Weir quench and processes incorporating the same

Information

  • Patent Grant
  • 9795941
  • Patent Number
    9,795,941
  • Date Filed
    Sunday, September 29, 2013
    10 years ago
  • Date Issued
    Tuesday, October 24, 2017
    6 years ago
Abstract
The present invention provides a weir quench, an apparatus utilizing the weir quench and processes incorporating the same. The weir quench incorporates an inlet having an inner diameter (Di) and an upper chamber having an inner diameter (Duc), wherein the inlet inner diameter (Di) is at least 90% of the upper chamber inner diameter (Duc). The apparatus constitutes a reactor having an outlet with an inner diameter fluidly coupled with the weir quench inlet, wherein the ratio of the reactor oulet inner diameter (Dr) to the weir quench inlet diameter (Di) is greater than one. The weir quench, and apparatus are advantageously utilized in processes utilizing a limiting reagent.
Description
FIELD

The present invention relates to an efficient and effective weir quench, and an apparatus comprising a reactor and the weir quench. Processes incorporating the same are also provided.


BACKGROUND

Hydrofluorocarbon (HFC) products are widely utilized in many applications, including refrigeration, air conditioning, foam expansion, and as propellants for aerosol products including medical aerosol devices. Although HFC's have proven to be more climate friendly than the chlorofluorocarbon and hydrochlorofluorocarbon products that they replaced, it has now been discovered that they exhibit an appreciable global warming potential (GWP).


The search for more acceptable alternatives to current fluorocarbon products has led to the emergence of hydrofluoroolefin (HFO) products. Relative to their predecessors, HFOs are expected to exert less impact on the atmosphere in the form of a lesser or no detrimental impact on the ozone layer and their much lower GWP as compared to HFC's. Advantageously, HFO's also exhibit low flammability and low toxicity.


As the environmental, and thus, economic importance of HFO's has developed, so has the demand for precursors utilized in their production. Many desirable HFO compounds, e.g., such as 2,3,3,3-tetrafluoroprop-1-ene or 1,3,3,3-tetrafluoroprop-1-ene, may typically be produced utilizing feedstocks of chlorocarbons or chlorofluorocarbons, and in particular, chlorinated propenes.


Unfortunately, many chlorinated propenes may have limited commercial availability, and/or may only be available at potentially prohibitively high cost, due at least in part to the propensity of the conventional processes typically utilized in their manufacture to result in the production of large quantities of waste and/or by-products. For example, many conventional processes for the production of chlorinated propenes require only partial conversion of the limiting reagents, so that excessive conversion of the same results in the production of large quantities of by-products. Excess waste may be produced in trying to limit conversion to the desired level by quenching the reaction with water, or other aqueous solvents, since use of the same in a chlorination process can result in the production of large quantities of aqueous HCl that is of lower value than anhydrous HCl. Quenching such reactions with nonaqueous solvents can also be suboptimal, since any amount of backmixing or increased residence time of unconverted limiting reagents, no matter in what solvent, can lead to undesirable conversion levels, and a reduction in reaction selectivity.


Any such waste and/or by-products produced not only have to be separated from the final product and disposed of, but also, can result in system fouling prior to doing so. Both of these outcomes can introduce substantial expense, further limiting the commercial potential of processes in which the production of such waste and/or by-products is not reduced or eliminated. Further, these problems become exacerbated on process scale-up, so that large scale processes can become cost prohibitive quickly.


Quench mechanisms utilizing nonaqueous solvents have been proposed, but have been proposed for use in connection with quench designs that are inappropriate for use in many processes for the production of chlorinated propenes. That is, conventional weir or spray quench designs may typically result in an amount of backmixing occurring that, while acceptable within the context in which these quench designs are used, is unacceptable in processes in which high conversion rates can result in the formation of unacceptable amounts of by-products. Also, in order to provide the amount of cooling desired, conventional quench mechanisms capable of utilizing organic cooling fluids are typically designed to accommodate a very high flow rate of process and/or quench fluid.


It would thus be desirable to provide improved processes for the production of chlorocarbon precursors useful in the synthesis of HFO's. More particularly, reduction in the amount of waste and/or by-products that are produced, without undesirable increases in conversion rates or decreases in reaction selectivity, or improved methods of cost-effectively managing any by-products and/or waste products that are produced, would provide significant commercial advantage.


BRIEF DESCRIPTION

A weir quench that provides such advantages is provided herein. More specifically, the weir quench utilizes a nonaqueous process fluid as the quench flow, so that production of aqueous acidic waste products, as can be seen if water or aqueous solvents are used as quench liquids, can be reduced or eliminated. Furthermore, the weir quench incorporates at least one or more design features that can enhance the operation thereof, e.g., as by providing for reduced backmixing of the reaction effluent, minimizing or eliminating plugging within the weir quench, reducing load on any pump associated with the quench apparatus, etc. As a result, desired conversions may be substantially maintained, formation of by-products may be minimized and/or fouling may be reduced or eliminated. Aside from the cost savings provided by utilizing a weir quench as opposed to more costly quench formats, e.g., spray quenching, savings are further provided by minimizing, or avoiding entirely, the costs associated with separating and disposing of, waste and/or by-products and/or process downtime to clean foulants from the system. In some embodiments, anhydrous hydrogen chloride can be produced, rather than aqueous hydrogen chloride. Anhydrous HC1 can be repurposed, or even sold at a higher price than that obtainable for aqueous hydrogen chloride.


In one aspect of the present invention, a weir quench is provided. The weir quench comprises an inlet having an inner diameter and an upper chamber having an inner diameter, wherein the inlet inner diameter is at least 90% of the upper chamber inner diameter. The weir quench further comprises at least one downcomer having a length and an inner diameter, wherein the ratio of the inlet inner diameter to the downcomer inner diameter is greater than or equal to 2, or 3, or greater than or equal to 4. Desirably, the ratio of the inlet inner diameter to the downcomer inner diameter is less than 6, and may be less than 5. The at least one downcomer may have an inner diameter of 0.5 inch or greater and in some embodiments, may be from 1 inch to 16 inches. The ratio of the downcomer length to the downcomer inner diameter may desirably be greater than 1.5, or greater than 2, or greater than 3, or greater than 4. The ratio of the downcomer length to the downcomer inner diameter may desirably be less than 20, or less than 12, or less than 8, or less than 5. An outlet of the downcomer may be fluidly disposed in relation to a lower chamber. In some embodiments, the lower chamber may comprise a baffle, e.g., a roof baffle.


The advantageous dimensional relationships of the weir quench may be further leveraged when the weir quench is utilized in connection with a reactor, and indeed; additional dimensional relationships between the reactor outlet and the weir quench have been discovered that further assist in realizing the full benefits of both.


And so, in another aspect, there is provided an apparatus comprising a reactor having an outlet with an inner diameter and a weir quench having an inlet with an inner diameter, wherein the ratio of the reactor outlet inner diameter and weir quench inlet inner diameter is one or greater. The weir quench comprises an inlet having an inner diameter and an upper chamber comprising an inner diameter, wherein the inlet inner diameter is at least 90% of the upper chamber inner diameter. The weir quench further comprises at least one downcomer having a length and an inner diameter, wherein the ratio of the inlet inner diameter to the downcomer inner diameter is greater than or equal to 2, or greater than or equal to 3, or greater than or equal to 4. The ratio of the inlet inner diameter to the downcomer inner diameter is less than 6, and may be less than 5 in some embodiments. The at least one downcomer has an inner diameter of 0.5 inch or greater and in some embodiments, has an inner diameter of from 1 inch to 16 inches. The ratio of the downcomer length to the downcomer inner diameter may desirably be greater than 1.5, or greater than 2, or greater than 3, or greater than 4. The ratio of the downcomer length to the downcomer inner diameter may desirably be less than 20, or less than 12, or less than 8, or less than 5.


Since the present reactors are expected to provide time and cost savings to the gaseous processes in which they are utilized, such processes are also provided. Processes comprising a limiting reagent find particular benefit.


In another aspect, processes for quenching a gaseous product stream from a chemical process are provided. The processes comprise providing the gaseous product stream from a reactor having an outlet with an inner diameter to a weir quench having an inlet with an inner diameter. The ratio of the reactor outlet inner diameter to the weir quench inlet inner diameter is at least one.


The mass flow ratio of the quench liquid flow to the gaseous effluent is at least 1, or at least 2, or at least 3 or at least 4. In some embodiments, the mass flow ratio of the quench flow to the gaseous effluent is less than 8, or less than 7, or less than 6, or less than 5. The weir quench may be used in processes in which the flow velocity of the effluent is less than 10 ft./s, or less than 1 ft./s. In some embodiments, the temperature of the quench flow is greater than 20° C., while in others, it may be less than 250° C. In some embodiments, the temperature of the quench flow is from 20° C. to 250° C.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic representation (not to scale) of one embodiment of the weir quench;



FIG. 2 is a schematic representation (not to scale) of another embodiment of the weir quench;



FIG. 3A is a schematic representation of a weir quench according to one embodiment, e.g., having an inlet with an inner diameter (Di) fluidly connected to a reactor having an outlet with an inner diameter (Dr), wherein the ratio between the reactor outlet inner diameter (Dr) and the weir quench inlet inner diameter (Di) is one or greater;



FIG. 3B is a schematic representation of a conventional weir quench fluidly connected to a reactor, wherein the ratio of the reactor outlet inner diameter (Dr) and the weir quench inlet inner diameter (Di) is less than one;



FIG. 4 provides temperature contours for a process operated using the weir quench embodiment shown in FIG. 1;



FIG. 5 provides a gas volume fraction contour (a) and velocity vectors (b) for a process operated using the weir quench embodiment shown in FIG. 1; and



FIG. 6 provides graphical depictions of the effect of ratio of quench liquid flow and reactor effluent mass flow on the reactor product stream temperature (a) and its difference from the quench liquid temperature (b) for the embodiment shown in FIG. 1.





DETAILED DESCRIPTION

The present specification provides certain definitions and methods to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Provision, or lack of the provision, of a definition for a particular term or phrase is not meant to imply any particular importance, or lack thereof. Rather, and unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.


The terms “first”, “second”, and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Also, the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item, and the terms “front”, “back”, “bottom”, and/or “top”, unless otherwise noted, are merely used for convenience of description, and are not intended to limit the part being described limited to any one position or spatial orientation.


If ranges are disclosed, the endpoints of all ranges directed to the same component or property are inclusive and independently combinable (e.g., ranges of “up to 25 wt. %, or, more specifically, 5 wt. % to 20 wt. %,” is inclusive of the endpoints and all intermediate values of the ranges of “5 wt. % to 25 wt. %,” etc.). As used herein, percent (%) conversion is meant to indicate change in molar or mass flow of reactant in a reactor in ratio to the incoming flow, while percent (%) selectivity means the change in molar flow rate of product in a reactor in ratio to the change of molar flow rate of a reactant.


The present invention provides a weir quench suitable for use in a gas-phase process, such as processes for the production of chlorinated and/or fluorinated propenes and/or higher alkenes. The weir quench mechanism incorporates one or more design features that can i) provide for reduced backmixing of the reaction effluent, and/or ii) minimize or eliminate plugging within the quench apparatus. As a result, desired conversions may be substantially maintained, formation of by-products may be minimized and/or fouling may be reduced or eliminated. Further, the advantages provided by one design feature may be leveraged, perhaps even synergistically, by combining the same with others.


More specifically, the weir quench comprises an inlet having an inner diameter (Di) and upper chamber having an inner diameter (Duc). The inlet inner diameter (Di) is desirably at least 90%, or at least 92%, or at least 94%, or at least 96%, or at least 98%, or even substantially equal in diameter to the inner diameter of the upper chamber (Duc). Since the inlet and upper chamber inner diameters are within 90% of each other, the backmixing zone that can result at this interface when there is a greater difference in diameter between the two is minimized, or even eliminated. While a backmixing zone can be desirable in some applications to increase heat transfer and cooling rate, areas of backmixing are suboptimal in processes wherein conversion of the reactants is desirably limited and/or when the product stream desirably cooled is sensitive to decomposition.


In some embodiments, the weir quench may also have at least one downcomer tube having a length (Ld) and inner diameter (Dd), wherein the ratio of the inlet inner diameter (Di) to the downcomer inner diameter (Dd) is at least 2, or at least 3, or at least 4. The ratio of the inlet inner diameter (Di) to the downcomer inner diameter (Dd) is desirably less than 6, or less than 5. In some embodiments, the ratio of the inlet inner diameter (Di) to the downcomer inner diameter (Dd) may be from 3 to 6, or from 4 to 5. Providing the weir quench with such a relationship has been found to provide optimum flow velocity, residence time, turbulence and heat transfer between the quench liquid and the product stream desirably being quenched. This relationship has also been found to assist in the provision of a continuous falling film liquid coverage on the downcomer inner diameter to avoid dry spots, and the hot/cold cycling that can result when the same occur.


In some embodiments, the weir quench may be provided with additional features and/or dimensional relationships that further enhance its suitability for use in connection with processes comprising a limiting reagent. More particularly, in some embodiments, the weir quench may be provided with one or more design features to reduce or eliminate plugging. Since conventional processes employing a weir quench may typically provide extremely high flow rates of gaseous effluent, plugging anywhere within the process may typically not be an issue, and even if it were, may not result in the formation of excessive quantities of waste and/or by-products when no limiting reagent is in use. However, in processes wherein the use of a limiting reagent is required, plugging can not only result in the formation of undesirable quantities of such by and waste products, but can also result in reactor fouling.


One such feature is the optimization of the inner diameter of the weir quench downcomer (Dd). The inner diameter of the at least one downcomer (Dd) is desirably at least 0.5 inch, and in some embodiments, may be from 1 inch to 16 inches, as may be influenced by the scale of the process. Furthermore, the ratio of the downcomer length (Ld) to its inner diameter (Dd) can be optimized so that sufficient quench performance is achieved without an overly large, and expensive weir quench. A ratio of downcomer length (Ld) to downcomer inner diameter (Dd) of at least 1.5, or at least 2, at least 3, or at least 4 has been discovered to be optimal. Desirably, the ratio of downcomer length (Ld) to downcomer inner diameter (Dd) will be less than 20, or less than 12, or less than 8, or less than 5. In some embodiments, the ratio of downcomer length to downcomer inner diameter may be from 1.5 to 20, or from 2 to 12, or from 3 to 8, or from 4 to 5. Another feature that has been discovered to reduce or minimize plugging in the weir quench is the placement of the outlet of the downcomer tube at least 0.1 inch below the ceiling of the lower chamber (Lod) quench inlet at least one inch above a quench reservoir bottom.


The performance of the weir quench may further be optimized via the utilization of a baffle, e.g., such as a roof baffle, in a lower chamber thereof. The axi-symmetrical roof baffle is preferably angled at an angle Ab relative to an axis perpendicular to the longitudinal axis of the downcomer. Desirably, the angle Ab will be greater than or equal to 0.1 degree, or greater than or equal to 1 degree, or greater than or equal to 2 degrees. It has now been discovered that the placement of such a baffle can also act to reduce or eliminate any gas entrainment that may otherwise occur in the lower pool of liquid that collects in operation of the weir quench. Gas entrainment in this lower liquid pool can affect the performance of a pump used to assist in flow through the weir quench. The use of a roof baffle may also assist liquid-gas separation and enhance heat exchange.


One or more of the described features may advantageously be employed in the weir quench, wherein their advantages are expected to be cumulative, and perhaps synergistic. For example, any two, any three, any four, or all of the design concepts may be employed. More specifically, the weir quench may have a ratio of the inlet inner diameter (Di) to the upper chamber inner diameter (Duc) of from 0.9 to 1, and i) a ratio of the inlet inner diameter (Di) to the downcomer inlet diameter (Dd) of greater than 2, and/or ii) an inner diameter of at least one downcomer (Dd) of at least 0.5 inch and/or iii) a ratio of downcomer length (Ld) to downcomer inner diameter (Dd) of from 1.5 to 20, and/or iv) comprise a downcomer tube exit with a distance Lob below the roof of the lower chamber, and/or v) comprise a reservoir further comprising a roof baffle. In some embodiments, but not necessarily all, any such roof baffle may be angled (Ab) at least 0.1 degrees relative to an axis perpendicular to the longitudinal axis of the downcomer. Table 1 shows the possible dimensional relationships that may be optimized in the weir quench and possible values/ranges for each.












TABLE 1





Dimension
First Embodiment
Second Embodiment
Third Embodiment







Dd
≧0.5 inch
≧1.0 inch
≧3.0 inch


Lob
≧0. Inch 
≧0.5 inch
≧1.0 inch


Ab

≧0°


≧1°


≧2°



Di/Duc
   0.9
   0.95
 1


Di/Dd
≧2
≧3
≧4


Ld/Dd
3-8
4-7
4-5









In some embodiments, the inlet of the weir quench may desirably be operably disposed relative to the a reactor generating the product stream to be cooled, i.e., the weir quench inlet may be directly coupled to a reactor outlet, or to any other conduit, such as a collector or a transfer line, linking the process to the weir quench and capable of delivering the gaseous product stream to the weir quench. Any such conduit is desirably configured so as to be substantially the same shape as the fluid flow from the reactor, e.g., to be substantially tubular or conical. Any such conduit will also desirably be placed about the same longitudinal axis as the weir quench.


Whether directly attached to the reactor, or to a conduit there between, the ratio of the inner diameter of the reactor outlet/conduit (Dr) and the inner diameter of the weir quench inlet (Di) is desirably 1 or greater. Such a relationship has now been discovered to prohibit the formation of areas of backmixing in the dead space that may otherwise be created by disparate geometries between the reactor/conduit and weir quench inlet, or by a ratio of reactor/conduit inner diameter to weir quench inlet inner diameter of less than one.


More specifically, conventional weir quenches for high temperature gaseous effluents have typically been coupled to reactors having an inner diameter such that the ratio of the reactor inner diameter to the weir quench inlet inner diameter of less than one. Although this weir quench design can effectively cool product streams from processes without a limiting reagent, this design has been found to be inadequate, and in some instances, actually detrimental to processes in which a limiting reagent is used, in that it appeared to contribute to the formation of large quantities of waste and by-products. Further investigation lead to the discovery that these byproducts are formed by further reactions of the desired products in the backmixing zone that typically exists in at the junction between the reactor and conventional weir quench mechanism inlets. Provision of the dimensional relationship, e.g., a ratio of the reactor outlet inner diameter (Dr) to the weir quench inlet inner diameter (Di) of 1 or more, substantially eliminates the backmixing zone that results from conventional weir quench/reactor apparatus. Desirably, the ratio of the reactor inner diameter (Dr) to the weir quench inlet inner diameter (Di) is not less than 1.


A weir quench in accordance with one embodiment is shown in FIG. 1. As shown in FIG. 1, weir quench 100 comprises an inlet 102 having an inner diameter D, an upper chamber 103 (above the liquid quench surface) with inner diameter Duc, a single downcomer tube 104 having an inner diameter Dd and a length Ld, a quench chamber 106 (containing the liquid quench), and a lower chamber 108. Quench chamber 106 has a quench liquid inlet(s) 110, operably disposed to provide quench liquid, desirably a nonaqueous process liquid, to quench chamber 106. Lower chamber 108 houses roof baffle 112, and further is provided with gas vents 114 and liquid drain 116. Roof baffle 112 is provided at an angle Ab relative to an axis perpendicular to the longitudinal axis of downcomer 104.


In operation, gaseous reactor effluent enters weir quench 100 at inlet 102 before, during, or after, quench liquid has been provided into upper chamber 106 via quench liquid inlet(s) 110. As the volume of quench liquid establishes a depth exceeding the height of downcomer 104 in upper chamber 106, quench liquid flows over the top, and down the sides, of downcomer 104, and into lower chamber 108. The gaseous reactor effluent contacts the quench liquid at the top surface thereof, as well as within downcomer 104. Quench liquid and gaseous reactor effluent flows into lower chamber 108, and at least some portion thereof may contact baffle 112. Product is collected out of liquid drain 116.


A weir quench according to another embodiment is shown in FIG. 2. As shown in FIG. 2, weir quench 200 comprises the same features as weir quench 100, with different dimensional relationships there between. That is, weir quench 200 comprises inlet 202 having an inner diameter Di, an upper chamber 203 (above the liquid quench surface) with inner diameter Duc, a single downcomer 204 having an inner diameter Dd and a length Ld, a quench chamber 206 (containing the liquid quench), and a lower chamber 208. Quench chamber 206 has a quench liquid inlet(s) 210, operably disposed to provide quench liquid, desirably a nonaqueous process liquid, to quench chamber 206. Lower chamber 208 houses roof baffle 212, and further is provided with gas vents 214 and liquid drains 216. Roof baffle 212 is provided at an angle Ab relative to an axis perpendicular to the longitudinal axis of downcomer 204.


In some embodiments, the weir quench may be coupled to a reactor, or reactor outlet or outlet conduit. In such embodiments, ratio of the inner diameter of the reactor outlet (Dr) to the inner diameter of the weir quench inlet (Di) is desirably 1 or greater. One example of such an embodiment is shown in FIG. 3A. As shown in FIG. 3A, the ratio of Dr to Di is approximately 1. The provision of such a relationship eliminates the backmixing zone created by conventional weir quench/reactor apparatus, shown in FIG. 3B.


The present weir quench provides significant advantages when used in connection with chemical processes comprising a limiting reagent for which it was designed, and such processes are also provided. Incorporating the present weir quench into such a process can reduce, or even eliminate backmixing that may occur in conventional weir quench, so that substantial variances in conversions are not seen. Indeed, processes performed using the present weir quench can be provided with minimized production of by-products and/or decomposition products such that variances of less than 2%, or even less than 1%, from the desired conversion, are seen. Selectivity may also be substantially maintained, or is expected to decrease by no more than 2%. Such reactions may also typically include at least one limiting reactant having desired conversions that are far from exhaustion, e.g., conversions of less than 80%, or less than 40%, or even less than 20%.


One specific example of such reactions, includes those for the production of chlorinated propenes. Typically, the product stream from such processes is gaseous, and may be at temperatures of 380° C. or greater. At this high temperature, the byproducts produced by the process could form deposits on the reactor inner surfaces. These deposits may decompose over time to form carbonaceous deposits that may ultimately shorten reactor lifetimes, and lower overall process productivity.


Conventionally, spray quenching has typically been utilized to cool high temperature gaseous effluents. However, spray quenching can be energy intensive, at least in the energy required to atomize the large volumes of coolant required, and can become prohibitively so on a large scale.


Although some have proposed weir quench mechanisms for the cooling of high temperature gaseous effluents, prior to the invention described herein, weir quenching had either been utilized with aqueous solutions, leading to the attendant problems therewith described above, and/or, had not been applied in a manner that resulted in a reduction in formation of by-products so that a desired conversion can be seen.


Further, weir quenching has typically been utilized to quench gaseous effluents having an extremely high flow rate, e.g., at least 100 ft./s, presumably because the understanding in the art was that such high flow rates were required to provide adequate heat transfer and thus, desired quench rates. Due to the residence times required, process flow rates associated with the gas phase production of chlorinated propenes are much lower, e.g., 35 ft./s or less. Conventional weir quench designs, requiring flows of 100 ft./s or greater are thus expected to perform suboptimally when utilized in such processes.


It has also now been discovered that not only can more effective heat management be provided by utilizing a nonaqueous process fluid, but also, avoiding the use of an aqueous quench flow actually reduces the costs associated with heating or cooling the same to the desired temperature and/or removal of the same or by-products generated thereby.


The present weir quench designs, having one or more of the above described design features, are also well suited for use in such processes, comprising gas effluent flow rates of less than 10 ft./s, or less than 1 ft./s, or even as low as 0.1 ft./s. Indeed, the present weir quench may provide optimized residence time, turbulence and thus heat transfer between the gaseous product stream and quench flow when supplied with a mass flow ratio of quench liquid flow to gaseous product stream of 1, or 2, or 3, or 4, or higher. In some embodiments, the mass flow ratio of quench liquid flow to gaseous product stream is 8, or 7, or 6, or 5, or lower. The optimized quenching efficiency and cost effectiveness may be provided by mass flow ratios of quench flow to gaseous product stream flow of from 1 to 8, or from 2 to 7, or from 3 to 6, or from 4 to 5.


The design of the weir quench can provide efficient quenching when a quench flow having a relatively high temperature is utilized. That is, the temperature of the quench flow, e.g., of the nonaqueous process liquid, may desirably be greater than 20° C., or greater than 50° C., or greater than 100° C. In some embodiments, the temperature of the nonaqueous process liquid may be less than 250° C., or less than 170° C., or less than 160° C., or less than 150° C. In other embodiments, the temperature of the quench flow may be from 20° C. to 250° C.


The efficiencies provided by the present reactors can be further leveraged by providing the chlorinated and/or fluorinated propene and higher alkenes produced therein to further downstream processes. For example, 1,1,2,3-tetrachloropropene produced using the described reactors can be processed to provide further downstream products including hydrofluoroolefins, such as, for example, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze). Improved methods for the production of hydrofluoroolefins, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze), are thus also provided herein.


The conversion of chlorinated and/or fluorinated propene and higher alkenes to provide hydrofluoroolefins may broadly comprise a single reaction or two or more reactions involving fluorination of a compound of the formula C(X)mCCl(Y)n(C)(X)m to at least one compound of the formula CF3CF═CHZ, where each X, Y and Z is independently H, F, Cl, I or Br, and each m is independently 1, 2 or 3 and n is 0 or 1. A more specific example might involve a multi-step process wherein a feedstock of 1,1,2,3 tetrachloropropene is fluorinated in a catalyzed, gas phase reaction to form a compound such as 2-chloro-3,3,3-trifluoropropene. The 2-chloro-2,3,3,3-tetrafluoropropane is then dehydrochlorinated to 2,3,3,3-tetrafluoropropene via a catalyzed, gas phase reaction.


EXAMPLE 1

A reactor with inner diameter of 6 ft is used to produce TCPE from the reaction of perchloroethylene and methyl chloride at a ¼ molar ratio of perchloroethylene to methyl chloride. The reactor has an effluent rate of 78,000 kg/hr of 8% TCPE at 400° C. and 260 psig, and is coupled to a weir quench as shown in FIG. 1, wherein the ratio of the reactor outlet inner diameter to the weir quench inlet inner diameter is one or greater.


As can be seen in FIG. 4, the gaseous reactor effluent enters the weir quench at approximately 425° C. The quench fluid, comprising the product, enters the quench chamber at approximately 120° C. The liquid quench flows over the downcomer and wets the downcomer wall, thereby cooling as it surrounds the reactor gas effluent that is also flowing down the middle of the downcomer. The temperature gradient in the lower chamber shows that the effluent gas becomes cooled further as it reaches the roof baffle.



FIG. 5A shows the computational fluid dynamic simulation of the gas and liquid flow pattern while FIG. 5B shows the computational fluid dynamic simulation velocity vectors (right). These Figures show that the gas effluent has no or little back mixed zone as the gas enters the downcomer tube.



FIG. 6 shows the impact of varying the mass flow rate ratio of the liquid quench to the reactor effluent gas (Qliq/Qgas) on the reactor effluent average gas temperature (TRE) and the difference between TRE and quench liquid average temperature (Tliq). Increasing Qliq/Qgas ratio has the favorable impact of lowering the TRE at Tliq entering the quench chamber at 120° C. and 180° C. For example, at 3 Qliq/Qgas and 180° C. inlet liquid quench temperature, the TRE is expected to be at 223° C. as it exits the lower chamber. Similarly, at 120° C. inlet liquid quench temperature, TRE is expected to be at 174° C. The corresponding gas and liquid temperature difference ΔT is expected to be 54 and 43° C., respectively.


EXAMPLE 2

The reaction and reactor system as described in example 1 is coupled with a conventional quench chamber typically used such that the reactor outlet diameter Dr is less than the quench chamber inner diameter Di (case B in FIG. 3). This can be contrasted with the desired configuration at which Dr is equal to Di as depicted in case A in FIG. 3. As a result of the backmixing zone provided in the convention arrangement, at the upper corner of the quench chamber in case B, further reactions can occur between the product(s) and/or reactants to produce higher molecular weight byproducts. This is expected to result in rapid fouling of the reactor outlet and the quench chamber.

Claims
  • 1. A weir quench comprising an inlet having an inner diameter, an upper chamber having an inner diameter and at least one downcomer tube having an inner diameter, wherein the inlet inner diameter is at least 90% of the upper chamber inner diameter and wherein the ratio of the inner diameter of the inlet to the downcomer tube inner diameter is greater than 3.
  • 2. The weir quench of claim 1, wherein the ratio of the inlet inner diameter to the downcomer tube inner diameter is less than 6.
  • 3. The weir quench of claim 2, wherein the ratio of the inlet inner diameter to the downcomer tube inner diameter is at least 4 and less than 5.
  • 4. The weir quench of claim 1, wherein the at least one downcomer tube has an inner diameter of at least 1 inch.
  • 5. The weir quench of claim 1, wherein the ratio of the downcomer tube length to the downcomer tube inner diameter is from 3 to 8.
  • 6. The weir quench of claim 1, further comprising a lower chamber operatively disposed relative to the at least one downcomer tube, and wherein the lower chamber comprises a baffle.
  • 7. The weir quench of claim 1, wherein the placement of the downcomer tube is at least 0.1 inch below the ceiling of the lower chamber quench outlet.
  • 8. The weir quench of claim 1, wherein the lower quench outlet is at least one inch above the quench reservoir bottom.
  • 9. An apparatus comprising: A reactor having an outlet with an inner diameter; and A weir quench fluidly connected to the reactor and having an inlet with an inner diameter, an upper chamber having an inner diameter and at least one downcomer tube having an inner diameter,Wherein the ratio of the reactor outlet inner diameter to the weir quench inlet inner diameter is greater than 1, the inlet inner diameter is at least 90% of the upper chamber inner diameter and wherein the ratio of the inner diameter of the inlet to the downcomer tube inner diameter is greater than 3.
  • 10. The apparatus of claim 9, wherein the at least one downcomer tube has an inner diameter of at least 1 inch.
  • 11. The apparatus of claim 9, wherein the ratio of the downcomer tube length to the downcomer tube inner diameter is from 3 to 8.
  • 12. The apparatus of claim 9, further comprising a lower chamber operatively disposed relative to the at least one downcomer tube, and wherein the lower chamber comprises a baffle.
  • 13. A process for quenching the gaseous product stream from a chemical process comprising a limiting reagent comprising: Providing the gaseous product stream from a reactor having an outlet with an inner diameter to a weir quench with an inlet having an inner diameter, an upper chamber having an inner diameter and at least one downcomer tube having an inner diameter, wherein the ratio of the reactor outlet inner diameter to the weir quench inlet inner diameter is greater than one, the inlet inner diameter is at least 90% of the upper chamber inner diameter and wherein the ratio of the inner diameter of the inlet to the downcomer tube inner diameter is greater than 3.
  • 14. The process of claim 13, further comprising using a reaction product as the quench flow.
  • 15. The process of claim 13, wherein the mass flow ratio of the quench flow to the product stream is at least 2.
  • 16. The process of claim 13, wherein the mass flow ratio of the quench flow to the product stream is less than 6.
  • 17. The process of claim 13, wherein the flow velocity of the product stream is less than 10 ft./s.
  • 18. The process of claim 13, wherein the temperature of the quench flow is greater than 20° C.
  • 19. The process of claim 18, wherein the temperature of the quench flow is less than 250° C.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/062507 9/29/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/052945 4/3/2014 WO A
US Referenced Citations (181)
Number Name Date Kind
2119484 Levine et al. May 1938 A
2179378 Metzger Nov 1939 A
2207193 Groll Jul 1940 A
2299441 Vaughan et al. Oct 1942 A
2302228 Kharasch et al. Nov 1942 A
2370342 Zellner Feb 1945 A
2378859 Martin Jun 1945 A
2435983 Schmerling Feb 1948 A
2449286 Fairbairn Sep 1948 A
2588867 Morris Mar 1952 A
2630461 Sachsse et al. Mar 1953 A
2688592 Skeeters Sep 1954 A
2762611 Monroe Sep 1956 A
2765359 Pichler et al. Oct 1956 A
2964579 Weller et al. Dec 1960 A
2973393 Monroe Feb 1961 A
3000980 Asadorian Sep 1961 A
3094567 Eaker Jun 1963 A
3112988 Coldren et al. Dec 1963 A
3444263 Fernald May 1969 A
3446859 Weil May 1969 A
3502734 Baird Mar 1970 A
3525595 Zirngibl et al. Aug 1970 A
3551512 Loeffler Dec 1970 A
3558438 Schoenbeck Jan 1971 A
3585786 Hardison Jun 1971 A
3651019 Asscher Mar 1972 A
3676508 Krekeler Jul 1972 A
3793809 Tomany Feb 1974 A
3819731 Pitt Jun 1974 A
3823195 Smith Jul 1974 A
3871305 Watanabe Mar 1975 A
3872664 Lohmann Mar 1975 A
3914167 Ivy Oct 1975 A
3920757 Watson Nov 1975 A
3926758 Smith Dec 1975 A
3948858 Wiersum Apr 1976 A
3954410 Pohl et al. May 1976 A
3959420 Geddes May 1976 A
4038372 Colli Jul 1977 A
4046656 Davis et al. Sep 1977 A
4051182 Pitt Sep 1977 A
4319062 Boozalis et al. Mar 1982 A
4466808 Koog Aug 1984 A
4513154 Kurtz Apr 1985 A
4535194 Woodard Aug 1985 A
4614572 Holbrook Sep 1986 A
4644907 Hunter Feb 1987 A
4650914 Woodard Mar 1987 A
4661648 Franklin Apr 1987 A
4702809 Mueller Oct 1987 A
4714792 Mueller et al. Dec 1987 A
4716255 Mueller Dec 1987 A
4726686 Wolf Feb 1988 A
4727181 Kruper Feb 1988 A
4849554 Cresswell et al. Jul 1989 A
4894205 Westerman Jan 1990 A
4902303 Den Bleyker Feb 1990 A
4902393 Mueller Feb 1990 A
4999102 Cox Mar 1991 A
5057634 Webster Oct 1991 A
5132473 Furutaka Jul 1992 A
5171899 Furutaka Dec 1992 A
5178844 Carter et al. Jan 1993 A
5246903 Harley Sep 1993 A
5254771 Cremer Oct 1993 A
5254772 Dukat Oct 1993 A
5254788 Gartside Oct 1993 A
5262575 Dianis Nov 1993 A
5315044 Furutaka May 1994 A
5367105 Miyazaki et al. Nov 1994 A
5397381 Keintzel Mar 1995 A
5414166 Kim May 1995 A
5504266 Tirtowidjojo et al. Apr 1996 A
5684219 Boyce Nov 1997 A
5689020 Boyce Nov 1997 A
5811605 Tang Sep 1998 A
5895825 Elsheikh Apr 1999 A
5986151 Van Der Puy Nov 1999 A
6111150 Sakyu Aug 2000 A
6118018 Savidakis Sep 2000 A
6160187 Strickler Dec 2000 A
6187976 Van Der Puy Feb 2001 B1
6229057 Jackson et al. May 2001 B1
6235951 Sakyu et al. May 2001 B1
6472573 Yamamoto Oct 2002 B1
6518467 Tung et al. Feb 2003 B2
6538167 Brown Mar 2003 B1
6545176 Tsay Apr 2003 B1
6551469 Nair Apr 2003 B1
6610177 Tsay Aug 2003 B2
6613127 Galloway Sep 2003 B1
6683216 Zoeller Jan 2004 B1
6825383 Dewkar Nov 2004 B1
6924403 Barnes et al. Aug 2005 B2
6958135 Filippi Oct 2005 B1
7117934 Lomax Oct 2006 B2
7189884 Mukhopadhyay Mar 2007 B2
7226567 Olbert Jun 2007 B1
7282120 Braun Oct 2007 B2
7297814 Yada et al. Nov 2007 B2
7345209 Mukhopadhyay Mar 2008 B2
7371904 Ma et al. May 2008 B2
7378559 Verwijs May 2008 B2
7396965 Mukhopadhyay Jul 2008 B2
7511101 Nguyen Mar 2009 B2
7521029 Guetlhuber Apr 2009 B2
7588739 Sugiyama Sep 2009 B2
7659434 Mukhopadhyay Feb 2010 B2
7674939 Mukhopadhyay Mar 2010 B2
7687670 Nappa Mar 2010 B2
7695695 Shin Apr 2010 B2
7714177 Mukhopadhyay May 2010 B2
7836941 Song Nov 2010 B2
7880040 Mukhopadhyay Feb 2011 B2
7951982 Mukhopadhyay May 2011 B2
8058486 Merkel et al. Nov 2011 B2
8058490 Strebelle Nov 2011 B2
8071825 Johnson et al. Dec 2011 B2
8071826 Van Der Puy Dec 2011 B2
8076521 Elsheikh Dec 2011 B2
8084653 Tung Dec 2011 B2
8115038 Wilson Feb 2012 B2
8123398 Teshima Feb 2012 B2
8158836 Pigamo Apr 2012 B2
8232435 Sievert Jul 2012 B2
8258353 Tirtowidjojo Sep 2012 B2
8258355 Merkel Sep 2012 B2
8357828 Okamoto et al. Jan 2013 B2
8367867 Zardi et al. Feb 2013 B2
8383867 Mukhopadhyay Feb 2013 B2
8395000 Mukhopadhyay Mar 2013 B2
8398882 Rao Mar 2013 B2
8487146 Wilson Jul 2013 B2
8558041 Tirtowidjojo et al. Oct 2013 B2
8581011 Tirtowidjojo et al. Nov 2013 B2
8581012 Tirtowidjojo et al. Nov 2013 B2
8614361 Suzuki Dec 2013 B2
8614363 Wilson et al. Dec 2013 B2
8907148 Tirtowidjojo et al. Dec 2014 B2
8926918 Tirtowidjojo et al. Jan 2015 B2
8933280 Tirtowidjojo et al. Jan 2015 B2
8957258 Okamoto et al. Feb 2015 B2
9056808 Tirtowidjojo et al. Jun 2015 B2
9067855 Grandbois et al. Jun 2015 B2
20010018962 Joshi et al. Sep 2001 A1
20020087039 Tung et al. Jul 2002 A1
20020110711 Boneberg et al. Aug 2002 A1
20060150445 Redding Jul 2006 A1
20060292046 Fruchey Dec 2006 A1
20070197841 Mukhopadhyay Aug 2007 A1
20070197842 Tung Aug 2007 A1
20070265368 Rao et al. Nov 2007 A1
20080021229 Maughon Jan 2008 A1
20080073063 Clavenna et al. Mar 2008 A1
20080118018 Schrauwen May 2008 A1
20080207962 Rao Aug 2008 A1
20090018377 Boyce Jan 2009 A1
20090030249 Merkel et al. Jan 2009 A1
20090099396 Mukhopadhyay Apr 2009 A1
20090117014 Carpenter May 2009 A1
20090203945 Mukhopadhyay Aug 2009 A1
20100041864 Kadowaki et al. Feb 2010 A1
20100185029 Elsheikh Jul 2010 A1
20100263278 Kowoll et al. Oct 2010 A1
20110087056 Tirtowidjojo et al. Apr 2011 A1
20110172472 Sakyu Jul 2011 A1
20110218369 Elsheikh et al. Sep 2011 A1
20110251425 Penzel Oct 2011 A1
20120065434 Nose Mar 2012 A1
20140081055 Tirtowidjojo Mar 2014 A1
20140163266 Tirtowidjojo et al. Jun 2014 A1
20140179962 Tirtowidjojo et al. Jun 2014 A1
20140323775 Grandbois et al. Oct 2014 A1
20140323776 Grandbois et al. Oct 2014 A1
20140336425 Tirtowdjojo et al. Nov 2014 A1
20140336431 Tirtowidjojo et al. Nov 2014 A1
20140371494 Tirtowidjojo et al. Dec 2014 A1
20150045592 Grandbois et al. Feb 2015 A1
20150057471 Tirtowidjojo et al. Feb 2015 A1
20150217256 Tirtowidjojo et al. Aug 2015 A1
Foreign Referenced Citations (68)
Number Date Country
609022 Jun 1974 CH
101215220 Jul 2008 CN
101492341 Jul 2009 CN
101544535 Sep 2009 CN
101597209 Dec 2009 CN
101754941 Jun 2010 CN
101913979 Dec 2010 CN
101913980 Dec 2010 CN
101955414 Jan 2011 CN
101982227 Mar 2011 CN
102001911 Apr 2011 CN
102249846 Nov 2011 CN
102351637 Feb 2012 CN
857955 Dec 1952 DE
209184 Apr 1984 DE
235631 May 1986 DE
102005044501 Mar 2007 DE
102010022414 Dec 2011 DE
0164798 Dec 1985 EP
0453818 Oct 1991 EP
1018366 Dec 2000 EP
1097984 May 2001 EP
1546709 Nov 1968 FR
471186 Aug 1937 GB
471187 Aug 1937 GB
471188 Aug 1937 GB
857086 Dec 1960 GB
1134585 Nov 1968 GB
1381619 Jan 1975 GB
1548277 Jul 1979 GB
54079207 Jun 1979 JP
S54-135712 Oct 1979 JP
08-119885 May 1996 JP
2001213820 Aug 2001 JP
2006272267 Oct 2006 JP
2007021396 Feb 2007 JP
2008063314 Mar 2008 JP
2009000592 Jan 2009 JP
2009046653 Mar 2009 JP
2001151708 Jun 2011 JP
2011144148 Jul 2011 JP
52247 Dec 1966 LU
899523 Jan 1982 SU
0138271 May 2001 WO
0138275 May 2001 WO
2005016509 Feb 2005 WO
2007079431 Jul 2007 WO
2007079435 Jul 2007 WO
2007096383 Aug 2007 WO
2008054781 May 2008 WO
2009015304 Jan 2009 WO
2009067571 May 2009 WO
2009087423 Jul 2009 WO
2011060211 May 2011 WO
2011065574 Jun 2011 WO
2012011844 Jan 2012 WO
2012081482 Dec 2012 WO
2012166393 Dec 2012 WO
2012166394 Dec 2012 WO
2013082410 Jun 2013 WO
2014046970 Mar 2014 WO
2014046977 Mar 2014 WO
2014066083 May 2014 WO
2014100039 Jun 2014 WO
2014100066 Jun 2014 WO
2014134233 Sep 2014 WO
2014134377 Sep 2014 WO
2014164368 Oct 2014 WO
Non-Patent Literature Citations (42)
Entry
Michigan Technological Univ., “Free-Radical Chlorination with Sulfuryl Chloride”, Nov. 15, 2001, 1-7.
Bai, et al., “Isomerization of Tetrachloropropene to Promote Utilization Ratio of Triallate Raw Materials”, Petrochemical Technology & Application, 2007, 25(1).
Boualy, et al., “Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates”, “Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates”, 2011.
Chai, et al., “Study of Preparation of 1,1,1,3-tetrachloropropane”, Zhejiang Chemical Industry, 2010, pp. 1-3, 41(5).
Cristiano, et al., “Tetraalkylphosphonium Trihalides. Room Temperature Ionic Liquids As Halogenation Reagents”, J. Org. Chem., 2009, pp. 9027-9033, 74.
Evstigneev, et al., “Initiated Chlorination of Tetrachloropropane”, Khim. Prom., 1984, pp. 393-394, 16(7).
Fields, et al., “Thermal Isomerization of 1,1-dichlorocyclopropanes”, Chemical Communications, Jan. 1, 1967, p. 1081, 21.
Galitzenstein, et al., “The Dehydrochlorination of Propylene Dichloride”, Journal of the Society of Chemical Industry, 1950, pp. 298-304, 69.
Gault, et al., “Chlorination of Chloroform”, Comptes Rendus Des Seances De L'Academie des Sciences, 1924, pp. 467-469, 179.
Gerding, et al., “Raman Spectra of aliphatic chlorine compounds: chloroethenes an chloropropenes”, Recueil Jan. 1, 1955, pp. 957-975, 74.
Hatch, et al., “Allylic Chlorides. XV. Preparation and Properties of the 1,2,3Trichloropropenes”, JACS, Jan. 5, 1952, pp. 123-126, 74.
Hatch, et al., “Allylic Chlorides. XVIII. Preparation and Properties of 1,1,3-tricholoro-2-fluoro-1-propene and 1,1,2,3-tetrachloro-1-propene”, JACS, Jul. 5, 1952, pp. 3328-3330, 74(13).
Herzfelder, “Substitution in the Aliphatic Series”, Berichte Der Deutschen Chemischen Gesellschaft, May-Aug. 1893, pp. 1257-1261, 26(2).
Huaping, et al., “Procress in Synthesis of 1,1,1,3-tetrachloropropane”, Guangzhou Chemicals, 2011, pp. 41-42, 39 (5).
Ivanov, et al., “Metal phthalocyanine-Catalyzed Addition of polychlorine-Containing Organic Compounds to C=C Bonds”, Russian Chemical Bulletin, International Edition, Nov. 2009, pp. 2393-2396, 58(11).
Kang, et al., “Kinetics of Synthesis of 1,1,1,3,3-pentachlorobutane Catalyzed by Fe-FeCl3”, Chemical Research and Application, Jun. 2011, pp. 657-660, 23(6).
Kharasch, et al., “Chlorinations with Sulfuryl Chloride.I. The Peroxide-Catalyzed Chlorination of Hydrocarbons”, JACS, 1939, pp. 2142-2150, 61.
Khusnutdinov, et al., “CCI4 Attachment to Olefins Catalyzed by Chromium and Ruthenium Complexes. Impact of Water as a Nucleophilic Admixture”, Oil Chemistry, 2009, pp. 349-356, vol. 4.
Kruper, et al., “Synthesis of alpha-Halocinnamate Esters via Solvolytic Rearrangement of Trichloroallyl Alcohols”, J. Org Chem, 1991, pp. 3323-3329, 56.
Leitch, “Organic Deuterium Compounds: V. The chlorination of propyne and propyne D-4”, Canadian Journal of Chemistry, Apr. 1, 1953, pp. 385-386, 30(4).
Levanova, et al., “Cholorination of Chloroolefins C3-C4”, 2002, 496-498.
Levanova, et al., “Thermocatalytic Reactions of Bromochloropropanes”, Russian Journal of Physical Chemistry, Jan. 1, 1983, pp. 1142-1146, 57.
McBee, et al., “Utilization of Polychloropropanes and Hexachloroethane”, Industrial and Engineering Chemistry,Feb. 1, 1941, pp. 176-181, 33(2).
Mouneyrat, “Effect of Chlorine on Propyl Chloride in the Presence of Anhydrous Aluminum Chloride”, Bulletin de la Societe chimique de france, Societe francaise de chimie, Jan. 1, 1899, pp. 616-623, 21(3).
Munoz-Molina, et al., “An Efficient, Selective and Reducing Agent-Free Copper Catalyst for the Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins”, Inorg. Chem., 2010, pp. 643-645, 49.
Nair, et al., “Atom Transfer Radical Addition (ATRA) of Carbon Tetrachloride and Chlorinated Esters to Various Olefins Catalyzed by CP/Ru(PPh3)(PR3)CI Complexes”, Inorganica Chimica Acta, 2012, pp. 96-103, 380.
Nguyen, et al., “Condensation de chloroforme avec des olefins fluorees en milieu basique”, Journal of Fluorine Chemistry, Dec. 1, 1991, pp. 241-248, 55(3).
Nikishin, et al., “Reactions of Methanol and Ethanol with Tetrachloroethylene”, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, Dec. 1966, pp. 2188-2192, 12.
Ochi, et al., “Preparation of Chloropropenes by Photochemical Dehydrochlorination of 1,2-Dichloropropane”, Chemical Abstracts, Jul. 17, 1989, p. 574, 111(3).
Pozdnev, et al., “Chlorination of chloroform and the conversion of methylene chloride manufacture still residues”, Khim., Khim. Tekhnol., 1970, 70(4).
Rotshtein, et al., “Isomer Distribution on Chlorination of Chloropropanes”, Z. Organicheskoi Khimii, 1966, pp. 1539-1542, 2(9).
Semenov, “Selectivity of Photochemical Chlorination of Chloromethane in the Liquid Phase”, Prikladnei Khimii, 1985, pp. 840-845, 58(4).
Shelton, et al., “Addition of Halogens and Halogen Compounds to Allylic Chlorides. I. Addition of Hydrogen Halides”, Journal of Organic Chemistry, 1958, pp. 1876-1880, 23.
Skell, et al., “Reactions of BrCl with alkyl radicals”, Tetrahedron letters, 1986 pp. 5181-5184, 27(43).
Skell, et al., “Selectivities of pi and sigma succinimidyl radicals in substitution and addition reactions, Response to Walling, WI-Taliawi and Zhao”, JACS, Jul. 1, 1983, pp. 5125-5131, 105(15).
Stevens, “Some New Cyclopropanes with a Note on the Exterior Valence Angles of Cyclopropane”, JACS, Vo. 68, No. 4, 1945, 620-622.
Tanuma, et al., “Partially Fluorinated Metal Oxide Catalysts for a Friedel-Crafts-type Reaction of Dichlorofluoromethane with Tetrafluoroethylene”, Catal. Lett., 2010, pp. 77-82, 136.
Tobey, et al., “Pentachlorocyclopropane”, Journal of the American Chemical Society, Jun. 1, 1996, pp. 2478-2481, 88 (11).
Urry, et al., “Free Radical Reactions of Diazomethane with Reactive Bromopolychloroalkane”, JACS, May 5, 1964, pp. 1815-1819, 86(9.
Wang Chin-Hsien, “Elimination Reactions of polyhalopropanes under emulsion catalytic conditions to give Halopropenes”, Synthesis, Jan. 1, 1982, pp. 494-496, 1982(6).
Zhao, et al., “Research Progress on Preparation Technology of 1,1,2,3-Tetrachloropropene”, Zhejiang Chemical Industry, 2010, pp. 8-10, 41(6).
Zheng, et al., “Preparation of the low GWP alternative 1,3,3,3-tetrafluoropropene”, Zhejiang Huagong, 2010, pp. 5-7, 41(3).
Related Publications (1)
Number Date Country
20150217256 A1 Aug 2015 US
Provisional Applications (1)
Number Date Country
61707994 Sep 2012 US