The present techniques generally relate to welding methods and apparatus. More particularly, the present techniques relate to methods of welding pipe segments within a pipeline to enhance strain capacity.
This section is intended to introduce the reader to various aspects of art, which may be associated with exemplary embodiments of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with information to facilitate a better understanding of particular aspects of the present techniques. Accordingly, it should be understood that these statements are to be read in this light, and not necessarily as admissions of prior art.
The production of hydrocarbons, such as oil and gas, has been performed for numerous years. To produce these hydrocarbons, one or more wells of a field are typically drilled into a subsurface location, which is generally referred to as a subterranean formation, basin or reservoir. From the wells, lines or pipelines are utilized to carry the hydrocarbons to a surface facility for processing or from surface facility to other locations. These pipelines are typically formed from pipe segments that are welded together at weld joints to form a continuous flow path for various products. As such, these pipelines provide a fluid transport system for a wide variety of products, such as oil, gas, water, coal slurry, etc.
Generally, pipelines may be affected by various forces that may damage or rupture the pipeline. Recently, increased demand for oil and gas has provided a significant incentive to place pipelines in geographic regions with large ground deformations. Placing pipelines in these regions presents engineering challenges in pipeline strength and durability that were not appreciated or approached in the past. These large ground deformations may occur in seismic regions, such as around fault lines, or in arctic regions. In these regions, pipelines may be subjected to large upheaval or subsidence ground movements that occur from the ground freezing/thawing and/or large horizontal ground movements that occur from earthquake events. Because of the ground movements, pipelines, which may be above or below ground, are subject to strains that may disrupt the flow of fluids. Further, various load conditions, such as force-controlled load conditions, may be applied to the pipeline as internal pressures and external pressures. In particular, if the pipeline is subjected to predominantly force-controlled load conditions, an allowable stress design methodology is utilized to ensure that the level of stress in the pipeline remains below the yield strength of the pipeline material.
In addition, because the pipe segments are welded together, the weld joints between the pipe segments or between the pipe segments and auxiliary components, such as elbows or flanges, may provide weak points that are susceptible to these forces. For instance, a weld joint between two pipe segments may have flaws that weaken the pipeline. If the weld joint has flaws, then the pipeline may fail at the weld joint due to load conditions or ground movement. Accordingly, the weld joints of the pipe segments may have to be designed to have sufficient strength and fracture toughness to prevent failure of the weld joint.
Many of the prior methods did not provide for plastic deformation of the pipe. Therefore, pipeline designs placed in areas of large ground deformation utilized stress-based design approaches. Accordingly, various methods have previously been described that involve forming various weld overlays designed to address fractures around the weld joints. However, these methods do not address the susceptibility of plastic collapse in a structural member containing flaws, which are placed under larger deformation loads that result in gross plasticity through the thickness of the structural member, such as the pipe segments. Indeed, these methods fail to address how the geometry of the weld reinforcement may be manipulated to enhance the tensile strain capacity of the welded pipeline.
Prior welding methods are more specifically described in U.S. Pat. Nos. 4,049,186 to Hanneman et al. (Hanneman) and 4,585,917 to Yoshida et al. (Yoshida). In Hanneman, the patentees were concerned with stress corrosion in welded pipe in nuclear reactor water lines. Hanneman utilized overlay welds to extend the weld constraint zone beyond the heat affected zone to reduce stress corrosion cracking of the welded pipe and prevent plastic deformation. In Yoshida, the patentees describe a method of welding to reduce residual stress in the welded pipe joint. The height and length of the build-up weld are calculated based on relative geometries of the pipe to reduce the residual stress.
Accordingly, the need exists for a method and apparatus that may be utilized to enhance the strain capacity of weld joints for pipe segments.
For additional information please reference U.S. Pat. No. 2,812,419; U.S. Pat. No. 2,963,129; U.S. Pat. No. 4,049,186; U.S. Pat. No. 4,585,917; U.S. Pat. No. 4,688,319; U.S. Pat. No. 4,823,847; U.S. Pat. No. 5,233,149; U.S. Pat. No. 5,258,600; U.S. Pat. No. 6,114,656; U.S. Pat. No. 6,336,583; U.S. Pat. No. 6,392,193; U.S. Pat. No. 6,565,678; U.S. Patent Publication No. 20020043305; and/or U.S. Patent Publication No. 20020134452. Further, additional information may be found in Denys R. M., “Wide Plate Test and its Application to Acceptable Defect” in Proceedings, Welding Institute Conference on Fracture Toughness Testing and Materials, Interpretation and Application, London, June 1982; and Norman E. Dowling, “Mechanical Behavior of Materials,” Prentice Hall, Englewood Cliffs, N.J. (1993).
One embodiment of the present techniques is described as a method of enhancing the strain capacity of a weld joint. In this method, a strength weld between at least two members using a first welding process and a first weld metal is formed. Then, at least one strain weld is formed by depositing a second weld metal adjacent to the strength weld using a second welding process. The at least one strain weld is configured to form a weld joint having a specific minimum height and width to handle tensile strain to a specific strain capacity.
In an alternative embodiment, a system is described. The system includes a first tubular member, a second tubular member abutted to the first tubular member and a weld joint coupling the first tubular member with the second tubular member. The weld joint having a strength weld and a plurality of strain welds, wherein the weld joint has a specific minimum height and width to handle tensile strain up to a specific strain capacity.
In another alternative embodiment, an apparatus is described. The apparatus includes a processor, a memory coupled to the processor and an application accessible by the processor. The application is configured to obtain a predetermined strain capacity for a well completion; obtain a pipe segment material and weld metal material for a weld joint; utilize strain capacity data to determine the geometry of a weld joint based on the pipe segment material and weld metal material; and provide the geometry of a weld joint to a user.
In another embodiment of the present techniques a method of enhancing the strain capacity of a weld joint is described. In this method, a specific minimum height and width of at least one strain weld to handle tensile strain to a specific strain capacity is determined. Then, a strength weld between at least two members using a first welding process and a first weld metal is formed. Then, the at least one strain weld is formed by depositing a second weld metal adjacent to the strength weld using a second welding process.
In a further embodiment of the present techniques a method of determining a weld geometry is disclosed. The method includes determining a specific strain demand on the members to be welded, then determining the most appropriate pipe segment material. A weld material and welding process are selected, then a specific minimum height and width of at least one strain weld is determined to achieve a strain capacity up to the determined specific strain demand.
The foregoing and other advantages of the present technique may become apparent upon reading the following detailed description and upon reference to the drawings in which:
In the following detailed description, the specific embodiments of the present invention will be described in connection with its preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present techniques, this is intended to be illustrative only and merely provides a concise description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, the invention includes all alternatives, modifications, and equivalents falling within the true scope of the appended claims.
The present technique is directed to a method of forming weld joints that enhance strain capacity relative to conventional welding procedures. Under the present technique, various overlaying welds or strain welds may be utilized with strength welds, cap welds and/or toughness welds to alter the geometry of the weld joint. Based on this geometry, which includes a specific height and width, the weld joint may be able to handle large strains, up to and beyond the pipe's strain capacity, in the direction of the axis of the welded members, such as pipe segments. Accordingly, the addition of these strain welds may be utilized to enhance strain capacity.
Turning now to the drawings, and referring initially to
To transport the fluids from the tree 104 and surface facility 102, pipe segments or pipelines 112 may be utilized. As may be appreciated, the pipelines 112 may include different sections of tubular members or pipe that are welded together to form the pipelines 112. The pipe segments may be fabricated from steel, steel alloys and other materials to provide specific strengths. The range of material strength may vary from a specified minimum yield of 35 kilo pounds per square inch (ksi) to 120 ksi. The properties of pipes commonly used for pipelines are described in linepipe standards such as American Petroleum Institute (API) 5L, International Organization for Standardization (ISO) 3183 and Canadian Standards Association (CSA) Z245.1.
To provide fluid communication between different locations, such as the tree 104 and the surface facility 102 or from the surface facility to the location of the end user, the pipeline 112 may have to span large distances. Accordingly, the pipelines 112 may be affected by various forces that may damage or rupture the pipelines 112. For instance, as noted above, the pipeline 112 may be located in regions where large ground deformations are possible, due to seismic activity, such as the pipeline being located near fault lines, and/or environmental factors, such as the freezing and thawing in arctic regions.
Further, various load conditions, such as force-controlled load conditions and deformation-controlled load conditions, may be applied to the pipeline 112, such as internal pressures, external pressures, bending moments, tensile load thermal load, and large ground deformations, for example. In particular, if the pipeline 112 is subjected to predominantly force-controlled load conditions, an allowable stress design methodology may be utilized to design the pipeline 112. In this example, the pipeline 112 is configured or designed to ensure that the level of stress in the pipe segments and weld joints remains below the yield strength of the pipe segment material. Alternatively, if the pipeline 112 is subjected to predominantly displacement controlled load conditions; a strain based design methodology may be utilized to design the pipeline 112. In this case, the pipeline is designed to ensure that the level of strain in the pipeline remains below the strain capacity of the pipe segments and weld joints.
Due to these conditions, different materials may be selected for the pipe segments and weld joints of the pipelines 112 to ensure that sufficient strain capacity is available to meet or exceed a predetermined strain demand. The strain capacity is the capacity of the pipeline 112 to sustain tensile strains when being stretched. In addition, the pipe segments and weld joints of the pipelines 112 may also be configured to ensure that the pipeline 112 has sufficient strength and fracture toughness.
Typically, the strain capacity of the pipeline 112 may further be limited by the weld joints because the weld joints may contain imperfections that limit the tensile strains that may be sustained by the weld joints. These imperfections may be flaws, such as cracks or spaces, formed in or between the weld joints and/or in or between the weld joints and the pipe segments. The strain capacity of the weld joints, which are sensitive to the flaw size, may decrease with an increase in flaw size. Therefore, the strain capacity may be characterized as a function of flaw size.
Accordingly, to address the strain capacity, weld joints are inspected during pipeline construction, and flaws larger than the specific size are removed or repaired. Flaw size is typically defined by flaw length and flaw depth. Because the removal and repair of these weld flaws is costly, construction costs may be reduced by increasing the acceptable flaw size to reduce the number of repairs. Accordingly, one approach is to increase the strain capacity of the pipeline to produce a girth weld metal with higher yield strength than the pipe segment material. The percentage difference in strength between the girth weld metal and the pipe segment material is called overmatching. Therefore, to enable weld joints to tolerate large plastic strains, designers select pipe, girth welding consumables and processes that produce a weld joint that has sufficient strength to overmatch the strength of the pipe segments and sufficient fracture toughness to prevent fracture. However, as the strength of pipe segment materials increases, it becomes more difficult to consistently overmatch the strength of the pipe segments because the strength produced by available weld materials is limited. For instance, with X120 and X100 grade linepipes, it may be difficult to consistently achieve overmatching girth welds that are capable of sustaining large plastic strains.
In addition, the welding processes may produce a softened heat affected zone (HAZ) between the weld and pipe segment interface. The HAZ is a portion of the pipe segment with the microstructure altered and the mechanical properties changed by the heat from the welding process. The softened HAZ may result in the formation of strain localization at lower overall pipe deformations. This localized strain in the HAZ reduces the strain capacity of welded pipelines. In addition, the welding process may produce local brittle zones (LBZs) in the HAZ that are susceptible to brittle fracture. The formation and characteristics of LBZs are described in detail in D. P. Fairchild, “Welding Metallurgy of Structural Steels”, Proceedings of an International Symposium on Welding Metallurgy of Structural Steels, The Metallurgical Society, Inc., February 1987, pages 303-318.
To address this type of failure, various other techniques have utilized overlays to reduce effects of flaws within the HAZ. For example, as discussed in U.S. Pat. No. 6,336,583, which is hereby incorporated by reference, describes a method for producing welded joints having improved low temperature toughness. In this patent, a weld overlay is utilized to strengthen the weld by applying toughness welds adjacent to a weld cap, wherein the toughness welds are placed over the weld toe of the primary strength weld. The toughness welds are utilized to increase resistance to brittle fracture, which may be near cryogenic temperatures.
As an example how U.S. Pat. No. 6,336,583 may be applied to a pipeline weld,
However, the toughness welds 218 and 220 do not address the susceptibility of plastic collapse in a structural member containing flaws which are placed under larger deformation loads. If the material fracture toughness is sufficient to avoid brittle fracture, the toughness welds 218 and 220 are not utilized to prevent brittle fracture at a stress and strain range below the yield point of the material, which is discussed further in
Elastic deformation involves the stretching of chemical bonds. When a material that is elastically deformed is unloaded, the deformation disappears and the material returns to its original shape and size. With steels, stress and strain are proportional when the material is deformed elastically. However, if a material is deformed plastically, atoms in the material are rearranged, which results in permanent deformation that does not disappear when the load is removed. For example, many standards describe a tension test and a general description of the tests, which is described in
In
If a steel or steel alloy pipe is pulled in tension, the longitudinal stress and longitudinal strain responds in a similar fashion as the curve represented in
The various loads applied to a pipeline may include pure force-controlled load conditions to pure deformation-controlled load conditions, as discussed above. If the pipeline is subjected to predominantly force-controlled load conditions an allowable stress design methodology is followed. In this case, the designer provides a pipeline to ensure that the level of stress in the pipeline remains below the yield strength of the pipeline material. However, if the pipeline is subjected to predominantly displacement-controlled load conditions, a strain based design methodology may be followed.
In the case of deformation-controlled load conditions, the designer calculates the strain demand that will be imposed on the pipeline due to ground movement. Strain demand is the total tensile strain that may be imposed on pipe segment due to the application of bending, tensile, thermal and pressure loads. Accordingly, to address the strain demand, the pipeline 112 may be configured to operate beyond the yield strength of the pipeline material in a strain-based design. That is, the pipeline material may be configured to be plastic and handle forces above the material yield point and strains above the elastic deformation limit. Examples of different forces experienced by pipelines in service, which cause the tensile plastic deformation of pipelines, may include displacements arising from fault movements, slope instabilities, frost heave, thaw settlement, and/or interaction with a reel barge in offshore pipeline installations.
Beneficially, the present techniques are utilized to provide a method that prevents or delays the onset of plastic collapse in under-matched (pipe strength greater than weld metal strength), even-matched (pipe strength equal to weld metal strength), or over-matched (pipe strength less than weld metal strength) girth welds, which may be in the presence of a softened HAZ thereby increasing the strain capacity of a pipeline that contains flaws in the girth weld or girth weld HAZ. These techniques also reduce the potential of brittle fracture. As such, an enhanced welding method is discussed further in
The flow chart begins at block 402. At block 403, a strain demand for the pipeline 112 is determined. The determination of the strain demand may include experimental, experiential, or measured data. More specifically, it may involve sampling of soil conditions, characterizing potential seismic activity, predicting frost heave or thaw settlement due to temperature change, and identifying fault lines crossing the planned pipeline route. The geotechnical data and pipeline operating conditions are used as input for structural analyses to estimate the total strain demand that may be imposed on a pipeline.
At block 404, the pipe segment material and weld material are determined. The determination of the pipe material may include factors such as strength, plasticity, availability and economics. The pipe segment material may include steel or steel alloys ranging from Grade B to X120. The weld material may be selected based on the specific pipe material and welding process. For instance, the weld materials may include ferritic welding consumables, austenitic welding consumables and any combination thereof. Weld materials and processes are preselected to produce a range of mechanical properties including yield strength, ultimate strength and fracture toughness. The materials and processes are selected to provide a specific strain capacity. This selection may be based on prior experience and access to public or proprietary databases of weld performance.
At block 406, trial welds are produced and welded pipe samples are prepared for testing. Strain capacity is measured experimentally by conventional approaches. Typically, multiple welds are produced with a range of properties. Pipeline engineers may qualify welding procedures based on measured strain capacity of the welded pipe specimens.
The strain capacity is compared to the calculated strain demand. For example, in an arctic environment, the strain capacity may provide for a certain amount of movement for the pipeline 112 between two fixed locations, such as pipeline mounts. Alternatively, within a seismically active region, the strain capacity may provide for a certain amount of movement of the pipeline due to a seismic event, such as an earthquake. The strain capacity may be configured to be greater than the strain demand. The margin between strain capacity and strain demand is determined by the pipeline designer to ensure sufficient safety. Reliability methods may be used to determine the reliability of a strain based design. In the case of higher strength steels, such as X80 and higher grades, no welding consumable or procedure may be available to produce the required strain capacity. Accordingly, additional weld overlays may be utilized to increase pipeline strain capacity.
At block 408, the geometry of the overlay welds or strain welds that form the weld joint are determined. The determination of the overlay weld caps may include experience, experimentation and calculations. As an example, the geometry of the overlay weld caps may utilize a numerical simulation model to determine the influence of the geometry on the plastic response of the pipeline welded joint. Additional experimentation may be performed to qualify the overlay weld geometry to ensure sufficient strain capacity.
With the geometry of the overlay welds determined, different welds may be applied to the pipe segments as shown in blocks 410-416. To begin, a strength weld is formed between two pipe segments, as shown in block 410. The welding process that forms the strength weld may include fusion welding processes, such as gas tungsten arc welding, gas metal arc welding, shielded metal arc welding, submerged arc welding, fluxed core arc welding, plasma arc welding, and any combination thereof. At block 412, a weld cap may be formed overlaying the strength weld. The welding process to form the weld cap may include any of the welding processed discussed above, which may be the same or different from the processes utilized in block 410. Then, toughness welds may be formed adjacent to the cap weld, as shown in block 414. Again, the toughness welding process may include any of the welding processes discussed above, which may be the same or different from the processes utilized in blocks 410 and 412. Finally, based on the determined geometry, strain or overlay welds are formed adjacent to and overlaying the toughness welds and weld cap, as shown in block 416. The welding process utilized to form the strain welds may include any of the welding processes discussed above, which may be the same or different from the processes utilized in blocks 410, 412 and 414, and be applied as individual overlay passes or as a single weld overlay. The strain welds are discussed and shown in greater detail in
In
Because the strain welds 504-514 are configured to be a specific width and height, the weld joint 500 may enhance the strain capacity of the pipe segments 202 and 204 over other welding techniques. That is, the geometry of the strain welds 504-514 is adjusted to provide a predetermined strain capacity, assuming that the pipe segment material has sufficient strain capacity to meet the estimated strain demand. For example, the geometry of the weld joint 500 is defined by a minimum height 530 and a width 538 formed by the cap weld 216 and strain welds 504-514. For instance, as shown in
In addition to increasing the strain capacity, the configuration of strain welds 504-514 may be beneficial in reducing or preventing brittle fracture of the weld joint 500. Each overlay of additional strain welds 504-514 eliminates the previous weld toe and creates a new weld toe a distance away from the previous weld toe. The distance depends on the width 534 of the strain welds 504-514 passes and the spacing distance 536 between each of the strain weld passes. For instance, in the weld joint 500, the new weld toes 522 are formed between the outer surface 224 and the additional strain welds 508 and 514. As a result, the HAZ formed by the strain weld passes are oriented along a plane that is parallel to the direction 560 of the applied load.
In contrast, HAZ formed by the primary strength weld is oriented along a plane 540 that forms an angle 544 less than 45 degrees measured from a plane 548 perpendicular to the applied load, which is shown in
Ductile materials generally fail due to plastic collapse on planes of maximum shear stress. The plane of maximum shear is oriented at an angle 544 forming 45 degrees from the plane 548 perpendicular to the direction 560 of applied tensile stress. The shear stress component increases from 0 in a plane 548 oriented perpendicular to the applied load and increases to a maximum on a plane that forms an angle 544 of 45 degrees to the direction 560 of the applied load. The susceptibility to plastic collapse is increased in a softened HAZ, due to the lower strength of the material located in the HAZ. Therefore, it is not necessary for the plane containing the HAZ to be oriented along the plane of maximum shear to cause plastic collapse within the HAZ. Typically, the plane containing the HAZ is oriented at an angle 544 less than 45 degrees to the plane 548 where the component of shear stress is non-zero. The HAZ formed by the strain welds are oriented along a plane that is parallel to the direction 560 of applied load. The shear stress in this plane is zero. Therefore, the susceptibility to plastic collapse is reduced in the HAZ formed by the additional strain welds. The additional weld overlays delay the onset of plastic collapse through two mechanisms. Firstly, the overlays provide additional strength to delay the onset of plastic collapse in the primary HAZ, and secondly the overlays change the direction of the HAZ into a plane parallel to the applied load. Through wall yielding is delayed because the HAZ formed by the overlay welds are oriented along a direction that does not promote plastic deformation. This mechanism is illustrated with a numerical simulation, which is discussed further in
Accordingly, based on the width 538 and the minimum height 530, the number of overlays or strain welds 504-514 may be adjusted as the overlay width 534 and overlay spacing distance 536 changes with the preferred welding process and consumable used during the welding process. It should be noted that additional overlays of strain welds may be utilized to ensure that a minimum height requirement is satisfied by providing additional layers over the cap weld and toughness welds. Preferably, the number of overlays may be adjusted to satisfy predetermined height and a total overlay width 538 to obtain a desired strain capacity. The geometry requirements may be determined through experimentation with various geometrics and strain capacities.
As example of how the geometry influences the strain capacity of pipe segments,
The geometric profiles 600, 610, 620 and 630, which are discussed below, are cross sections taken from material next to one edge of a wide plate of the pipe segments 202 and 204. The profiles 600, 610, 620 and 630 of the weld joints change across the width of the wide plates. The reinforcement geometry of the weld joints in these profiles is summarized in Table 1, as shown below:
It should be noted that the normalized strain capacity in Table 1 may be represented by the following equation:
In this equation, the measured strain capacity is the strain capacity obtained from a wide plate test conducted on each of the girth weld profiles 600, 610, 620 and 630, while the measured strain capacity of a conventional weld joint is the strain capacity obtained from a conventional girth weld represented by profile 600.
In the
From these different geometry profiles 600, 610, 620 and 630, the minimum strain height and strain width are directly associated with the measured increase in strain capacity, as shown in Table 1. For instance, the normalized strain capacity increased from 1.0 to 2.3 as the profile was changed from profile 600 to profile 630.
As a result, weld joints formed with the overlay or strain welds prevent or delay the onset of plastic collapse in under-matched or even-matched girth welds in the presence of a softened HAZ thereby increasing the strain capacity of a pipeline, such as pipeline 112 that contains flaws in the weld joints or HAZ.
It should be noted that the present techniques may be beneficial in a variety of applications that include welded joints configured to sustain large strains in the direction of the axis of the pipe or abutting members. For instance, the preferred application of the present techniques may include pipelines, as discussed above, which include high strength steels for which available welding consumables create girth welds that do not overmatch the linepipe strength or only overmatch the linepipe strength an amount insufficient to achieve the required strain capacity. However, the present techniques enhance the strain capacity of pipelines where the weld material is stronger than the pipe segment material. That is, the present techniques are not limited to higher strength steels, but provide a secondary method to improve strain capacity for X80 and lower grade materials. In particular, lower grade materials with girth weld overmatching may utilize the present techniques to enhance strain capacity if a softened HAZ is present. Additional weld overlays could be used to enhance the performance of overmatched girth welds.
In addition, it should also be noted that the strain welds may be utilized with toughness welds. For instance, the first two overlay welds 504 and 510 of
Furthermore, the present techniques also provides a method to increase the strain capacity of an existing pipelines or pipe segments where the strain demand may have increased over the life of the pipeline or may not have been appropriately accounted for during its original design and construction and the existing girth weld properties are not adequate to meet the required strain demand. That is, the present techniques may be utilized to rework existing pipelines to enhance the strain capacity and resistance to brittle failure. Because the welding techniques describes are readily applied in field conditions, it is possible to excavate existing pipelines and add additional weld overlays next to the primary welds as shown in
Moreover, it should be noted that in some embodiments of the present techniques, the strength weld and overlay welds, such as the toughness and strain weld materials, may be the same material. In other embodiments, the strength weld and overlay welds may be different for different applications to improve resistance to brittle fracture in the primary weld and optimize strength in the overlay welds. Additionally, the welding processes utilized for the strength weld, weld cap, toughness welds and/or strain welds may also be the same or different welding processes. Also, it should also be noted that the welding process may weld material along the same longitudinal axis or different axes of the pipe segments. For instance, the strength weld may be welded perpendicular to the abutting pipe segments, while the cap weld, toughness weld and strain welds may be welded along the same axis of the abutting pipe segments. Further, it is noteworthy that the welds may be disposed around an inside circumference of the abutting pipe segments.
In addition, the foregoing embodiments have been described in terms of a preferred embodiment. However, it should be understood that other modifications or combinations of portions or aspects of the above described embodiment may be derived without departing from the scope of the invention. These variations include but are not limited to the use of beveling and joining-edge preparation techniques, bevel shape, welding processes and number of weld overlays required to meet the minimum reinforcement geometry.
Further, in another alternative embodiment, blocks 404-408 may be performed with a processing device, such as a computer, server, database or other processor-based device. The processing device may include an application that interacts with a user or automatically generates various weld geometries for the user. The application may be implemented as a spreadsheet, program, routine, software package, or additional computer readable software instructions in an existing program, which may be written in a computer programming language, such as Visual Basic, Fortran, C++, Java and the like. Of course, the processing device may include memory, such as hard disk drives, floppy disks, CD-ROMs and other optical media, magnetic tape, and the like, for storing the application. The processing device may include a monitor, keyboard, mouse and other user interfaces for interacting with a user.
As an example of the operation of the processing device, the user may utilize an application to specify the strain capacity for a weld joint or section of a pipeline, as shown in block 404. The application may be configured to obtain a predetermined strain capacity for a pipeline by providing a user with the ability to enter a strain capacity into the processing device. Then, the application may obtain a pipe segment material and weld metal material for a weld joint. The materials information may again be provided from a user, provided from the application for selection by the user from a list of available materials (i.e. through a graphical user interface or in an Excel spreadsheet), or selected by the application based on the strain capacity. With the pipe segment material and weld metal material, the application may utilize strain capacity data to determine the geometry of a weld joint. The strain capacity data may include previous determined strain capacities that are based on experimental data, modeling data, and/or measured data. This strain capacity data may be associated with different geometries, pipe segment material and/or weld metal material. Once determined, the geometry of the weld joint may be provided to a user via a display or a report.
While the present techniques of the invention may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown by way of example. However, it should again be understood that the invention is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present techniques of the invention are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/752,785, filed 22 Dec. 2005.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/041490 | 10/23/2006 | WO | 00 | 9/15/2009 |