Technical Field
The present principles relate to welding. More particularly, it relates to a finger cot for using during welding.
Related Art
Those of skill in the welding trade will appreciate that the steadiness of their hands (and tools) during the welding operation is paramount to providing top quality welds and welding services. Due to the high heat environment associated with welding, the use of gloves during welding operations is very common.
Often times, these gloves are marketed and presented as being heat resistant, however the same is not entirely true. Depending on the particular welding operation, it is common for the user to rest one hand on a stationary, often times, very hot workpiece in order to secure the steadiness required for the particular weld. In other instances, the proximity of the user's gloved hand to a hot welding arc or hot welding surface can be dangerous. Unfortunately, the gloves used for these types of welding operations cannot withstand this type of prolonged exposure to such heat, and often burn through the gloves, or otherwise cause too much discomfort to the user that a proper stable weld operation cannot be performed.
As such, it is an aspect of the present invention to provide a finger cot for welding gloves that overcomes the shortfalls of the use of gloves alone.
According to an implementation, the welding finger cot includes a finger receiving portion and a tail portion extending from said finger receiving portion. A user inserts a gloved finger into the finger receiving portion and pulls the tail portion to a desired length. The finger cot being positioned between the user's gloved finger and a high heat area or surface.
According to another implementation, the welding finger cot includes a sleeve having a first end, a second end and a central portion. The second end is folded into itself one or more times to create a first rounded end. The first end is folded over onto itself one or more times to create a second rounded end, and the folded over first end is again folded over onto itself into the central region to form a finger receiving portion. The remaining portion of the sleeve and the second end form an adjustable tail portion.
According to another implementation, a method for creating a welding finger cot includes providing a sleeve having a first end, a second end and a central portion. The second end is then folded into itself one or more times to create a first rounded end. The first end is folded over onto itself one or more times to create a second rounded end. Then the folded over first end is further folded over onto itself into the central region to form a finger receiving portion with a remaining portion of the sleeve and the second end forming an adjustable tail portion.
These and other aspects, features and advantages of the present principles will become apparent from the following detailed description of exemplary embodiments, which is to be read in connection with the accompanying drawings.
The present principles may be better understood in accordance with the following exemplary figures, in which:
The present principles are directed to welding operations, and more particularly to a welding finger cot to be used during welding operations.
The present description illustrates the present principles. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the present principles and are included within its spirit and scope.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the present principles and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the present principles, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
In the claims hereof, any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements that performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function. The present principles as defined by such claims reside in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. It is thus regarded that any means that can provide those functionalities are equivalent to those shown herein.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Specific references to materials used throughout the specification are only many to illustrate by way of example the principles of the invention. The invention is adaptable and useable with any of the many materials used for glove manufacturing known in the art and any of the many glove types in the art.
Initially we start off with a highly heat resistant material such as, for example, fiberglass sleeve 12 of a predetermined length (e.g., 15 inches) and a predetermined diameter (e.g., 2.5 inches). By way of further example, the material the finger cot is made of can include, silica, silicone, para-aramid (KEVLAR®), meta-aramid (NOMEX®), carbon fiber, including oxidized, thermally stabilized polyacrylonitrile fiber, modacrylic, leather, aluminized materials, flame resistance, flame retardant, or fire resistance enhanced cotton, wool, polyester, nylon, lyocell, viscose, or any other common fiber or blend, polybenzimidzole, or any blend of the above listing of fibers. The ends 14 and 16 of sleeve 12 are often frayed and can be glued, cauterized or any other method implemented to prevent further fraying of the same. Those of skill in the art will appreciate that the length and diameter of the sleeve 12 can be modified depending on a desired application or other factors. Examples of such sizes can be, for example, the overall length of the sleeve 12 before any assembly begins can be in a range of 10-94 cm. This accounts for any stretch in different materials and for the different combinations of the head (finger receiving portion) and the tail (adjustment portion) that may need to be produced for different customer needs. Likewise, an inner diameter of the sleeve 12 measured as an open circle will range from 2-8 cm. Those of skill in the art will appreciate that if the tube is flattened before such diameter measurement, the diameter will be longer. As such, are more accurate measurement can be the inner circumference of the sleeve which can be in a range of 6-25 cm.
The end 16 is then folded over into itself at ¾ to 1 inch intervals 18, 1 to 4 times, thus creating a rounded or smooth transition end 20. The next step is to take the opposite end and invert the sleeve into itself, as shown by the arrows in
As will be appreciated from
As shown, the welder wearing the finger cot of the present principles would benefit from the added heat insulation all along the edge of the hand where it meets the hot welding surface, indicated by point 1003. The finger receiving portion 32 would operate to protect the user's fingers closest to the hot welding arc near the tip 1001 of the TIG 1000, as well as in the vicinity 1002 near the same, while the tail portion 30 operates to insulate the edge of the user's hand as it rests on the hot surface at point 1003.
These and other features and advantages of the present principles may be readily ascertained by one of ordinary skill in the pertinent art based on the teachings herein.
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present principles is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present principles. All such changes and modifications are intended to be included within the scope of the present principles as set forth in the appended claims.
This application claims priority from U.S. Provisional Application Ser. No. 62/250,772 filed on Nov. 4, 2015.
Number | Date | Country | |
---|---|---|---|
62250772 | Nov 2015 | US |