The present disclosure relates to a welding method and a welding apparatus.
Laser welding is known as one of methods of welding metal materials such as iron and copper. The laser welding is a welding method of irradiating laser beam on a welding area of a workpiece and melting the welding area with energy of the laser beam. In the welded area irradiated by the laser beam, a liquid pool of the melted metal material called molten pool is formed. Thereafter, the metal material in the molten pool solidifies, whereby welding is performed.
When the laser beam is irradiated on the workpiece, a profile of the laser beam is sometimes shaped according to a purpose of the laser beam irradiation. For example, there has been known a technology for shaping a profile of laser beam when the laser beam is used for cutting a workpiece (see, for example, Japanese Unexamined Patent Application No. 2010-508149).
Incidentally, according to investigations by an experiment and the like of the inventors, in the welded workpiece, a shape of a bottom surface of a weld trace, which is the solidified molten pool, is sometimes an unstable shape such as an irregular uneven shape. The unstable shape of the bottom surface of the weld trace is sometimes undesirable depending on a use of welding.
The present disclosure has been devised in view of the above, and an object of the present disclosure is to provide a welding method and a welding apparatus that can stabilize a shape of a bottom surface of a weld trace.
According to an embodiment, a welding method includes a step of, while irradiating laser beam toward a workpiece, relatively moving the laser beam and the workpiece and, while sweeping the laser beam on the workpiece, melting the workpiece in an irradiated area to perform welding. Further, the laser beam is configured by a main power region and a sub-power region, at least a part of the sub-power region is present on a sweeping direction side of the main power region, a power density of the main power region is equal to or higher than a power density of the sub-power region, and the power density of the main power region is at least power density that can generate a keyhole.
According to an embodiment, a welding apparatus includes: a laser system; and an optical head that receives laser beam oscillated by the laser system to generate laser beam, irradiates the generated laser beam toward a workpiece, and melts the workpiece in an irradiated portion to perform welding. Further, the optical head is configured such that the laser beam and the workpiece are capable of relatively moving, the optical head performing the melting to perform welding while sweeping the laser beam on the workpiece, and the laser beam is configured by a main power region and a sub-power region, at least a part of the sub-power region is present on a sweeping direction side, and power density of a main power region is equal to or higher than power density of a sub-power region.
Welding methods and welding apparatuses according to embodiments of the present disclosure are explained in detail below with reference to the accompanying drawings. Note that the present disclosure is not limited by the embodiments explained below. It is to be noted that the drawings are schematic and relations among dimensions of elements, ratios of the elements, and the like are sometimes different from real ones. Among the drawings, portions where relations and ratios of dimensions thereof are different are sometimes included.
The laser system 110 is configured to be able to oscillate, for example, laser beam in a multi-mode having an output of several kW. For example, the laser system 110 may include a plurality of semiconductor laser elements on the inside and may be configured to be able to oscillate the laser beam in the multi-mode having an output of several kW, which is a total output of the plurality of semiconductor laser elements. Various lasers such as a fiber laser, a YAG laser, and a disk laser may be used.
The optical head 120 is an optical device for focusing the laser beam L guided from the laser system 110 to predetermined power density and irradiating the laser beam L on the workpiece W. Therefore, the optical head 120 includes a collimate lens 121 and a focusing lens 122 on the inside. The collimate lens 121 is an optical system for once collimating the laser beam L guided by the optical fiber 130. The focusing lens 122 is an optical system for focusing the collimated laser beam L on the workpiece W.
The optical head 120 is provided to be capable of changing a relative position to the workpiece W in order to move (sweep) an irradiation position of the laser beam L in the workpiece W. A method of changing the relative position to the workpiece W includes moving the optical head 120 itself or moving the workpiece W. That is, the optical head 120 may be configured to be capable of sweeping the laser beam L on the fixed workpiece W. Alternatively, an irradiation position of the laser beam L from the optical head 120 may be fixed and the workpiece W may be held to be capable of moving with respect to the fixed laser beam L. In a process for disposing the workpiece W in a region where the laser beam L is irradiated, at least two members that should be welded are disposed to be placed one on top of the other, in contact with each other, or adjacent to each other.
The optical head 120 according to the first embodiment includes a diffractive optical element 123 functioning as a beam shaper between the collimate lens 121 and the focusing lens 122. The diffractive optical element indicates an optical element 1502 obtained by integrating a plurality of diffraction gratings 1501 having different periods, a concept of which is as illustrated in
In this embodiment, the diffractive optical element 123 is for shaping the laser beam L such that a profile concerning a moving direction of power density of the laser beam L on the workpiece W has, further on a moving direction side than a main beam having high power density, a sub-beam having power density equal to or lower than power density of the main beam.
The laser beam L shaped by the diffractive optical element 123 is configured by a main beam B1 having a peak P1 and two sub-beams B2 having a peak P2 as indicated by an example of a sectional shape on a surface perpendicular to a traveling direction of the laser beam L in
Note that the power density of the main beam or the sub-beam is power density in a region including a peak and having strength equal to or more than 1/e2 of peak strength. A beam diameter of the main beam or the sub-beam is a diameter of the region including the peak and having the strength equal to or more than 1/e2 of the peak strength. In the case of a beam that is not circular, in this specification, length of a region having the strength equal to or more than 1/e2 of the peak strength of a longer axis (for example, a major axis) passing near the center of the beam or a shorter axis (for example, a minor axis) in a direction perpendicular to the longer axis (the major axis) is defined as a beam diameter. The beam diameter of the sub-beam may be substantially equal to or larger than the beam diameter of the main beam. Therefore, the area of the sub-beam may be substantially equal to or larger than the area of the main beam.
It is preferable that a power distribution of at least the main beam B1 have a sharp shape to a certain degree. If the power distribution of the main beam B1 has the sharp shape to a certain degree, penetration depth in melting the workpiece W can be increased. Therefore, welding strength can be secured. When the beam diameter is used as an indicator of sharpness of the main beam B1, the beam diameter of the main beam B1 is preferably 600 μm or less and more preferably 400 μm or less. Note that, when the main beam B1 has the sharp shape, power for realizing the same penetration depth can be reduced and machining speed can be increased. Accordingly, it is possible to realize a reduction of power consumption of the laser welding apparatus 100 and improvement of machining efficiency. The power distribution of the sub-beams B2 may be sharp in the same degree as the main beam B1.
Note that the beam diameter can be adjusted by setting, as appropriate, characteristics of a laser device 110, the optical head 120, and the optical fiber 130 in use. For example, the beam diameter can be adjusted by setting of a beam diameter of laser beam input to the optical head 120 from the optical fiber 130 or setting of optical systems such as the diffractive optical element 123 and lenses 121 and 122.
Action of a profile concerning the moving direction of power density of the laser beam L on the workpiece W having, further on the moving direction side than the main beam having high power density, the sub-beam having the power density equal to or lower than the power density of the main beam is not always clarified but is considered to be, for example, as explained below.
A reason for this is not always clarified but is considered that the bottom surface BS11 of the molten pool WP1 has an unstable shape and the molten pool WP1 solidifies to be the weld trace W1 while keeping reflecting the shape to a certain degree. In this case, the reason is also considered to be that, for example, a liquid surface of the molten pool WP1 is unstably swayed by energy given by the beam B or a keyhole KH generated by the energy and the bottom surface BS11 changes to the unstable shape according to the swaying of the liquid surface.
In contrast, as illustrated in
Note that melting strength regions of the main beam B1 and the sub-beams B2 may overlap but do not need to always overlap. Molten pools formed by the beams only have to be connected. The melting strength region means a range of a beam of laser beam having power density that can melt the workpiece W around the main beam B1 or the sub-beams B2.
In the welding apparatus and the welding method using the welding apparatus according to the first embodiment, a shape of a bottom surface BS22 of a weld trace W2, which is the solidified molten pool WP2, is a stable shape having less unevenness and higher flatness than a bottom surface BS12 by the beam B illustrated in
The welding method according to the first embodiment includes a step of disposing the workpiece W in a region where the laser beam L from the laser system 110, which is a laser device, is irradiated, relatively moving the laser beam L and the workpiece W while irradiating the laser beam L from the laser system 110 toward the workpiece W, and melting the workpiece W in an irradiated portion and performing welding while sweeping the laser beam L on the workpiece W. At this time, the laser beam L is configured by the main beam B1 and the sub-beams B2, at least a part of which is present on sweeping direction sides. Power density of the main beam B1 is equal to or higher than power density of the sub-beams B2. The step of disposing the workpiece W in the region where the laser beam L is irradiated is a step of disposing at least two members to be placed one on top of the other, in contact with each other, or adjacent to each other.
Subsequently, an example of a sectional shape of laser beam for a profile concerning a moving direction of power density of the laser beam on a workpiece to have sub-beams on moving direction sides of the main beam is explained with reference to
Note that a distance d (for example, illustrated in
The power density of the main beam B1 and the power density of the sub-beam(s) B2 may be equal.
In the examples in
As illustrated in
The laser system 210 is configured to be able to oscillate, for example, laser beam in a multi-mode having an output of several kW. For example, the laser system 210 may include a plurality of semiconductor laser elements on the inside and may be configured to be able to oscillate the laser beam in the multi-mode having an output of several kW, which is a total output of the plurality of semiconductor laser elements. Various lasers such as a fiber laser, a YAG laser, and a disk laser may be used.
The optical head 220 is an optical device for focusing the laser beam L guided from the laser system 210 to predetermined power density and irradiating the laser beam L on the workpiece W. Therefore, the optical head 220 includes a collimate lens 221 and a focusing lens 222 on the inside. The collimate lens 221 is an optical system for once collimating the laser beam guided by the optical fiber 230. The focusing lens 222 is an optical system for focusing the collimated laser beam on the workpiece W.
The optical head 220 includes a Galvano scanner between the focusing lens 222 and the workpiece W. The Galvano scanner is a device that can move an irradiation position of the laser beam L without moving the optical head 220 by controlling angles of two mirrors 224a and 224b. In an example illustrated in
The optical head 220 according to the second embodiment includes a diffractive optical element 223 between the collimate lens 221 and the focusing lens 222. The diffractive optical element 223 is for shaping the laser beam L such that a profile concerning a moving direction of power density of the laser beam L on the workpiece W has, on a moving direction side of a main beam, a sub-beam having power density equal to or lower than power density of the main beam. Action of the diffractive optical element 223 is the same as the action in the first embodiment. That is, the diffractive optical element 223 is designed to realize a profile of laser beam suitable for carrying out the present invention like the sectional shape of the laser beam illustrated in
The optical head 320 is an optical device for focusing the laser beam L guided from the laser system 310 to predetermined power density and irradiating the laser beam L on the workpiece W. Therefore, the optical head 320 includes a collimate lens 321 and a focusing lens 322 on the inside. The collimate lens 321 is an optical system for once collimating the laser beam guided by the optical fiber 330. The focusing lens 322 is an optical system for focusing the collimated laser beam on the workpiece W.
The optical head 320 includes a Galvano scanner between the collimate lens 321 and the focusing lens 322. Angles of mirrors 324a and 324b of the Galvano scanner are respectively changed by motors 325a and 325b. In the optical head 320, the Galvano scanner is provided in a position different from the position in the second embodiment. However, as in the second embodiment, the Galvano scanner can move an irradiation position of the laser beam L without moving the optical head 320 by controlling the angles of the two mirrors 324a and 324b.
The optical head 320 according to the third embodiment includes a diffractive optical element 323 between the collimate lens 321 and the focusing lens 322. The diffractive optical element 323 is for shaping the laser beam L such that a profile concerning a moving direction of power density of the laser beam L on the workpiece W has, on a moving direction side of a main beam, a sub-beam having power density equal to or lower than power density of the main beam. Action of the diffractive optical element 323 is the same as the action in the first embodiment. That is, the diffractive optical element 323 is designed to realize a profile of laser beam suitable for carrying out the present invention like the sectional shape of the laser beam illustrated in
As illustrated in
The laser systems 411 and 412 are configured to be able to oscillate, for example, laser beam in a multi-mode having an output of several kW. For example, the laser systems 411 and 412 may include a plurality of semiconductor laser elements on the inside of each of the laser systems 411 and 412 and may be configured to be able to oscillate the laser beam in the multi-mode having an output of several kW, which is a total output of the plurality of semiconductor laser elements. Various lasers such as a fiber laser, a YAG laser, and a disk laser may be used.
The optical head 420 is an optical device for focusing the laser beam beams L1 and L2 guided from the laser systems 411 and 412 to predetermined power density and irradiating the laser beams L1 and L2 on the workpiece W. Therefore, the optical head 420 includes a collimate lens 421a and a focusing lens 422a for the laser beam L1 and a collimate lens 421b and a focusing lens 422b for the laser beam L2. The collimate lenses 421a and 421b are respectively optical systems for once collimating the laser beam guided by the optical fibers 431 and 432. The focusing lenses 422a and 422b are optical systems for focusing the collimated laser beam on the workpiece W.
The optical head 420 according to the fourth embodiment is also configured such that a profile concerning a moving direction of power density of the laser beams L1 and L2 on the workpiece W has, on a moving direction side of a main beam, a sub-beam having power density equal to or lower than power density of the main beam. That is, for example, of the laser beams L1 and L2 irradiated on the workpiece W by the optical head 420, the laser beam L1 only has to be used for main beam formation and the laser beam L2 only has to be used for sub-beam formation. Note that, in an example illustrated in the figure, only the laser beams L1 and L2 are used. However, the number of laser beam may be increased. The optical head 420 only has to be configured to realize a profile of laser beam suitable for carrying out the present invention like the sectional shape of the laser beam illustrated in
As illustrated in
In the fifth embodiment, the laser system 510 is, for example, a fiber laser, a YAG laser, or a disk laser and is used to oscillate both of the laser beams L1 and L2 irradiated on the workpiece W. Therefore, a dividing unit 532 is provided between the optical fiber 531 and the optical fibers 533 and 534 that guide the laser beam oscillated by the laser system 510 to the optical head 520 and is configured to divide the laser beam oscillated by the laser system 510 and then guide the laser beam to the optical head 520.
The optical head 520 is an optical device for focusing the laser beams L1 and L2 divided by the dividing unit 532 to predetermined power density and irradiating the laser beams L1 and L2 on the workpiece W. Therefore, the optical head 520 includes a collimate lens 521a and a focusing lens 522a for the laser beam L1 and a collimate lens 521b and a focusing lens 522b for the laser beam L2. The collimate lenses 521a and 521b are respectively optical systems for once collimating the laser beam guided by the optical fibers 533 and 534. The focusing lenses 522a and 522b are optical systems for focusing the collimated laser beam on the workpiece W.
The optical head 520 according to the fifth embodiment is also configured such that a profile concerning a moving direction of power density of the laser beams L1 and L2 on the workpiece W has, on a moving direction side of a main beam, a sub-beam having power density equal to or lower than power density of the main beam. That is, for example, of the laser beams L1 and L2 irradiated on the workpiece W by the optical head 520, the laser beam L1 only has to be used for main beam formation and the laser beam L2 only has to be used for sub-beam formation. Note that, in an example illustrated in the figure, only the laser beams L1 and L2 are used. However, the number of laser beams may be increased. The optical head 420 only has to be configured to realize a profile of laser beam suitable for carrying out the present invention like the sectional shape of the laser beam illustrated in
As illustrated in
In the sixth embodiment, the laser beams oscillated by the laser systems 611 and 612 are combined before being guided to the optical head 620. Therefore, a combining unit 634 is provided between the optical fibers 631 and 632 and the optical fiber 635 that guide the laser beam oscillated by the laser systems 611 and 612 to the optical head 620. The laser beam oscillated by the laser systems 611 and 612 are guided in the optical fiber 635 in parallel.
Configuration examples of the optical fiber 631 (and 632) and the optical fiber 635 are explained with reference to
Referring back to
In this embodiment, the optical head 620 does not include a diffractive optical element and does not include an independent optical system for a plurality of laser beams either. However, since the laser beams oscillated by the laser systems 611 and 612 are combined before being guided to the optical head 620, the optical head 620 is configured such that a profile concerning a moving direction of power density of the laser beam L on the workpiece W has, on a moving direction side of a main beam, a sub-beam having power density equal to or lower than power density of the main beam.
Note that, concerning all the embodiments in this specification, a welding form of the main beam may be keyhole-type welding or may be thermal conduction-type welding. The keyhole-type welding is a welding method using a keyhole. On the other hand, the thermal conduction-type welding is a welding method for melting the workpiece W using heat generated by laser beam being absorbed on the surface of a preform.
Subsequently, experiment examples are explained. In the experiment examples, an apparatus configuration of an example was the configuration of the welding apparatus 100 according to the first embodiment and, as an apparatus configuration of a comparative example, a configuration obtained by excluding the diffractive optical element 123 from the welding apparatus 100 was used. Note that, as common experiment conditions, an output of the laser system 110 was set to 3 kW and relative moving speed of the optical head 120 and the workpiece W was set to 5 m/minute.
The diffractive optical element 123 is configured such that, as illustrated in
Table 1 illustrates two experiment examples. A material of a workpiece is SUS304 having thickness of 10 mm. DOE is a diffractive optical element. A focal position is focal positions of a main beam and a sub-beam and is just-focus on a surface. A setting output is power of laser beam output from a laser system. Speed is sweeping speed. The inventors cut workpieces of the experiment examples and observed shapes of bottom surfaces of weld traces.
In the embodiments, the profile (a power distribution shape) of the laser beam has a discrete power region configured by the main beam and the sub-beam. The power region is a region having power contributing to melting of the workpiece in a plane perpendicular to a laser-beam traveling direction of the laser beam. However, individual power regions do not always need to independently have power that can melt the workpiece. The power regions only have to be able to melt the workpiece with the influence of energy given to the workpiece by the other power regions.
In the example explained above, the sub-power region was configured by nine beams. When a ratio of power of the main power region and power of the sub-power region was changed from 6:4 to 1:9, the bottom surface had the flat stable shape at both the ratios. When the ratio is 6:4, a ratio of the power of the main beam and the power of one sub-beam is 6:4/9=27:2. When the ratio is 1:9, a ratio of the power of the main beam and the power of one sub-beam is 1:9/9=1:1.
Under the same conditions as the conditions in the example, the sub-power region was configured by twenty-one beams, a ratio of the power of the main power region and the power of the sub-power region was set to 10:21, and an experiment was performed. In this case as well, the bottom surface had the flat stable shape. A ratio of the power of the main beam and the power of one sub-beam is 10:21/21=10:1.
However, the power region is not limited to the discrete power region. A plurality of power regions may be continuous in a symmetrical or asymmetrical distribution. For example,
On the other hand,
Note that a welding technology that can stabilize a shape of a bottom surface of a weld trace as in the embodiments can be suitably applied to, for example, three-dimensional molding. That is, in the three-dimensional molding, when a material is melted, solidified, and deposited by laser welding to form a three-dimensional shape, if an interface equivalent to the bottom surface of the weld trace is stable, it is possible to obtain various suitable effects such as improvement of accuracy of the three-dimensional molding.
When laser beam is swept on a workpiece, the sweeping may be performed by publicly-known wobbling, weaving, output modulation, or the like to stabilize a molten pool.
The present invention are explained above based on the embodiments. However, the present invention is not limited by the embodiments. Components configured by combining, as appropriate, the components in the embodiments explained above are also included in the category of the present invention. Further effects and modifications can be easily derived by those skilled in the art. Accordingly, a wider aspect of the present invention is not limited by the embodiments and various changes are possible.
The present invention can be used for laser welding. The welding method and the welding apparatus according to the present disclosure achieves an effect that it is possible to stabilize a shape of a bottom surface of a weld trace.
Although the disclosure has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2018-165499 | Sep 2018 | JP | national |
This application is a continuation of International Application No. PCT/JP2019/034848, filed on Sep. 4,2 2019 which claims the benefit of priority of the prior Japanese Patent Application No. 2018-165499, filed on Sep. 4, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/034848 | Sep 2019 | US |
Child | 17179505 | US |