Welding system and method for shielded welding wires

Information

  • Patent Grant
  • 11285559
  • Patent Number
    11,285,559
  • Date Filed
    Monday, November 30, 2015
    9 years ago
  • Date Issued
    Tuesday, March 29, 2022
    2 years ago
Abstract
A welding system and method provide for generating a controlled waveform for welding power output, the waveform comprising a plurality of successive peak phases designed to avoid or reduce micro-arcing when used with metal-cored or flux-cored electrode wires. Ratios of the background current and voltage levels are elevated as compared to conventional techniques, with the levels in most cases exceeding 50% of the peak currents and voltages. Transitions between background and peak levels of current and voltage are also smoothed, and the duration of the peak phase as compared to the duration of each pulse cycle is elongated to further reduce micro-arcing.
Description
BACKGROUND

The invention relates generally to welders, and more particularly to a welder configured to perform a welding operation in which a cyclic waveform is applied to welding wire to avoid or minimize micro-arcing between the welding wire and other components, such as the welding torch contact tip.


A wide range of welding systems and welding control regimes have been implemented for various purposes. In continuous welding operations, gas metal arc welding (GMAW), and more specifically, metal inert gas (MIG) techniques allow for formation of a continuing weld bead by feeding welding wire electrode shielded gas (typically an inert gas or gas containing inert agents) from a welding torch. Electrical power is applied to the welding wire and a circuit is completed through the workpiece to sustain an arc that melts the wire and the workpiece to form the desired weld.


Advanced forms of MIG welding are based upon generation of cyclic pulses that allow for the desired melting of the welding wire and the workpiece, while also providing the desired deposition of wire material in the weld. Increasingly sophisticated pulsed welding regimes are being developed that are adapted to specific materials, conditions, workpiece materials and configurations, shielding technologies, and so forth. One type of welding wire electrode that has gained increasing acceptance has a sheath or shell that surrounds a core material. Both may be made of carefully selected materials to provide for flow of the material, combined metallurgy, and other useful characteristics both during the welding process and in the resulting weld.


There continues to be a need, however, for welding processes that are adapted to specific welding wire electrodes so that the welding process may be optimized and high quality welds may be consistently produced.


BRIEF DESCRIPTION

The present disclosure provides welding systems and methods designed to respond to such needs. In accordance with an exemplary implementation, a welding method comprises generating a control waveform for welding power output, the waveform comprising a plurality of successive peak phases of voltage and current, followed by a transition phase, followed by a background phase of voltage and current, and regulating each background phase such that a ratio of background current to peak current is at least approximately 25%, and a ratio of background voltage to peak voltage is at least approximately 50%.


In accordance with other aspects, a welding method is provided that comprises generating a control waveform for a cyclically pulsed welding regime, the waveform comprising a plurality of successive peak phases of voltage and current, followed by a transition phase, followed by a background phase of voltage and current, providing welding power to a welding wire electrode at desired voltage and current levels based upon the waveform, the welding wire electrode comprising a metal-cored or flux-cored wire, and regulating each background phase and each peak phase to reduce micro-arcing between the welding wire electrode and other components, such as the welding torch contact tip.


The disclosure also relates to welding systems, and, for example, to a welding system that comprises a power supply configured to convert electrical power from a source to a controlled pulsed waveform for performing a welding operation, and control circuitry coupled to the power supply and configured to control generation of the controlled pulsed waveform, the waveform comprising a plurality of successive peak phases of voltage and current, followed by a transition phase, followed by a background phase of voltage and current, and wherein the control circuitry is configured to regulate each background phase such that a ratio of background current to peak current is at least approximately 25%, and a ratio of background voltage to peak voltage is at least approximately 50%.





DRAWINGS


FIG. 1 is a diagrammatical representation of an exemplary MIG welding system illustrating a power supply coupled to a wire feeder for performing pulsed welding operations in accordance with aspects of the present techniques;



FIG. 2 is a diagrammatical representation of exemplary control circuitry components for a welding power supply of the type shown in FIG. 1;



FIG. 3 is a flow chart illustrating certain control logic in implementing a welding regime in accordance with the present disclosure; and



FIG. 4 is a graphical representation of voltages and currents in an exemplary pulse of a welding regime in accordance with the present disclosure.





DETAILED DESCRIPTION

Turning now to the drawings, and referring first to FIG. 1, an exemplary welding system is illustrated as including a power supply 10 and a wire feeder 12 coupled to one another via conductors or conduits 14. In the illustrated embodiment the power supply 10 is separate from the wire feeder 12, such that the wire feeder may be positioned at some distance from the power supply near a welding location. However, it should be understood that the wire feeder, in some implementations, may be integral with the power supply. In such cases, the conduits 14 would be internal to the system. In embodiments in which the wire feeder is separate from the power supply, terminals are typically provided on the power supply and on the wire feeder to allow the conductors or conduits to be coupled to the systems so as to allow for power and gas to be provided to the wire feeder from the power supply, and to allow data to be exchanged between the two devices.


The system is designed to provide wire, power and shielding gas to a welding torch 16. As will be appreciated by those skilled in the art, the welding torch may be of many different types, and typically allows for the feed of a welding wire and gas to a location adjacent to a workpiece 18 where a weld is to be formed to join two or more pieces of metal. A second conductor is typically run to the welding workpiece so as to complete an electrical circuit between the power supply and the workpiece. As will be appreciated by those skilled in the art, the torch will typically include a contact tip (not separately shown) that will permit completing an electrical circuit between the power source (and cabling) and the advancing welding wire (electrode). It has been found that micro-arcing can occur between the wire and the contact tip that can be detrimental to the torch and that may degrade the resulting welding operation. The techniques described below address such issues and reduce or avoid such micro-arcing.


The system is designed to allow for data settings to be selected by the operator, particularly via an operator interface 20 provided on the power supply. The operator interface will typically be incorporated into a front faceplate of the power supply, and may allow for selection of settings such as the weld process, the type of wire to be used, voltage and current settings, and so forth. In particular, the system is designed to allow for MIG welding with various steels, aluminums, or other welding wire that is channeled through the torch. These weld settings are communicated to control circuitry 22 within the power supply. The system may be particularly adapted to implement welding regimes designed for certain electrode types.


The control circuitry, described in greater detail below, operates to control generation of welding power output that is applied to the welding wire for carrying out the desired welding operation. In certain presently contemplated embodiments, for example, the control circuitry may be adapted to regulate a pulsed MIG welding regime that promotes the melting and joining of the welding wire and workpieces, while avoiding micro-arcing between the welding wire and the welding torch contact tip. The pulsed welding regime implemented is adapted for welding wires that may be particularly subject to such micro-arcing, such as flux-cored or metal-cored welding wires. Such wires are described, for example, in U.S. Publication No. 2013/0313240, entitled “Systems and Methods for Low-Manganese Welding Wire”, filed by Amata et al. on Mar. 15, 2013; U.S. Publication No. 2014/0083981, entitled “Systems and Methods for Low-Manganese Welding Wire”, filed by Amata et al. on Nov. 21, 2013; U.S. Pat. No. 9,895,774, entitled “Systems and Methods for Low-Manganese Welding Alloys”, filed by Barhorst et al. on Apr. 30, 2014; and U.S. Pat. No. 9,844,838, entitled “Systems and Methods for Low-Manganese Welding Alloys”, filed by Barhorst et al. on Aug. 12, 2014, which are hereby incorporated into the present disclosure by reference. Moreover, certain wires of this type are available from Miller Electric Mfg. Co. under the commercial designation “Hobart Element™”. Such wires may have a low manganese content, which is believed to increase the likelihood of micro-arcing and also seems to affect the wet-out and flow of the molten material. The welding techniques address these issues, particularly when such wires are used. It should be noted, however, that the present techniques may be used with a wide variety of welding wires, including solid wires. It will be particularly useful for wires, solid or shielded, that do not respond well to pulsed welding regimes and/or for which the material transfer could be improved, wet-out and flowability can be enhanced, and so forth.


As described more fully below, the present techniques allow for control successive voltage and/or current pulses to allow for the control of the welding arc, and to transition smoothly between phases (e.g. peak and background phases) of the pulsed welding regime, while avoiding micro-arcing. In particular, in certain presently contemplated embodiments, voltage peaks in waveforms are regulated to be longer than conventional peak phases, while the background phase generally has a higher current level as compared to the peak level than conventional regimes. Also, transition from the peak is substantially smoothed to avoid abrupt changes in the current and voltage. Certain of these may be adapted for particular wire sizes, and when implemented, specific control parameters defining the peak, background and transitions may be directed to both the type and size of wire (as well as other welding parameters, such as wire feed speed).


The control circuitry is coupled to power conversion circuitry 24. This power conversion circuitry is adapted to create the output power, such as pulsed waveforms that will ultimately be applied to the welding wire at the torch. Various power conversion circuits may be employed, including choppers, boost circuitry, buck circuitry, inverters, converters, and so forth. The configuration of such circuitry may be of types generally known in the art in and of itself. The power conversion circuitry 24 is coupled to a source of electrical power as indicated by arrow 26. The power applied to the power conversion circuitry 24 may originate in the power grid, although other sources of power may also be used, such as power generated by an engine-driven generator, batteries, fuel cells or other alternative sources. Finally, the power supply illustrated in FIG. 1 includes interface circuitry 28 designed to allow the control circuitry 22 to exchange signals with the wire feeder 12.


The wire feeder 12 includes complimentary interface circuitry 30 that is coupled to the interface circuitry 28. In some embodiments, multi-pin interfaces may be provided on both components and a multi-conductor cable run between the interface circuitry to allow for such information as wire feed speeds, processes, selected currents, voltages or power levels, and so forth to be set on either the power supply 10, the wire feeder 12, or both.


The wire feeder 12 also includes control circuitry 32 coupled to the interface circuitry 30. As described more fully below, the control circuitry 32 allows for wire feed speeds to be controlled in accordance with operator selections, and permits these settings to be fed back to the power supply via the interface circuitry. The control circuitry 32 is coupled to an operator interface 34 on the wire feeder that allows selection of one or more welding parameters, particularly wire feed speed. The operator interface may also allow for selection of such weld parameters as the process, the type of wire utilized, current, voltage or power settings, and so forth. The control circuitry 32 is also coupled to gas control valving 36 which regulates the flow of shielding gas to the torch. In general, such gas is provided at the time of welding, and may be turned on immediately preceding the weld and for a short time following the weld. The gas applied to the gas control valving 36 is typically provided in the form of pressurized bottles, as represented by reference numeral 38. It should be noted that with certain wires, shielding gases may not be required, or mixes of shielding gases may be varied based on the types and requirements of the wire.


The wire feeder 12 includes components for feeding wire to the welding torch and thereby to the welding application, under the control of control circuitry 32. For example, one or more spools of welding wire 40 are housed in the wire feeder. Welding wire 42 is unspooled from the spools and is progressively fed to the torch. The spool may be associated with a clutch 44 that disengages the spool when wire is to be fed to the torch. The clutch may also be regulated to maintain a minimum friction level to avoid free spinning of the spool. A feed motor 46 is provided that engages with feed rollers 48 to push wire from the wire feeder towards the torch. In practice, one of the rollers 48 is mechanically coupled to the motor and is rotated by the motor to drive the wire from the wire feeder, while the mating roller is biased towards the wire to maintain good contact between the two rollers and the wire. Some systems may include multiple rollers of this type. Finally, a tachometer 50 may be provided for detecting the speed of the motor 46, the rollers 48, or any other associated component so as to provide an indication of the actual wire feed speed. Signals from the tachometer are fed back to the control circuitry 32, such as for calibration as described below.


It should be noted that other system arrangements and input schemes may also be implemented. For example, the welding wire may be fed from a bulk storage container (e.g., a drum) or from one or more spools outside of the wire feeder. Similarly, the wire may be fed from a “spool gun” in which the spool is mounted on or near the welding torch. As noted herein, the wire feed speed settings may be input via the operator input 34 on the wire feeder or on the operator interface 20 of the power supply, or both. In systems having wire feed speed adjustments on the welding torch, this may be the input used for the setting.


Power from the power supply is applied to the wire electrode, typically by means of a welding cable 52 in a conventional manner. Similarly, shielding gas, if used, is fed through the wire feeder and the welding cable 52. During welding operations, the wire is advanced through the welding cable jacket towards the torch 16. Within the torch, an additional pull motor 54 may be provided with an associated drive roller, particularly for aluminum alloy welding wires. The motor 54 is regulated to provide the desired wire feed speed as described more fully below. A trigger switch 56 on the torch provides a signal that is fed back to the wire feeder and therefrom back to the power supply to enable the welding process to be started and stopped by the operator. That is, upon depression of the trigger switch, gas flow is begun, wire is advanced, power is applied to the welding cable 52 and through the torch to the advancing welding wire. These processes are also described in greater detail below. Finally, a workpiece cable and clamp 58 allow for closing an electrical circuit from the power supply through the welding torch, the electrode (wire), and the workpiece for maintaining the welding arc during operation.


It should be noted throughout the present discussion that while the wire feed speed may be “set” by the operator, the actual speed commanded by the control circuitry will typically vary during welding for many reasons. For example, automated algorithms for “run in” (initial feed of wire for arc initiation) may use speeds derived from the set speed. Similarly, various ramped increases and decreases in wire feed speed may be commanded during welding. Other welding processes may call for “cratering” phases in which wire feed speed is altered to fill depressions following a weld. Still further, in pulsed welding regimes, the wire feed speed may be altered periodically or cyclically.



FIG. 2 illustrates an exemplary embodiment for the control circuitry 22 designed to function in a system of the type illustrated in FIG. 1. The overall circuitry, designated here by reference numeral 60, includes the operator interface 20 discussed above and interface circuitry 28 for communication of parameters to and from downstream components such as a wirefeeder, a welding torch, and various sensors and/or actuators. The circuitry includes processing circuitry 62 which itself may comprise one or more application-specific or general purpose processors, designed to carry out welding regimes, make computations for waveforms implemented in welding regimes, and so forth. The processing circuitry is associated with driver circuitry 64 which converts control signals from the processing to drive signals that are applied to power electronic switches of the power conversion circuitry 24. In general, the driver circuitry reacts to such control signals from the processing circuitry to allow the power conversion circuitry to generate controlled waveforms for pulsed welding regimes of the type described in the present disclosure. The processing circuitry 62 will also be associated with memory circuitry 66 which may consist of one or more types of permanent and temporary data storage, such as for providing the welding regimes implemented, storing welding parameters, storing weld settings, storing error logs, and so forth.


More complete descriptions of certain state machines for welding are provided, for example, in U.S. Pat. No. 6,747,247, entitled “Welding-Type Power Supply With A State-Based Controller”, issued to Holverson et al. on Sep. 19, 2001; U.S. Pat. No. 7,002,103, entitled “Welding-Type Power Supply With A State-Based Controller”, issued to Holverson et al. on May 7, 2004; U.S. Pat. No. 7,307,240, entitled “Welding-Type Power Supply With A State-Based Controller”, issued to Holverson et al. on Feb. 3, 2006; and U.S. Pat. No. 6,670,579, entitled “Welding-Type System With Network And Multiple Level Messaging Between Components”, issued to Davidson et al. on Sep. 19, 2001, all of which are incorporated into the present disclosure by reference.



FIG. 3 generally illustrates logic for a welding regime in which waveforms are controlled to control short circuit characteristics. The logic, indicated generally by reference numeral 76 may be thought of as beginning with performing a pulsed welding process, as indicated by block 78. Such a process may be implemented by closed loop control of voltage applied to a welding electrode (with a circuit completed through the workpiece and advancing weld puddle), by closed loop control of current applied to the electrode, or by control of both voltage and current. In some embodiments, for example, control loops that regulate voltage in a closed loop manner may be alternated with phases of control in which current is controlled in a closed loop manner. In a presently contemplated embodiment, peak, background, and transitions in the pulsed waveform are controlled to allow for establishing and maintaining the welding arc, while avoiding micro-arcing.


At step 80, then, the parameters of the welding process, particularly the voltage and current applied to the welding wire electrode are monitored and controlled. Such monitoring will typically be done by detecting the voltage and current applied to the welding electrode, the welding torch, the weld cable, or some other point in the power stream. The voltage and current may be sampled at a much higher rate than the frequency of the pulsed welding regime. For example, each pulse cycle may be on the order of several milliseconds (e.g., 5 ms), whereas the sampling may be performed on the order of microseconds (e.g., every 50 μs). In most systems, the voltage and current sampling will occur throughout the welding process, and analysis of the voltage and/or current during welding may be done from the data collected.


At step 82 parameters of voltage and/or current peaks are computed and regulated as discussed below. In current embodiments, the parameters of voltage peaks are computed, with the system controlling welding power in a voltage-closed loop manner during the peak phase of the pulsed waveform. That is, the voltage and/or current of the peak is controlled, including the magnitude of the peak, the duration of the peak, the rate of rise to the peak, and the rate of decline from the peak. Some embodiments may control fewer than these parameters. As discussed below, the peaks are regulated to provide an extended duration peak, followed by a gradual decline in the voltage and current, to a background level where a voltage is maintained at a level of at least approximately 50% of the peak voltage. In certain presently contemplated embodiments, the peak and background phases of the pulsed welding regime are voltage closed-loop, while transitions or ramps between the peak and background phases are current closed-loop. However, other adaptations are also contemplated, such as where the entire process is current closed-loop. As indicated by reference numerals 84, 86 and 88, one or more changes may be made to the peak, background, and transition phases of the pulsed waveform used for creating and sustaining the welding arc. In general, these will be defined by a decision engine implemented from code stored in the system memory and executed by the processing circuitry. They may be set, for example, based on such factors as the process selected, the welding wire used, the size of the welding wire, and so forth. During welding, one or more of these parameters may be adjusted based on additional factors, such as wire feed speed, detected voltages and currents, welding torch position, and so forth. At step 90, the logic may loop back to continue the process control until the welder stops welding (e.g., as signaled by releasing the trigger of the welding torch).


It should be noted that while certain reference has been made to an operator and the manual control of welding, the present techniques may also be applied to automated or semi-automated welding, including by the use of welding robots. In such cases, not only is the welding regime controlled by the control circuitry, but positioning, movement and other controls of the welding torch (and/or the workpiece) may also be controlled.



FIG. 4 illustrates an exemplary waveform 92 for the improved process, displayed over time 94. Here again, the process may include alternating periods or phases of voltage-closed loop control and current-closed loop (e.g., ramp) control, in this case, the peaks being voltage-closed loop controlled, followed by switching to current-closed loop control. In this process, molten metal from the electrode is transferred to the advancing weld puddle in a pulsed process in which micro-arcing is minimized by appropriate regulation of the peaks and backgrounds and the transitions between them.


As shown in FIG. 4, current (and voltage) pulses are formed in the welding process that generally correspond in time, with the current pulse only being shown in FIG. 4. Here again, in some embodiments the current may be closed-loop controlled during transition (ramp) phases of the waveform, while voltage closed-loop control may be used during peak and background phases. The waveform illustrates that the current is held at a relatively stable level during the background phase 96 (e.g., by regulation of voltage, or current, or both), followed by a ramp up of current during the background-to-peak phase 98. An extended peak phase is then implemented as indicated by reference numeral 100. Following the peak phase, a smooth transition phase 102 is implemented to return to the background levels.


To avoid or reduce the risk of micro-arcing, the background currents and voltages are maintained at much higher levels, as compared to the peak levels, than in conventional pulsed welding techniques. For example, for a cored welding wire having a 0.052 inch diameter, the following may be typical programmed levels, based on wire feed speed (WFS) in inches per minute (the currents “i” are in Amps, and the voltages “v” are in volts):
















WFS (ipm)
ipeak
ibkgd
vpeak
vbkgd



















75
380
40
24
15


100
400
45
25
15


150
425
80
25
17.5


200
400
120
26
19


300
380
220
28.5
24


400
400
250
31
25


500
420
280
33.5
27


600
450
310
35.5
29


700
470
330
36.5
31


800
480
350
37.5
32









Moreover, in presently contemplated embodiments, the ramp from the background phase to the peak phase is set to approximately 350 A/ms for all wire feed speeds, as is the ramp from the peak phase to the background phase. In addition, the duration of the peak phase is extended to approximately 25% of the total duration of each cyclic pulse of the regime, with extended transition phases as shown in FIG. 4. It may be observed that for most of the settings, the background-to-peak current ratios are above 25%, and in most cases above approximately 50%, and up to or in excess of approximately 70%. Similarly, the background-to-peak voltage ratios are above at least 50%, and in most cases above approximately 60%, and up to or in excess of approximately 80%.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A welding method comprising: generating a pulsed arc welding power output waveform, the pulsed arc welding power output waveform comprising a plurality of successive pulse cycles, each of the pulse cycles comprising a peak phase having a peak voltage and a peak current, followed by a transition phase, followed by a background phase having a background voltage and a background current; andregulating the background phase of each pulse cycle such that a ratio of the background current to the peak current is at least 50%, and a ratio of the background voltage to the peak voltage is at least 50%.
  • 2. The method of claim 1, wherein control of the peak phase of the waveform is performed based on closed-loop voltage control.
  • 3. The method of claim 1, wherein control of the background phase of the waveform is performed based on closed-loop voltage control.
  • 4. The method of claim 1, the ratio of the background current to the peak current is at least 70%.
  • 5. The method of claim 1, wherein the ratio of the background voltage to the peak voltage is at least 60%.
  • 6. The method of claim 1, wherein the ratio of the background voltage to the peak voltage is at least 80%.
  • 7. The method of claim 1, wherein in the transition phase a current ramp rate of 350 A/ms is implemented.
  • 8. The method of claim 1, wherein a duration of the peak phase is at least 25% of a total duration of one pulse cycle of the waveform.
  • 9. The method as defined in claim 1, further comprising outputting the pulsed arc welding power output waveform via at least one of a flux-cored electrode wire or a metal-cored electrode wire.
  • 10. The method as defined in claim 1, wherein the pulsed arc welding output waveform comprises a direct current (DC) pulsed arc welding output waveform.
  • 11. A welding method, comprising: generating a direct current (DC) pulsed arc welding power output waveform, the welding power output waveform comprising a plurality of successive pulse cycles, each of the pulse cycles comprising a peak phase having a peak voltage and a peak current, followed by a transition phase, followed by a background phase having a background voltage and a background current; andregulating the background phase of each pulse cycle such that a ratio of the background current to the peak current is at least 50%, and a ratio of the background voltage to the peak voltage is at least 50%, wherein control of the transition phase of the waveform is performed based on closed-loop current control, control of the peak phase of the waveform is performed based on closed-loop voltage control, and control of the background phase of the waveform is performed based on closed-loop voltage control.
  • 12. A welding system, comprising: a power supply configured to convert electrical power to a pulsed arc welding power output waveform for performing a welding operation; andcontrol circuitry configured to control the power supply to: generate the pulsed arc welding power output waveform, the pulsed arc welding power output waveform comprising a plurality of successive pulse cycles, each of the pulse cycles comprising a peak phase having a peak voltage and a peak current, followed by a transition phase, followed by a background phase having a background voltage and a background current; andregulate the background phase of each pulse cycle such that a ratio of the background current to the peak current is at least 50%, and a ratio of the background voltage to the peak voltage is at least 50%.
  • 13. The welding system of claim 12, wherein the control circuitry is configured to control the power supply to output the peak phase of the waveform based on closed-loop voltage control.
  • 14. The welding system of claim 12, wherein the control circuitry is configured to control the power supply to output the background phase of the waveform based on closed-loop voltage control.
  • 15. The welding system of claim 12, wherein the control circuitry is configured to control the power supply to output the transition phase of the waveform based on closed-loop current control.
  • 16. The welding system of claim 12, the ratio of the background current to the peak current is at least 70%.
  • 17. The welding system of claim 12, wherein the ratio of the background voltage to the peak voltage is at least 60%.
  • 18. The welding system of claim 12, wherein the ratio of the background voltage to the peak voltage is at least 80%.
US Referenced Citations (240)
Number Name Date Kind
2365958 Holslag Dec 1944 A
2416047 Dolan Feb 1947 A
3162751 Robbins Dec 1964 A
3195230 Peck Jul 1965 A
3288982 Haruyoshi Nov 1966 A
3362811 Heuschkel Jan 1968 A
3405248 Essers Oct 1968 A
3513289 Blake May 1970 A
3529996 David Sep 1970 A
3702390 Blake Nov 1972 A
3725054 Perfect Apr 1973 A
3725629 Vickers Apr 1973 A
3745294 Arikawa Jul 1973 A
3767891 Haverstraw Oct 1973 A
3809853 Manz May 1974 A
3843867 Helton Oct 1974 A
3848109 Zvanut Nov 1974 A
3849871 Kaunitz Nov 1974 A
3868491 Ito Feb 1975 A
3946349 Haldeman Mar 1976 A
4010309 Petersen Mar 1977 A
4045593 Hill Aug 1977 A
4110514 Nicholson Aug 1978 A
4122238 Frantzerb, Sr. Oct 1978 A
4131784 Kimura Dec 1978 A
4160066 Szumachowski Jul 1979 A
4160967 Beech Jul 1979 A
4188419 Detert Feb 1980 A
4222023 Beech Sep 1980 A
4282420 Banks Aug 1981 A
4426565 Rueter Jan 1984 A
4447703 Stol May 1984 A
4449031 Kotecki May 1984 A
4493971 Nawa Jan 1985 A
4517441 Kaljee May 1985 A
4531040 Nawa Jul 1985 A
4536634 Nawa Aug 1985 A
4546234 Ogasawara Oct 1985 A
4551610 Amata Nov 1985 A
4580026 Stol Apr 1986 A
4584459 Merrick Apr 1986 A
4628182 Hori Dec 1986 A
4631385 Rothermel Dec 1986 A
4667083 Stol May 1987 A
4728761 Mucha Mar 1988 A
4833296 Crockett May 1989 A
4843212 Shneerov Jun 1989 A
4897523 Parks Jan 1990 A
4950348 Larsen Aug 1990 A
4954691 Parks Sep 1990 A
4973821 Martin Nov 1990 A
5001326 Stava Mar 1991 A
5043557 Tabata Aug 1991 A
5086207 Deam Feb 1992 A
5101086 Dion Mar 1992 A
5118028 Ogawa Jun 1992 A
5140123 Mitani Aug 1992 A
5148001 Stava Sep 1992 A
5208433 Hellegouarc May 1993 A
5270516 Hamamoto Dec 1993 A
5278390 Blankenship Jan 1994 A
5315089 Hughes May 1994 A
5319179 Joecks Jun 1994 A
5343023 Geissler Aug 1994 A
5349156 Madigan Sep 1994 A
5352871 Ross Oct 1994 A
5365036 Crockett Nov 1994 A
5367138 Moss Nov 1994 A
5369244 Kulikowski Nov 1994 A
5412184 McGaffigan May 1995 A
5438083 Takimoto Aug 1995 A
5461215 Haldeman Oct 1995 A
5466916 Iguchi Nov 1995 A
5504309 Geissler Apr 1996 A
5526561 McGaffigan Jun 1996 A
5686002 Flood Nov 1997 A
5710413 King Jan 1998 A
5714738 Hauschulz Feb 1998 A
5739506 Hanton Apr 1998 A
5742029 Stava Apr 1998 A
5756967 Quinn May 1998 A
5773799 Maxfield Jun 1998 A
5783799 Geissler Jul 1998 A
5824992 Nagarajan Oct 1998 A
5844193 Nomura Dec 1998 A
5857141 Keegan Jan 1999 A
5963022 Buda Oct 1999 A
5968587 Frankel Oct 1999 A
6002104 Hsu Dec 1999 A
6008470 Zhang Dec 1999 A
6043471 Wiseman Mar 2000 A
6051810 Stava Apr 2000 A
6090067 Carter Jul 2000 A
6107602 Geissler Aug 2000 A
6115273 Geissler Sep 2000 A
6169263 Derby Jan 2001 B1
6204476 Reynolds Mar 2001 B1
6242113 Kiser Jun 2001 B1
6248976 Blankenship Jun 2001 B1
6265688 Lyshkow Jul 2001 B1
6278074 Morlock Aug 2001 B1
6292715 Rongo Sep 2001 B1
6331694 Blankenship Dec 2001 B1
6339209 Kotecki Jan 2002 B1
6359258 Blankenship Mar 2002 B1
6479792 Beiermann Nov 2002 B1
6486439 Spear Nov 2002 B1
6515259 Hsu Feb 2003 B1
6583386 Ivkovich Jun 2003 B1
6596970 Blankenship Jul 2003 B2
6624388 Blankenship Sep 2003 B1
6642482 Rappl Nov 2003 B2
6670579 Davidson Dec 2003 B2
6674047 Hughes Jan 2004 B1
6707001 Ulrich Mar 2004 B1
6710297 Artelsmair Mar 2004 B1
6720529 Davidson Apr 2004 B2
6723954 Nikodym Apr 2004 B2
6744012 Ueda Jun 2004 B2
6747247 Holverson Jun 2004 B2
6784401 North Aug 2004 B2
6849828 Aigner Feb 2005 B2
6906284 Kim Jun 2005 B2
6909067 Davidson Jun 2005 B2
6933466 Hutchison Aug 2005 B2
6940042 Hara Sep 2005 B2
6958263 Bhattacharyya Oct 2005 B2
6974931 Holverson Dec 2005 B2
6974932 Holverson Dec 2005 B2
6984806 Huismann Jan 2006 B2
6995338 Hutchison Feb 2006 B2
7002103 Holverson Feb 2006 B2
7087860 Nikodym Aug 2006 B2
7091448 North Aug 2006 B2
7129443 Davidson Oct 2006 B2
7145101 Tong Dec 2006 B2
7244905 Das Jul 2007 B2
7265320 Ou Sep 2007 B2
7304269 Fulmer Dec 2007 B2
7307240 Holverson Dec 2007 B2
7351933 Huismann Apr 2008 B2
7683290 Daniel Mar 2010 B2
8203100 Ueda Jun 2012 B2
8288686 Kaufman Oct 2012 B2
8487215 Holverson Jul 2013 B2
8758901 Nakamura Jun 2014 B2
9403231 Hutchison Aug 2016 B2
9539662 Hutchison Jan 2017 B2
20010008235 Miszczak Jul 2001 A1
20020008095 Norrish Jan 2002 A1
20020045970 Krause Apr 2002 A1
20020107825 Manicke Aug 2002 A1
20020117487 Corby Aug 2002 A1
20020117488 Arndt Aug 2002 A1
20030058149 Jayadeva Mar 2003 A1
20040010342 Thelen Jan 2004 A1
20040026396 Nikodym Feb 2004 A1
20040069759 Davidson Apr 2004 A1
20040182828 Schmidt Sep 2004 A1
20040222204 Hutchison Nov 2004 A1
20040238511 Matus Dec 2004 A1
20050016974 Myers Jan 2005 A1
20050061791 Matus Mar 2005 A1
20050184039 Stava Aug 2005 A1
20050189337 Baune Sep 2005 A1
20050269306 Fulmer Dec 2005 A1
20060151453 Gordon Jul 2006 A1
20060163229 Hutchison Jul 2006 A1
20060163231 Kobayashi Jul 2006 A1
20060165552 Kapoor Jul 2006 A1
20060219685 Karogal Oct 2006 A1
20060255026 North Nov 2006 A1
20070017956 Karogal Jan 2007 A1
20070051711 Kachline Mar 2007 A1
20070084840 Davidson Apr 2007 A1
20070102407 Uezono May 2007 A1
20070170163 Narayanan Jul 2007 A1
20070193995 Kapoor Aug 2007 A1
20070235434 Davidson Oct 2007 A1
20070267393 Dodge Nov 2007 A1
20070267394 Beck Nov 2007 A1
20080006612 Peters Jan 2008 A1
20080057341 Bouillot Mar 2008 A1
20080264916 Nagano Oct 2008 A1
20080264917 White Oct 2008 A1
20080264923 White Oct 2008 A1
20080272100 Amata Nov 2008 A1
20090026188 Schorghuber Jan 2009 A1
20090045172 VanErk Feb 2009 A1
20090173726 Davidson Jul 2009 A1
20090298024 Batzler Dec 2009 A1
20100059493 McAninch Mar 2010 A1
20100096373 Hillen Apr 2010 A1
20100101780 Ballew Apr 2010 A1
20100133250 Sardy Jun 2010 A1
20100176104 Peters Jul 2010 A1
20100224610 Wallace Sep 2010 A1
20100308026 Vogel Dec 2010 A1
20100308027 Vogel Dec 2010 A1
20100314371 Davidson Dec 2010 A1
20110108527 Peters May 2011 A1
20110114612 Holverson May 2011 A1
20110163080 Beck Jul 2011 A1
20110204034 Schartner Aug 2011 A1
20110297658 Peters Aug 2011 A1
20110248007 Takeda Oct 2011 A1
20110316516 Schiefermuller Dec 2011 A1
20120024828 Oowaki Feb 2012 A1
20120057240 Sundell Mar 2012 A1
20120061362 Davidson Mar 2012 A1
20120074112 Kotera Mar 2012 A1
20120097655 Daniel Apr 2012 A1
20120248080 Hutchison Oct 2012 A1
20120291172 Wills Nov 2012 A1
20120298642 Lambert Nov 2012 A1
20130112674 Mnich May 2013 A1
20130112676 Hutchison May 2013 A1
20130264323 Daniel Oct 2013 A1
20130270245 Holverson Oct 2013 A1
20130313240 Amata Nov 2013 A1
20140021183 Peters Jan 2014 A1
20140083981 Amata Mar 2014 A1
20140097168 Ferree Apr 2014 A1
20140158669 Davidson Jun 2014 A1
20140183176 Hutchison Jul 2014 A1
20140251971 Hearn Sep 2014 A1
20140263237 Daniel Sep 2014 A1
20140263241 Henry Sep 2014 A1
20140263243 Marschke Sep 2014 A1
20140349136 Barhorst Nov 2014 A1
20140367370 Hutchison Dec 2014 A1
20140374385 Kawano Dec 2014 A1
20150001197 Marschke Jan 2015 A1
20150083702 Scott Mar 2015 A1
20150105898 Adams Apr 2015 A1
20160074954 Marschke Mar 2016 A1
20160144444 Davidson May 2016 A1
20160167151 Mehn Jun 2016 A1
20160288235 Davidson Oct 2016 A1
20160318112 Hutchison Nov 2016 A1
Foreign Referenced Citations (70)
Number Date Country
2072711 Dec 1992 CA
2181354 Nov 1994 CN
1298778 Jun 2001 CN
1496774 May 2004 CN
1600486 Mar 2005 CN
1640603 Jul 2005 CN
1712168 Dec 2005 CN
1714978 Jan 2006 CN
1836818 Sep 2006 CN
1871093 Nov 2006 CN
101062530 Oct 2007 CN
201098775 Aug 2008 CN
101376191 Mar 2009 CN
101804495 Aug 2010 CN
101862886 Oct 2010 CN
102470473 May 2012 CN
102554418 Jul 2012 CN
102581513 Jul 2012 CN
102596475 Jul 2012 CN
102770228 Nov 2012 CN
202824943 Mar 2013 CN
2501928 Jul 1976 DE
19808383 Sep 1999 DE
0194045 Sep 1986 EP
0387223 Sep 1990 EP
0688630 Dec 1995 EP
1226897 Jul 2002 EP
1232825 Aug 2002 EP
1728584 Dec 2006 EP
1775060 Apr 2007 EP
2218537 Aug 2010 EP
2286949 Feb 2011 EP
2343149 Jul 2011 EP
2567776 Mar 2013 EP
1443701 Jun 1966 FR
739375 Oct 1955 GB
1143600 Feb 1969 GB
1183463 Mar 1970 GB
2204324 Nov 1988 GB
S5719166 Feb 1982 JP
S57109573 Jul 1982 JP
S58196192 Nov 1983 JP
S60108175 Jun 1985 JP
S60108176 Jun 1985 JP
S6167597 Apr 1986 JP
S6471575 Mar 1989 JP
H03285768 Dec 1991 JP
H06277840 Oct 1994 JP
H07204848 Aug 1995 JP
H11156542 Jun 1999 JP
2001276971 Oct 2001 JP
2003266194 Sep 2003 JP
2003311409 Nov 2003 JP
2005034853 Feb 2005 JP
2006205189 Aug 2006 JP
2009072814 Apr 2009 JP
4950819 Jun 2012 JP
1020120027764 Mar 2012 KR
2253556 Jun 2005 RU
872102 Oct 1981 SU
9640465 Dec 1996 WO
9934950 Jul 1999 WO
0132347 May 2001 WO
0153030 Jul 2001 WO
0163974 Aug 2001 WO
0212581 Feb 2002 WO
2005030422 Apr 2005 WO
2008137371 Nov 2008 WO
2013177480 Nov 2013 WO
2014058725 Apr 2014 WO
Non-Patent Literature Citations (10)
Entry
“ALT 304,” Miller—The Power of Blue, Jun. 2001.
“Maxstar 200 SD, DX, and LX,” Miller Electric Mfg. Co., Oct. 2003.
American Welding Online, “Efforts to Reduce Manganese Fume Emissions During Flux Cored Arc Welding of Standard Carbon Steels,” posted Apr. 16, 2014 at 11:53 am, http://awo.aws.org/2014/04/efforts-to-reduce-manganese-fume-emissions-during-flux-cored-arc-welding-of-standard-carbon-steels/.
American Welding Society F1.2:2006, Laboratory Method for Measuring Fume Generation Rate and Total Fume Emission of Welding and Allied Processes, Jan. 28, 2006, pp. 4-6.
American Welding Society F3.2M/F3.2:2001, Ventilation Guide for Weld Fume, Annex B, C, and D, Jan. 1, 2001, pp. 21-26.
Bondy et al., “Graph Theory with Appliations,” University of Waterloo, 1976, p. 7-8.
Guide for Estimating Welding Emissions for EPA and Ventilation Permit Reporting, American Welding Society F1.6:2003, Feb. 25, 2003, 6 pgs.
International Search Report from PCT application No. PCT/US2016/061388, dated Feb. 8, 2017, 12 pgs.
Safety in Welding, Cutting, and Allied Processes, An American National Standard, American Welding Society, Mar. 9, 2012, pp. 1-70.
Canadian Office Action Appln No. 3,005,216 dated Mar. 18, 2019.
Related Publications (1)
Number Date Country
20170151621 A1 Jun 2017 US