The present disclosure relates to a welding method and part made by the welding method.
This introduction generally presents the context of the disclosure. Work of the presently named inventors, to the extent it is described in this introduction, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against this disclosure.
In a typical motor vehicle, certain components are welded together. Some welds involve components made of different alloys. For example, a lighter alloy such as aluminum or magnesium may be joined with a heavier alloy such as steel. Because of the physical and metallurgical property differences between these alloys, the joint strength may not be strong enough for certain applications. Specifically, brittle intermetallic compound formation and high residual stresses in the weld joint resulting from the use of alloys with different properties may limit the joint strength.
These limitations may prevent and/or reduce the ability to reduce the mass of automotive components which, in turn, may prevent and/or reduce the fuel efficiency, economy, performance, battery life, range and other important characteristics of an automobile.
In an exemplary aspect, a method for welding a first component to a second component includes providing a first component of a first alloy and having coating of a second alloy on a face of the first component, and solid state welding a second component of a third alloy to the coating of the first component. The second alloy includes only non-ferrous compounds.
In another exemplary aspect, the first alloy is a steel alloy.
In another exemplary aspect, the third alloy is an aluminum alloy.
In another exemplary aspect, the third alloy is a magnesium alloy.
In another exemplary aspect, the solid state welding is friction welding.
In another exemplary aspect, the method further includes applying the coating to the first component.
In another exemplary aspect, the step of coating includes at least one of a plating, hot dipping, vapor deposition, physical vapor deposition, and chemical vapor deposition.
In another exemplary aspect, the second alloy is one of a nickel based alloy and a copper based alloy.
In another exemplary aspect, the thickness of the coating is between about 10 to 200 micrometers.
In another exemplary aspect, a part for a vehicle propulsion system is produced by a process including the steps of providing a first component of a first alloy and having coating of a second alloy on a face of the first component, and solid state welding a second component of a third alloy to the coating of the first component. The second alloy includes only non-ferrous compounds.
In this manner, a component may be provided having a significantly reduced mass while ensuring a strong bond between dissimilar metals, such as, for example, steel and aluminum, by reducing and/or eliminating the potential for brittle intermetallic compounds forming at the interface. This is especially valuable in an automotive part, such as in a vehicle propulsion system, where a reduction of mass may provide significant improvements in fuel economy, efficiency, performance, extended range, increased battery life and the like.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided below. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The above features and advantages, and other features and advantages, of the present invention are readily apparent from the detailed description, including the claims, and exemplary embodiments when taken in connection with the accompanying drawings.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In the drawings, reference numbers may be reused to identify similar and/or identical elements.
Referring now to the drawings, a rotational friction weld system is shown in
When the system 10 is in use, the rotating chuck 16 holds a first work piece or component 20 and the non-rotating chuck 18 holds a second work piece or component 22. The first and second work pieces are made of dissimilar materials. For example, in certain arrangements the first work piece 20 may be a steel gear and the second work piece 22 may be an aluminum clutch shell.
The motor 12 spins the rotating chuck 16 and hence the first work piece 20 at a high rate of rotation. When the first work piece 20 is spinning at the proper speed, the hydraulic cylinder 24 moves the non-rotating chuck 18 and hence the second work piece 22 towards the first work piece 20 in the direction of the arrow 26. Accordingly, the two work pieces 20 and 22 are forced together under pressure to form a frictional weld that joins the two work pieces together as shown in
In an exemplary embodiment, a steel component may be coated with a nickel alloy and/or a copper alloy. Then an aluminum component may be spin welded to the coated steel component without the formation of brittle intermetallics at the interface such as, for example, an iron aluminide.
Further, in order to maintain the stability of the coating throughout the solid state welding process, the coating should have a higher melting temperature than the aluminum alloy. In this manner, the coating will be less likely to melt and then move away from the interface between the steel component and the aluminum component, which prevents direct contact between the aluminum and the steel and, therefore, prevents and/or reduced the development of brittle intermetallics. Preferably, only the aluminum alloy may be deformed and/or displaced at the interface.
While the present detailed description describes a friction welding process, it is to be understood that exemplary embodiments of the present disclosure include any solid state welding process, such as, for example, cold welding, diffusion welding, ultrasonic welding, explosion welding, forge welding, friction welding, hot pressure welding, roll welding and the like. Solid state welding joins the base metals without significant melting of the base metals.
Further, while the present detailed description describes and illustrates a steel gear and aluminum clutch shell, it is to be understood that exemplary embodiments of the present disclosure may be applicable to combining two dissimilar alloys to form a single component such that brittle intermetallic compounds are not formed at the interface. Exemplary embodiments of the present disclosure may be useful in providing components for an automobile such as in a vehicle propulsion system,
This description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims.