The present disclosure relates to welding fixtures for joining the stator wires of electric devices.
Electric devices such as motors and generators having a stator secured within a housing of the motor/generator are well known. A rotor mounted on a shaft is coaxially positioned within the stator and is rotatable relative to the stator about the longitudinal axis of the shaft to transmit the force capacity of the motor. The passage of current through the stator creates a magnetic field tending to rotate the rotor and shaft.
Some stators are generally configured as an annular ring and are formed by stacking thin plates, or laminations, of highly magnetic steel. A copper winding of a specific pattern is configured, typically in slots of the lamination stack, through which current is flowed to magnetize sections of the stator assembly and to create a force reaction that causes the rotation of the rotor.
Bar pin stators are a particular type of stator that include a winding formed from a plurality of bar pins, or bar pin wires. The bar pin wires are formed from a heavy gauge copper wire with a rectangular cross section and generally configured in a hairpin shape having a curved section and typically terminating in two wire ends. The bar pins are accurately formed into a predetermined shape for insertion into specific rectangular slots in the stator, and are typically coated with an insulating material prior to insertion, such that the adjacent surfaces of the pins within the slots are electrically insulated from each other.
Typically, the curved ends of the bar pins protrude from one end of the lamination stack and the wire ends of the bar pins protrude from the opposite end of the lamination stack. After insertion, the portions of the wire protruding from the lamination stack are bent to form a complex weave from wire to wire, creating a plurality of wire end pairs. Adjacent paired wire ends are typically joined to form an electrical connection, such as through a welding operation. The resultant weave pattern and plurality of joints determines the flow of current through the motor, and thus the motive force of the rotor.
A welding fixture assembly may be utilized for separating, crowding, and grounding a plurality of stator wire ends to receive a weld. The fixture assembly may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state.
The moveable clamp may include a separator feature that generally extends toward the anvil. In one configuration, the separator feature may include a wedge-shaped protrusion. Each of the first grounding electrode and second grounding electrode may be configured to translate between a clamped state and an unclamped state. When in the clamped state, the first grounding electrode is configured to urge a first pair of the plurality of stator wire ends against the separator feature. Likewise, when in a clamped state, the second grounding electrode may be configured to urge a second pair of the plurality of stator wire ends against the separator feature. Each of the first grounding electrode and the second grounding electrode may be electrically coupled with an electrical ground, and may be in electrical communication with the plurality of stator wire end pairs when in a clamped state.
The fixture may further include an electrode actuator that is configured to movably translate each of the first grounding electrode and the second grounding electrode between the respective unclamped and clamped states. Likewise, a similar actuator may be configured to movably translate the movable clamp.
The above mentioned fixture assembly may be used in a system for welding a plurality of stator wire end pairs that further includes an electric welding apparatus including a current source and a welding electrode.
Similarly, a method of fixturing a plurality of stator wire end pairs to receive an electrical weld may include: crowding the plurality of stator wire end pairs between a movable clamp and an anvil, wherein the movable clamp including a separator feature extending toward the anvil; crowding a first pair of the plurality of stator wire end pairs against a first side of the separator feature using a first translatable grounding electrode; crowding a second pair of the plurality of stator wire end pairs against a second side of the separator feature using a second translatable grounding electrode; and electrically coupling each of the first translatable grounding electrode and the second translatable grounding electrode with an electrical ground.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numerals are used to identify like or identical components in the various views,
As generally illustrated in
Similar to the inner wire pair 32, the wire ends 44 of the third layer may be bent such that they are each proximate to, and paired with a wire end 46 in the fourth layer, forming a second, or outer wire end pair 42. The wire ends 44, 46 of the outer wire end pair 44 may be fused together through a welding process that may be similar to the one used to form the inner wire end pair 32.
As generally illustrated in
During a fixturing operation, as shown in
The movable clamp 64 may include a separator feature 74 that may urge the second wire end 36 to remain physically separated from the third wire end 44. The separator feature 74 may be, for example, a wedge-shaped protrusion that may extend from a contact surface of the clamp 64. As the movable clamp 64 is translated toward the anvil 62, the protrusion may either urge the second and third wire ends 36, 44 apart (if they are initially in contact), or may maintain a minimum separation distance between them (if they are initially apart). In one configuration, the anvil 62 may include a similar separator feature or wedge-shaped protrusion (not shown) that may oppose the separator feature 74 of the movable clamp 64.
While the movable clamp 64 is aligning and/or separating the wire ends against the anvil 62, the first and second grounding electrodes 66, 68 may respectively translate toward the wire ends 34, 36, 44, 46 from the unclamped state to the clamped state (i.e., along respective directions 76, 78). In this manner, the first grounding electrode 66 may contact the first wire end 34 and urge it against the second wire end 36. Likewise the second grounding electrode 68 may contact the fourth wire end 46 and urge it against the third wire end 44. The compressing translation of the first and second grounding electrodes 66, 68 may also urge the inner and outer wire pairs 32, 42 against opposing sides of the separator feature 74.
Each grounding electrode 66, 68 may linearly translate under the control of a respective electrode actuator 80. The electrode actuator 80 may be either a mechanical actuator or an electrical actuator, and may enable each grounding electrode 66, 68 to either translate independently, or in unison. Additionally, each grounding electrode 66, 68 may be coupled to an electrical ground 82 that may be capable of receiving a large amount of electrical current (e.g., greater than 250 Amperes). Grounding the electrodes may enable automated welding processes and eliminate the need to separately ground the wire ends.
Once the fixture assembly 60 engages the plurality of wire ends to separate, crowd and ground the end pairs 32, 42, as shown in
The motion and actuation of the electric welding apparatus 100 may be controlled by a welding controller 110. In one embodiment, the welding controller 110 may include a three-axis positioning device that may be configured to move the electrode 102 in Cartesian directions relative to the wire end pairs 32, 42. Once in proper position (i.e., approximately 1-2 mm separated from the wire ends in the case of a GTAW) the welding controller 110 may selectively energize the current source 104 to create the weld.
Referring to
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not as limiting.
This invention was made with government support under DOE/NETL grant number DE-EE0002629. The invention described herein may be manufactured and used by or for the U.S. Government for U.S. Government (i.e., non-commercial) purposes without the payment of royalties thereon or therefore.
Number | Name | Date | Kind |
---|---|---|---|
3575569 | Mitchell et al. | Apr 1971 | A |
3798407 | Becker | Mar 1974 | A |
4127759 | Pile et al. | Nov 1978 | A |
4324515 | Ehling | Apr 1982 | A |
4453072 | Middleton, Jr. | Jun 1984 | A |
6414479 | LaCroix et al. | Jul 2002 | B1 |
6448681 | Matsunaga et al. | Sep 2002 | B1 |
6512195 | Domschot | Jan 2003 | B2 |
6639170 | Becherucci et al. | Oct 2003 | B2 |
6972505 | Leijon et al. | Dec 2005 | B1 |
7732734 | Machrowicz | Jun 2010 | B2 |
8674261 | No et al. | Mar 2014 | B2 |
20010026109 | Higashino et al. | Oct 2001 | A1 |
20020041129 | Oohashi et al. | Apr 2002 | A1 |
20030183607 | Migliori | Oct 2003 | A1 |
20050230363 | Debuan et al. | Oct 2005 | A1 |
20060096957 | Pfiz | May 2006 | A1 |
20060231538 | Rice et al. | Oct 2006 | A1 |
20070007252 | Ritter | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
2002336968 | Nov 2002 | JP |
Entry |
---|
English translation of JP2002336968A1 to Hotoshi Haga published Nov. 2002. |
Number | Date | Country | |
---|---|---|---|
20130313239 A1 | Nov 2013 | US |