1. Technical Field
The present disclosure relates to a current generating apparatus, and particularly to a weld current generating apparatus.
2. Description of Related Art
The alloys used to form thermocouples are generally welded together with the use of expensive equipment that provides a high current for the welding process. A simple inexpensive apparatus is desired to overcome the above problem.
Many aspects of the embodiments can be better understood with references to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
Referring to
Referring to
The control circuit 200 includes a first relay, a second relay, a multiple switch S2, diodes D3, D4, and a capacitor C1. The first relay includes a winding M1, a first normally open contact K1, and a first normally closed contact K2. The second relay includes a winding M2, a second normally open contact K3, and a second normally closed contact K4. The multiple switch S2 includes a first terminal, a second terminal, and a third terminal. The first terminal of the multiple switch S2 receives the 12 volts DC voltage. The first terminal of the multiple switch S2 is electrically coupled to the ground terminal via the capacitor C1. The second and third terminals of the multiple switch S2 are electrically coupled to the ground terminal via the windings M1, M2 respectively. The diodes D3, D4 are parallel coupled with the windings M1, M2 respectively. A cathode of the diode D3 is electrically coupled to the second terminal of the multiple switch S2 via the second normally closed contact K4. A cathode of the diode D4 is electrically coupled to the third terminal of the multiple switch S2 via the first normally closed contact K2.
The charge/discharge circuit 300 includes capacitors C2˜C7, an inductor L1, and a combination switch S3. The combination switch S3 includes switches S31˜S34. First terminals of the capacitors C2, C3 receive the 12 volts DC voltage via the normally open contact K1 respectively. Second terminals of the capacitors C2, C3 are electrically coupled to the ground terminal via the inductor L1 respectively. First terminals of the capacitors C4˜C7 are electrically coupled to a first terminal of the second normally open contact K3 via the switches S31˜S34 respectively. Second terminals of the capacitors C4˜C7 are electrically coupled to the ground terminal via the inductor L1 respectively. The weld current is generated from a second terminal of the second normally open contact K3 to the second terminals of the capacitors C2˜C7.
In an active state, the switches S11, S12 are turned on. The AC voltage is converted to a +12 volts DC voltage which provides working voltage to the control circuit 200 and charge/discharge circuit 300. The multiple switch S2 is pressed to close its first and second terminals. The winding M1 is powered on. The normally open contact K1 is closed and the first normally closed contact K2 is opened. The +12 volts DC voltage charges the capacitors C2˜C7 via the normally open contact K1. When the charge/discharge circuit 300 capacitors are fully charged, the multiple switch S2 is pressed to close its first and third terminals. The winding M1 is powered off. The normally open contact K1 is opened and the first normally closed contact K2 is closed again. The winding M2 is powered on. The second normally open contact K3 is closed and the second normally closed contact K4 is opened. The charge/discharge circuit 300 capacitors generate a weld current of high power from the second terminal of the second normally open contact K3 to the second terminals of the capacitors.
In one embodiment, the capacitors C4˜C7 used with the switches S31˜S34 respectively are optional according to a strength of the weld current required. During the weld process, the first and second normally closed contacts K2, K4 form an interlocking switch. The interlocking switch prevents the first and second normally open contacts K1, K3 being closed at the same time should the windings M1, M2 malfunction. Therefore charging and discharging the capacitors of the charge/discharge circuit 300 at the same time is avoided. And the capacitors of the charge/discharge circuit 300 are protected.
It is to be understood, however, that even though numerous characteristics and advantages of the embodiments have been set forth in the foregoing description, together with details of the structure and function of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0300244 | Jan 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6321167 | Jochi et al. | Nov 2001 | B1 |
20010054603 | Watanabe | Dec 2001 | A1 |
20050272388 | Giacaman | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20110168684 A1 | Jul 2011 | US |