very close to the center of the score lines, that is ½ SLW from the score line edges. In a more preferred embodiment, the long irons have a CG that is at least 0.45*SLW from the heel edge of the scorelines. In an even more preferred embodiment, the mid irons also have a CG that is at least 0.45*SLW from the heel edge of the scorelines.
Referring to
In order to maximize the MOI about the APSACG, it is important to incorporate a significant amount of mass at the upper-toe location and lower-heel location. Thus, the toe weight member 68 and the heel weight member 70 should be constructed out of tungsten having a specific gravity of greater than 14 g/cm3. More preferably, the weight members are formed of a tungsten having a specific gravity of 17 g/cm3 or greater. The greater the specific gravity of the weight members, the further the CGW1 and CGW2 can be from the APSACG.
In the preferred embodiment of the long iron and the mid irons, the mass of the toe weight member 68 is about 30 grams or greater and is located more than about 28 mm, and more preferably, about 30 mm from the APSACG. The mass of the heel weight member 70 is less for the long irons than in the mid iron in the most preferred set. However, the toe weight member 68 and the heel weight member 70 have about the same mass for the mid irons. Moreover, the distance D1 and the distance D2 are approximately equal, i.e., they are within 3 to 4 millimeters of each other, for the long irons and the mid irons. Still further, the distance D1 plus the distance D2 is greater than about 70%, and more preferably, about 75% of the blade length BL.
Tables I (mass properties) and II (club properties) provide exemplary, non-limiting dimensions for the various measurements of clubs according to the Example of the invention shown in
As shown in
As shown in Table III below, the long irons preferably have a mass of about 220 grams to 250 grams. In the long irons 100, the toe weight member 124 preferably has a mass of about 30 to 55 grams, and preferably about 10% to 30% of the club head mass. Preferably, the toe weight member 124 mass increases with each club by about 5 grams per club. The heel weight member 126 is preferably about 25 grams to 40 grams, and preferably comprises about 5% to 20% of the club head mass. Preferably, the heel weight members decrease by about 1 or 2 grams per club. More preferably, the tungsten mass of the toe weight member 124 and the heel weight member 126 combined are at least about 25% of the total club head mass and at least about 15% of the total club head solid volume. More particularly, the toe weight member 124 and the heel weight member 126 comprise about 30% of the total mass and more than about 20% of the total solid volume. Preferably, the toe weight member 124 has greater mass than the heel weight member 126. Preferably, the toe weight member and the heel weight member are formed of tungsten have a specific gravity of greater than 14 g/cm3, and more preferably, greater than or equal to about 17 g/cm3. Moreover, in order to maximize the MOI about the APSACG, the toe weight member 124 is coupled into the upper toe portion of hollow portion 122 and the heel weight member 126 is coupled to the lower heel portion of the hollow portion 122 such that the center of gravity of the weight members 124 and 126 are spaced a distance of at least about 28 mm, and more preferably, about 30 mm from the APSACG. Further, the toe weight member 124 is coupled into the upper toe portion of hollow portion 122 and the heel weight member 126 is coupled to the lower heel portion of the hollow portion 122 such that the center of gravity of the weight members 124 and 126 are spaced a distance, D2 and D1 respectively, of at least about 30% of the blade length from the APSACG. Moreover, D1 plus D2 is preferably greater than about 70%, and more preferably, about 75% of the blade length.
As shown in
As shown in Table III above, the mid irons 200 preferably have a mass of about 250 grams to about 270 grams. In the mid irons 200, the toe weight member 224 preferably has a mass of about 40 to about 60 grams, and preferably, comprises about 10% to 30% of the overall club head mass. Preferably, the mass of the toe weight member 224 increases with an increase in club loft within the set or remains approximately equal. The heel weight member 226 is preferably about 15 grams to about 40 grams, and preferably, comprises about 5% to 20% of the overall club head mass. Preferably, the mass of the heel weight members 226 decreases with an increase in club loft within the set or remains approximately equal. Preferably, the tungsten mass of the toe weight member 224 and the heel weight member 226 combined are at least about 15% of the total club head mass and at least about 10% of the total club head solid volume. More particularly, the toe weight member 224 and the heel weight member 226 comprise about 20% to 25% of the total mass and more than about 10% of the total solid volume. Preferably, the toe weight member 224 has greater mass than the heel weight member 226. Preferably, the toe weight member and the heel weight member are formed of tungsten have a specific gravity of greater than 14 g/cm3, an more preferably greater than or equal to about 17 g/cm3.
Referring to
Preferably, the iron body 1220 is cast with the main cavity 1226 and the hosel cavity 1232. The front face insert 1210 is preferably stamped from a high strength sheet metal and is welded to the body after a toe weight member 1228 is secured with in the hollow cavity 1226. A heel weight member 1230 is inserted into the face side of the hosel cavity 1232 and then a hosel cover member 1234 is welded to the front portion of the hosel 1216 to secure the heel weight member 1230 within the hosel cavity 1232.
The toe weight member 1228 is formed of tungsten and is coupled to an upper toe portion of the hollow cavity 1226. Preferably, as set forth in Table V below, the toe weight member 1228 is greater than about 65 grams and comprises about 10% to 30%, and more preferably about 20% to 30% of the long iron club head mass. The long iron head 1200 further comprises the heel weight member 1230 that is also formed of tungsten. The heel weight member 1230 is about 10 to 20 grams and comprises about 5% to 20% of the overall club head mass. Preferably, the heel weight member 1230 is coupled into the hosel cavity 1232 formed in the front, lower portion of the hosel 1216. In this embodiment, the heel weight member 1230 is preferably secured in the hosel cavity 1232 by a cover member 1234 that forms at least a front portion of the hosel 1216. The toe weight member 1228 and the heel weight member 1230 are both formed of tungsten and preferably have a specific gravity of greater than 14 g/cm3, and more preferably greater than about 17 g/cm3. The hosel cover member is preferably formed of a nickel alloy having a specific gravity of between about 8 g/cm3 and about 14 g/cm3.
In the preferred set, the mid iron has the same or similar construction as the long iron, and thus, similarly comprises a steel, hollow body with a heel, a toe, a topline, a sole, and a hosel. As set forth in Table V below, the toe weight member for at least one of the mid irons is also formed of greater than 65 grams of tungsten and comprises about 20% to 30% of the mid iron head mass.
In the set of irons according to this embodiment the present invention, the iron 1200 is preferably formed of steel and has a specific gravity of about 7 to 8 g/cm3. The tungsten toe weight member 1228 and a tungsten heel weight member 1230 are again located proximate an upper portion of the toe 1214 and lower portion on the heel 1212, respectively, to create a high moment of inertia about the APSACG. More preferably, the toe weight member 1228 of the iron is located a distance D2 from the APSACG that is greater than about 28 mm, and more preferably, about 30 mm. The heel weight member 1230 is located a distance D1 from the APSACG that is greater than about 28 mm, and more preferably, about 30 mm. For the iron 1200, D1 and D2 are, preferably, approximately equal and D1 plus D2 is preferably greater than about 70%, and more preferably, about 75% of the blade length.
The club heads according to the present invention have high MOI about the APSACG. Because they have such large tungsten weight members, the MOI about the APSACG is greater than about 230 kg-mm2, and more preferably greater than about 250 kg-mm2, for the long iron and mid iron. Still further, the irons in the preferred set as presented in Tables V and VI below are not oversized. That is, the blade length is less than about 82 mm. Thus, the MOI about the APSACG to blade length ratio is very high. More particularly, the MOI about the APSACG to blade length ratio is greater than about 3 kg-mm, and more preferably, between about 3.1 kg-mm and 3.5 kg-mm.
Moreover, because the mid irons and the long irons are hollow, the Center of Gravity is relatively deep. More particularly, the Center of Gravity depth from the face center, CGzFC, is preferably greater than 6 mm for all of the irons. In a preferred embodiment, the CGzFC can be around 8 mm for the long irons. Preferably, the CGzFC is between about 1/15 and about 1/10 of the blade length for the long iron.
While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Therefore, it will be understood that the appended claims are intended to cover all modifications and embodiments which would come within the spirit and scope of the present invention.
The present application is a continuation of co-pending U.S. application Ser. No. 16/038,375, filed on Jul. 18, 2018, which is a continuation of U.S. application Ser. No. 15/467,644, filed on Mar. 23, 2017, now U.S. Pat. No. 10,052,534, both of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16038375 | Jul 2018 | US |
Child | 16806606 | US | |
Parent | 15467644 | Mar 2017 | US |
Child | 16038375 | US |