This invention relates to a welded component, in particular a deposition welded, hollow steel fabrication for an articulating arm of an excavator, and a method of fabrication thereof.
Steel fabrications are often employed in the manufacture of components for construction equipment and the like. In the case of an arm for lifting or loading, a fabrication may consist of a somewhat rectangular box section incorporating a pivot and comprising a plurality of substantially flat plates connected together by welding; such an arm can be both strong and of low mass and low inertia.
Care is required during welding to avoid the introduction or creation of concentrations of stress, which may result in failure of the weld in use. In particular high stresses can be produced at the start or at the end of an electro-deposition weld, for example where two plates are joined together by a transverse weld.
In such circumstances, it is conventional to provide a run-on and run-off feature at the end of the joint to be welded, generally in the form of a plate extension or protuberance. The weld is started and stopped on the projection which is at either end of the weld run, and this ensures that over the length of the substantive joint the weld is of substantially consistent quality.
After completion of the weld, the run-on and run-off features, together with the start and end of the deposition weld, are removed by grinding to leave only the welded joint flush with the longitudinal edge of the respective plates. In this way any potential weld defect is removed from the start and stop positions, and a consistently strong fabrication is thus provided.
Nevertheless it would be desirable to further reduce the stress levels at the start and end of such a deposition weld, in particular in the region of a pivot of a box section fabrication.
According to the invention there is provided a method of fabricating a box section arm for an excavator, said arm defining a transverse pivot axis between the ends thereof, one side of said arm comprising substantially flat plate members meeting at a transverse plane coincident with said axis, and each plate member including opposite transverse projections at the mutually adjacent ends, the method comprising:
transversely welding said plate members together, said weld commencing at the projections at one side, and finishing at the projections at the opposite side, and
partially removing the projections and weld at both sides.
Such a fabricated arm has reduced stress at each end of the transverse weld bead, and provides for an improved connection in the region of a pivot of the arm. It has been found that the number of fatigue cycles before failure is substantially increased by the invention, typically by 50-100%.
The projections are preferably located at edges at the mutually adjacent ends of the plate members, for example at side edges of the box section arm. The projections preferably extend from a side edge of the plate members, most preferably at the mutually adjacent ends of the plate members. The projections may project in a direction parallel to the said transverse pivot axis and preferably project only in that direction. Each projection is preferably flush with the plate from which it projects.
Continuous deposition welding is preferred, and the gap between the plates is preferably an open “V” in order to accommodate the deposition weld bead.
The pivot axis may be defined by an annular casting to be welded along a peripheral edge to the sides of the arm, and to the flat plate members. Such a casting may define the pivot axis in a through bore, and one such casting is generally provided at each side of the box section, so that each casting is welded to both of the flat plate members, and the flat plate members are welded to each other.
In another aspect the invention provides an arm for an excavator fabricated by the method of the invention, and an excavator fitted with such an arm. The fabricated arm of the invention may be used on other kinds of machinery having similarly pivoted arms.
Other features of the invention will be apparent from the following description of a preferred embodiment illustrated by way of example only in the accompanying drawings, in which:
With reference to
The second arm is illustrated in more detail in
The pivot axis 19 is defined by a pair of pivot castings 24 which are welded in corresponding recesses of the side plates 21. The underside 23 is constituted by two plate members 25, 26 extending on either side of the axis 19. As can be seen from
At each end of the transverse slot 27, the plates 25, 26 define a respective projection or tab 28, 29 which constitute a starting and a stopping surface for the deposition weld. Each projection projects about 25 mm prior to welding.
Conventionally, after welding is completed, such projections are completely removed along with the corresponding weld bead to leave a flush finish, as illustrated in
The invention is illustrated in
The method of fabrication comprises placing the two pivot castings 24 in a jig with the sides top and bottom of the excavator arm, and tack welding of the components prior to seam welding. The plate components of the arm are typically of steel having a thickness in the range 4-8 mm. After welding the projections and associated portions of weld are removed by grinding, so that for example 10-20 mm of projection is removed from either end of the weld, and 5-15 mm of the projection remains. In one embodiment a 25 mm projection is reduced to 10 mm.
Number | Date | Country | Kind |
---|---|---|---|
1316070.0 | Sep 2013 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4392314 | Albrecht et al. | Jul 1983 | A |
9255378 | Sugaya | Feb 2016 | B2 |
20130343854 | Sugaya | Dec 2013 | A1 |
20140010624 | Sugaya et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2001-123471 | May 2001 | JP |
2004-092210 | Mar 2004 | JP |
2013-147794 | Aug 2013 | JP |
WO-2012157675 | Nov 2012 | WO |
Entry |
---|
European Search Report for Application No. EP14184019.9, dated Jan. 20, 2015. |
Search Report for GB 1316070.0, dated Feb. 17, 2014. |
First Office Action received in Chinese Application No. 201410459231.9, dated Aug. 9, 2017. |
Number | Date | Country | |
---|---|---|---|
20150071752 A1 | Mar 2015 | US |