Welding wire preheating systems and methods

Information

  • Patent Grant
  • 11040410
  • Patent Number
    11,040,410
  • Date Filed
    Monday, April 23, 2018
    6 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
Welding wire preheating systems and methods are disclosed. An example welding method includes: receiving a signal indicative of initiation of welding process; prior to initiating a welding arc based on the received signal, controlling voltage or current applied to a welding electrode to preheat the electrode to a temperature above an ambient temperature but below a melting point of the welding electrode; monitoring feedback voltage to determine a termination of preheating; and terminating preheating prior to initiating the welding arc in accordance with a welding protocol.
Description
BACKGROUND

The disclosure relates generally to welders, and more particularly to a welder configured to perform a preheating operation on welding wire prior to execution of a weld.


A wide range of welding systems and welding control regimes have been implemented for various purposes. In continuous welding operations, metal inert gas (MIG) techniques allow for formation of a continuing weld bead by feeding welding wire shielded by inert gas from a welding torch. Electrical power is applied to the welding wire and a circuit is completed through the workpiece to sustain an arc that melts the wire and the workpiece to form the desired weld.


Advanced forms of MIG welding are based upon generation of pulsed power in the welding power supply. That is, various pulsed regimes may be carried out in which current and/or voltage pulses are commanded by the power supply control circuitry to regulate the formation and deposition of metal droplets from the welding wire, to sustain a desired heating and cooling profile of the weld pool, to control shorting between the wire and the weld pool, and so forth. However other welding regimes exist and are commonly used that provide power that is not pulsed. The various regimes may rely on “electrode positive” or “electrode negative” polarities, and the present disclosure may relate to any and all of these.


While very effective in many applications, MIG welding techniques may experience different initial welding performance based upon whether the weld is started with the electrode “cold” or “hot”. In general, a cold electrode start may be considered a start in which the electrode tip and adjacent metals are at or relatively near the ambient temperature. Hot electrode starts, by contrast, are typically those in which the electrode tip and adjacent metals are much more elevated, but below the melting point of the electrode wire. In some applications, it is believed that initiation of arcs and welds is facilitated when the electrode is hot. However, the current state of the art does not provide regimes designed to ensure that the electrode is heated prior to initiate of welds.


There is a need, therefore, for improved welding strategies that allow for welding initiation with a heated electrode so as to improve weld performance.


BRIEF DESCRIPTION

The present disclosure relates to methods and systems designed to respond to such needs. In accordance with certain aspects, a welding method comprises receiving a signal indicative of initiation of welding process, and prior to initiating a welding arc, controlling voltage or current applied to a welding electrode to preheat the electrode. Feedback voltage and current are monitored to determine a termination of preheating, and then preheating is terminated and the welding arc is initiated in accordance with a desired welding protocol.


In accordance with another aspect, a welding method comprises receiving a signal indicative of initiation of welding process, and, prior to initiating a welding arc, automatically controlling voltage or current applied to a welding electrode to preheat the electrode. Preheating is then terminated when the electrode reaches a desired resistance or a desired power level as determined based upon monitored current and voltage applied to the welding electrode, and the welding arc is initiated in accordance with a desired welding protocol.


In accordance with a further aspect, a welding system, comprises a power supply comprising power conversion circuitry and control circuitry configured to cooperate to provide welding current and voltage to a welding electrode, a signal source configured to provide a signal for initiation of a welding process, and current and voltage monitoring sensors. The control circuitry is configured to, prior to initiating a welding arc, control voltage and current applied to a welding electrode to preheat the electrode, to monitor the applied voltage and current to determine a termination of preheating, and to terminate preheating and initiate the welding arc in accordance with a desired welding protocol.





DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a diagrammatical representation of an exemplary MIG welding system illustrating a power supply coupled to a wire feeder for performing welding operations in which an electrode is heated prior to weld initiation;



FIG. 2 is a diagrammatical representation of exemplary control circuitry components for a welding power supply of the type shown in FIG. 1;



FIG. 3 is a flow chart illustrating exemplary steps in a welding process in which the electrode is preheated; and



FIGS. 4 and 5 are illustrating voltage and current waveforms generated and applied for preheating an electrode.





DETAILED DESCRIPTION

Turning now to the drawings, and referring first to FIG. 1, an exemplary welding system is illustrated as including a power supply 10 and a wire feeder 12 coupled to one another via conductors or conduits 14. In the illustrated embodiment the power supply 10 is separate from the wire feeder 12, such that the wire feeder may be positioned at some distance from the power supply near a welding location, and the conduits 14 are embodied as a welding cable that transmits control signals and power between the power supply 10 and the wire feeder 12. However, it should be understood that the wire feeder, in some implementations, may be integral with the power supply. In such cases, the conduits 14 would be internal to the system. In embodiments in which the wire feeder is separate from the power supply, terminals are typically provided on the power supply and on the wire feeder to allow the conductors or conduits to be coupled to the systems so as to allow for power and gas to be provided to the wire feeder from the power supply, and to allow data to be exchanged between the two devices.


The system is designed to provide wire, power and shielding gas to a welding torch 16. As will be appreciated by those skilled in the art, the welding torch may be of many different types, and typically allows for the feed of a welding wire and gas to a location adjacent to a workpiece 18 where a weld is to be formed to join two or more pieces of metal. A second conductor is typically run to the welding workpiece so as to complete an electrical circuit between the power supply and the workpiece.


The system is designed to allow for data settings to be selected by the operator, particularly via an operator interface 20 provided on the power supply. The operator interface will typically be incorporated into a front faceplate of the power supply, and may allow for selection of settings such as the weld process, the type of wire to be used, voltage and current settings, and so forth. In particular, the system is designed to allow for MIG welding with various steels, aluminums, or other welding wire that is channeled through the torch. These weld settings are communicated to control circuitry 22 within the power supply.


The control circuitry, described in greater detail below, operates to control generation of welding power output that is applied to the welding wire for carrying out the desired welding operation. In certain presently contemplated embodiments, for example, the control circuitry may be adapted to regulate the MIG welding regime, while also providing power for preheating the welding wire electrode prior to initiation of the weld. As described more fully below, such heating may be controlled by altering operating parameters of current and voltage applied to the electrode through the welding cable and torch.


The control circuitry is thus coupled to power conversion circuitry 24. This power conversion circuitry is adapted to create the output power, such as pulsed and non-pulsed waveforms that will ultimately be applied to the welding wire at the torch. Various power conversion circuits may be employed, including choppers, boost circuitry, buck circuitry, inverters, converters, and so forth. The configuration of such circuitry may be of types generally known in the art in and of itself. The power conversion circuitry 24 is coupled to a source of electrical power as indicated by arrow 26. The power applied to the power conversion circuitry 24 may originate in the power grid, although other sources of power may also be used, such as power generated by an engine-driven generator, batteries, fuel cells or other alternative sources. Finally, the power supply illustrated in FIG. 1 includes interface circuitry 28 designed to allow the control circuitry 22 to exchange signals with the wire feeder 12.


The wire feeder 12 includes complimentary interface circuitry 30 that is coupled to the interface circuitry 28. In some embodiments, multi-pin interfaces may be provided on both components and a multi-conductor cable run between the interface circuitry to allow for such information as wire feed speeds, processes, selected currents, voltages or power levels, and so forth to be set on either the power supply 10, the wire feeder 12, or both.


The wire feeder 12 also includes control circuitry 32 coupled to the interface circuitry 30. As described more fully below, the control circuitry 32 allows for wire feed speeds to be controlled in accordance with operator selections, and permits these settings to be fed back to the power supply via the interface circuitry. The control circuitry 32 is coupled to an operator interface 34 on the wire feeder that allows selection of one or more welding parameters, particularly wire feed speed. The operator interface may also allow for selection of such weld parameters as the process, the type of wire utilized, current, voltage or power settings, and so forth. The control circuitry 32 is also coupled to gas control valving 36 which regulates the flow of shielding gas to the torch. In general, such gas is provided at the time of welding, and may be turned on immediately preceding the weld and for a short time following the weld. The gas applied to the gas control valving 36 is typically provided in the form of pressurized bottles, as represented by reference numeral 38.


The wire feeder 12 includes components for feeding wire to the welding torch and thereby to the welding application, under the control of control circuitry 36. For example, one or more spools of welding wire 40 are housed in the wire feeder. Welding wire 42 is unspooled from the spools and is progressively fed to the torch. The spool may be associated with a clutch 44 that disengages the spool when wire is to be fed to the torch. The clutch may also be regulated to maintain a minimum friction level to avoid free spinning of the spool. A feed motor 46 is provided that engages with feed rollers 48 to push wire from the wire feeder towards the torch. In practice, one of the rollers 48 is mechanically coupled to the motor and is rotated by the motor to drive the wire from the wire feeder, while the mating roller is biased towards the wire to maintain good contact between the two rollers and the wire. Some systems may include multiple rollers of this type. Finally, a tachometer 50 may be provided for detecting the speed of the motor 46, the rollers 48, or any other associated component so as to provide an indication of the actual wire feed speed. Signals from the tachometer are fed back to the control circuitry 36, such as for calibration as described below.


It should be noted that other system arrangements and input schemes may also be implemented. For example, the welding wire may be fed from a bulk storage container (e.g., a drum) or from one or more spools outside of the wire feeder. Similarly, the wire may be fed from a “spool gun” in which the spool is mounted on or near the welding torch. As noted herein, the wire feed speed settings may be input via the operator input 34 on the wire feeder or on the operator interface 20 of the power supply, or both. In systems having wire feed speed adjustments on the welding torch, this may be the input used for the setting.


Power from the power supply 10 is applied to the wire, typically by means of the welding cable 14 to a torch cable 52 to a work cable 53 in a conventional manner. Similarly, shielding gas is fed through the wire feeder and the torch cable 52. During welding operations, the wire is advanced through the welding cable jacket towards the torch 16. Within the torch 16, an additional pull motor 54 may be provided with an associated drive roller, particularly for aluminum alloy welding wires. The motor 54 is regulated to provide the desired wire feed speed as described more fully below. A trigger switch 56 on the torch provides a signal that is fed back to the wire feeder 12 and therefrom back to the power supply 10 to enable the welding process to be started and stopped by the operator. That is, upon depression of the trigger switch, gas flow is begun, wire is advanced, power is applied to the torch cable 52 and through the torch 16 to the advancing welding wire. These processes are also described in greater detail below. Finally, the work cable 53 and associated clamp 58 allow for closing an electrical circuit from the power supply 10 through the welding torch 16, the electrode (wire), and the workpiece 18 for maintaining the welding arc during operation.


It should be noted throughout the present discussion that while the wire feed speed may be “set” by the operator, the actual speed commanded by the control circuitry will typically vary during welding for many reasons. For example, automated algorithms for “run in” (initial feed of wire for arc initiation) may use speeds derived from the set speed. Similarly, various ramped increases and decreases in wire feed speed may be commanded during welding. Other welding processes may call for “cratering” phases in which wire feed speed is altered to fill depressions following a weld. Still further, in pulsed welding regimes, the wire feed speed may be altered periodically or cyclically.



FIG. 2 illustrates an exemplary embodiment for the control circuitry 22 designed to function in a system of the type illustrated in FIG. 1. The overall circuitry, designated here by reference numeral 60, includes the operator interface 20 discussed above and interface circuitry 28 for communication of parameters to and from downstream components such as a wirefeeder, a welding torch, and various sensors and/or actuators. The circuitry includes processing circuitry 62 which itself may comprise one or more application-specific or general purpose processors, designed to carry out welding regimes, make computations for waveforms implemented in welding regimes, and so forth. The processing circuitry is associated with driver circuitry 64 which converts control signals from the processing to drive signals that are applied to power electronic switches of the power conversion circuitry 24. In general, the driver circuitry reacts to such control signals from the processing circuitry to allow the power conversion circuitry to generate controlled waveforms for welding regimes. The processing circuitry 62 will also be associated with memory circuitry 66 which may consist of one or more types of permanent and temporary data storage, such as for providing the welding regimes implemented, storing welding parameters, storing weld settings, storing error logs, and so forth.


As discussed above, the present electrode preheating techniques allow for a preheating regime to be implemented, when desired, with any welding program carried out by the system. In the embodiment illustrated in FIG. 2, the scheme is implemented by separate programmed protocols implemented by the processing circuitry 62. That is, a welding regime protocol may comprise any known or future developed welding program, such as pulsed and non-pulsed regimes, as indicted by reference numeral 68. A preheating protocol is provided that may always be used, or that may be used only when selected by an operator, as indicated by reference numeral 70. In practice, the preheating protocol may be implemented and, upon termination, control may be taken in accordance with the selected welding protocol The waveforms generated based upon these protocols may result from software only, hardware, and/or firmware that is implemented by the processing circuitry and/or that forms part of the control and driver circuitry illustrated. The preheating protocol and the welding protocol will generally make use of feedback from sensors and inputs. These inputs may include weld settings, pre-programmed logic, and inputs from sensors 72 received during the welding process. Sensed parameters will typically include, for example, current and voltage applied to the welding torch, and therethrough, to the welding electrode.



FIG. 3 illustrates exemplary logic for implementation of the preheating and welding techniques. In a typical process, the welding operator will make certain selections to define the welding setup, as indicated generally by reference numeral 74. Such selections may include a welding process, voltages, currents, wire feed speeds, and so forth. The selections may be made on the power supply, on the wire feeder, or both. At step 76, where desired, the operator may select to perform the preheating procedure described in the present disclosure. In certain systems, the preheating procedure may be automatically performed, although it is presently contemplated that the operator may select or de-select the preheating. Moreover, while manual welding systems are described, the same preheating processes may be performed in automated (e.g., robotic) systems.


At step 78, with the workpieces, cable, and other system components ready to execute the desired welds, the operator may either touch the wire electrode onto the workpiece, or proceed with a non-touch start. In a non-touch start, the electrode will be spaced from the workpiece. At step 80, then, the operator may pull the trigger on the torch to initiate the weld in a conventional manner. However, rather initiate the arc as is normally done for weld initiation, where the preheat sequence is to be performed, preheating will be performed as indicated at step 82. As described below, several scenarios may be envisaged for preheating, in general, however, the voltage and current are controlled for a sufficient period to raise the temperature of the weld electrode to a particular point. As indicated at step 84, the logic may cycle during this preheating phase, with the system determining whether the termination point of the preheating (see below) has been reached as indicated at step 84. If not, the preheating protocol is followed until the termination point is reached. Thereafter, the arc may be initiated as indicated at step 86 and the selected welding regime protocol will be followed starting with the preheated electrode.


Slightly different logic may be employed depending upon whether the start of the weld is from the touching situation or non-touch. For example, when performing a touching start, the system may implement a slight delay to detect the touch prior to preheating. In certain embodiments, prior to initiation of a welding arc, an amount of time that the electrode has not been under an arc condition may be determined, at least one of a preheating time, current, or voltage may be determined based on the determined amount of time, and termination of the preheating cycle may be terminated based on a timer (e.g., predetermined amount of time) that is set based on the determined preheating time, current, or voltage, for example. Moreover, the logic for implementing the preheating protocol may, in some cases, alter somewhat the welding regime that follows immediately after preheating. That is, because the electrode will be preheated, a lower initial current may be employed in the subsequent welding process. In presently contemplated embodiments, time periods while preheating may vary, depending upon such factors as the wire used, the currents and voltages applied, and so forth. Typical periods for preheating may vary, for example, between 10 and 20 ms. In practice, a baseline voltages and amperages may be set for different wire sizes, such as by establishing a baseline at approximately 100 A, with voltages set based upon the wire type and size. The wire type and size, as well as the wire feed speed used during welding and any different wire feed speeds used during a run-in phase that will typically be selected by the operator during the welding setup discussed above.


In general, the preheating may be thought of as adding energy to the electrode during what is effectively a short circuit between the electrode and the workpiece. As will be appreciated by those skilled in the art, the resistance of the electrode will typically increase as it is heated, and this increase in resistance may form the basis for the preheating protocol as well as for the point of termination of preheating. By monitoring voltage and current, then, and controlling these parameters the process may be free from dependency upon specific timing. In certain contemplated embodiments, the preheating protocol is based upon application of a fixed current (such as based on the wire selected) and increasing voltage from an initial level to a termination level when a voltage threshold is reached. Because the resistance of the wire (indicating a rising temperature) is indicated from the increasing voltage, with the current held steady, in accordance with Ohm's law, the protocol allows for raising the electrode resistance (and hence the temperature of the wire) to a desired and consistent level by simply monitoring the applied voltage. By way of example, a voltage level of 8 v may be used as a threshold with a constant current of approximately 200 A. Once the voltage threshold is met, then, the system switches to the arc start phase, but which may be initiated at a lower or more predictable current than it would have been with a cold electrode or with an electrode of different, unknown, temperatures.



FIG. 4 graphically illustrates waveforms in accordance with this aspect of the process. The graphically representation 88 is here presented with voltage along a vertical axis 90, current along a vertical axis 92, and time along a horizontal axis 94. A current waveform 96 can be seen as well as a voltage waveform 98. As noted above, at a point of initiation of the process, indicated generally by reference numeral 100, the current and voltage are applied by the power supply to the torch and then through to the welding electrode. In this example, the current is increased to a generally constant level as indicated by reference numeral 102, in this case approximately 100 A. At the same point of initiation, the voltage is increased to an initial voltage of approximately 1.4 v, and is increased gradually to a level of approximately 2.5 v. In this example the current and voltage are direct, and continuous. The point of termination at approximately 2.5 v, corresponds to a point where it has been determined that the electrode has been sufficiently heated to begin welding. At that point, the current is reduced as indicated at reference numeral 104 as is the voltage as indicated at reference numeral 108. Thereafter, although not shown in FIG. 4, the welding process may begin with initiation of the arc.



FIG. 5 illustrates an alternative control scheme as indicated generally by reference numeral 110. Here again, voltage is illustrated along a vertical axis 90 with current along a vertical axis 92, and time along a horizontal axis 94. In this case, both the current and voltage are applied to initiate the process, in this case a current of approximately 200 A is applied. The voltage is applied at an initial level and increases until the wire reaches a maximum temperature and flattens out or declines, as indicated generally by reference numerals 112 and 114. This decline may indicate that the wire will not undergo further resistance change by the application of additional energy. Thus, by monitoring the applied voltage, the trigger for terminating the process may be determined, followed by application of the selected welding protocol.


Still further variations may include, for example, ramping up current, such as to reduce the time for preheating. In a further alternative, rather than using a voltage threshold, a change in ramp rate of the voltage may indicated that the wire is at a maximum current density. Still further, the protocol may employ a constant voltage and watch for a drop in current to a threshold or a change in current ramp rate. As will be appreciated by those skilled in the art, or into the relationships dictated by Ohm's law, these various determinations will typically correspond to an increase in resistance of the welding electrode due to heating, which may be terminated at a desired voltage, current, power or any other desired threshold. With this in mind, it may also be possible to measure power and/or resistance and terminate the preheating processing based upon such analysis. The power and/or resistance may be determined, for example, based upon the applied or detected voltages and currents. It should be noted that, while reference may be made in the current disclosure to controlling and/or monitoring voltage and current (or power, resistance, etc.), this should be understood to mean that one or both current and voltage may be controlled, and the other monitored. In fact, it is considered that “controlling” one of the parameters (e.g., voltage) includes monitoring insomuch as the process of controlling will include knowing the value, whether through active control, feedback, or both.


While only certain features of the disclosure have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the claims.

Claims
  • 1. A welding method, comprising: receiving a signal indicative of initiation of welding process;prior to initiating a welding arc based on the received signal, controlling voltage or current applied to a welding electrode to preheat the electrode to a temperature above an ambient temperature but below a melting point of the welding electrode;monitoring feedback voltage to determine a termination of preheating; andterminating preheating prior to initiating the welding arc in accordance with a welding protocol.
  • 2. The method of claim 1, wherein the signal is received from a welding torch as a result of an operator depressing a trigger of the torch.
  • 3. The method of claim 1, wherein during preheating, current applied to the welding electrode is maintained generally constant and voltage feedback from the electrode is monitored for an increase.
  • 4. The method of claim 3, wherein preheating is terminated when the voltage feedback from the electrode reaches a predetermined threshold value.
  • 5. The method of claim 3, wherein preheating is terminated when the voltage feedback reaches a peak and declines.
  • 6. The method of claim 1, wherein at least one of the applied current, the applied voltage and the termination of preheating is based upon a type and size of the electrode.
  • 7. A welding method, comprising: receiving a signal indicative of initiation of welding process;prior to initiating a welding arc based on the received signal, automatically controlling voltage or current applied to a welding electrode to preheat the electrode to a temperature above an ambient temperature but below a melting point of the welding electrode;terminating preheating when the electrode reaches a resistance or a power level as determined based upon monitored voltage applied to the welding electrode; andinitiating the welding arc in accordance with a welding protocol after terminating preheating of the electrode.
  • 8. The method of claim 7, wherein termination of preheating is based upon a feedback voltage reaching a threshold.
  • 9. The method of claim 7, wherein termination of preheating is based upon a feedback voltage reaching maximum level and declining.
  • 10. The method of claim 7, wherein at least one of the applied current, the applied voltage and the termination of preheating is based upon a type and size of the electrode.
  • 11. A welding system, comprising: a power supply comprising power conversion circuitry and control circuitry configured to cooperate to provide welding current and voltage to a welding electrode; anda voltage monitoring sensor configured to sense voltage across the welding electrode;wherein the control circuitry is configured to receive a signal for initiation of a welding process and to, prior to initiating a welding arc based on the received signal, control the voltage and current applied to the welding electrode to preheat the welding electrode to a temperature above an ambient temperature but below a melting point of the welding electrode, to monitor the sensed voltage to determine a termination of preheating, and to terminate preheating prior to initiating the welding arc in accordance with a welding protocol.
  • 12. The welding system of claim 11, further comprising a welding torch configured provide a signal to the control circuitry to initiate the welding process.
  • 13. The welding system of claim 11, wherein during preheating, current applied to the welding electrode is maintained generally constant and voltage feedback is monitored for an increase.
  • 14. The welding system of claim 13, wherein preheating is terminated when the voltage applied to the welding electrode reaches a predetermined threshold value.
  • 15. The welding system of claim 13, wherein preheating is terminated when the applied voltage reaches a peak and declines.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is continuation of U.S. patent application Ser. No. 14/099,513, filed Dec. 6, 2013, entitled “Welding Wire Preheating System and Method,” and claims priority to U.S. Provisional Patent Application No. 61/761,007, entitled “Welding Wire Preheating System and Method”, filed Feb. 5, 2013. The entireties of U.S. patent application Ser. No. 14/099,513 and U.S. Provisional Patent Application No. 61/761,007 are incorporated herein by reference.

US Referenced Citations (175)
Number Name Date Kind
2365958 Holslag Dec 1944 A
2416047 Dolan Feb 1947 A
3288982 Haruyoshi Nov 1966 A
3725629 Vickers Apr 1973 A
3809853 Manz May 1974 A
3849871 Kaunitz Nov 1974 A
3946349 Haldeman Mar 1976 A
4160967 Beech Jul 1979 A
4188419 Detert Feb 1980 A
4222023 Beech Sep 1980 A
4329561 Schafer May 1982 A
4426565 Rueter Jan 1984 A
4447703 Stol May 1984 A
4456813 Mizuno Jun 1984 A
4493971 Nawa Jan 1985 A
4531040 Nawa Jul 1985 A
4536634 Nawa Aug 1985 A
4546234 Ogasawara Oct 1985 A
4580026 Stol Apr 1986 A
4628182 Hori Dec 1986 A
4631385 Rothermel Dec 1986 A
4667083 Stol May 1987 A
4728761 Mucha Mar 1988 A
4897523 Parks Jan 1990 A
4950348 Larsen Aug 1990 A
4954691 Parks Sep 1990 A
4973821 Martin Nov 1990 A
5001326 Stava Mar 1991 A
5043557 Tabata Aug 1991 A
5086207 Deam Feb 1992 A
5101086 Dion Mar 1992 A
5118028 Ogawa Jun 1992 A
5140123 Mitani Aug 1992 A
5148001 Stava Sep 1992 A
5208433 Hellegouarc May 1993 A
5270516 Hamamoto Dec 1993 A
5278390 Blankenship Jan 1994 A
5315089 Hughes May 1994 A
5319179 Joecks Jun 1994 A
5343023 Geissler Aug 1994 A
5349156 Madigan Sep 1994 A
5352871 Ross Oct 1994 A
5367138 Moss Nov 1994 A
5412184 McGaffigan May 1995 A
5461215 Haldeman Oct 1995 A
5466916 Iguchi Nov 1995 A
5504309 Geissler Apr 1996 A
5526561 McGaffigan Jun 1996 A
5710413 King Jan 1998 A
5714738 Hauschulz Feb 1998 A
5739506 Hanton Apr 1998 A
5742029 Stava Apr 1998 A
5756967 Quinn May 1998 A
5773799 Maxfield Jun 1998 A
5783799 Geissler Jul 1998 A
5844193 Nomura Dec 1998 A
5963022 Buda Oct 1999 A
5968587 Frankel Oct 1999 A
6002104 Hsu Dec 1999 A
6008470 Zhang Dec 1999 A
6043471 Wiseman Mar 2000 A
6051810 Stava Apr 2000 A
6090067 Carter Jul 2000 A
6107602 Geissler Aug 2000 A
6115273 Geissler Sep 2000 A
6169263 Derby Jan 2001 B1
6204476 Reynolds Mar 2001 B1
6248976 Blankenship Jun 2001 B1
6265688 Lyshkow Jul 2001 B1
6278074 Morlock Aug 2001 B1
6292715 Rongo Sep 2001 B1
6331694 Blankenship Dec 2001 B1
6359258 Blankenship Mar 2002 B1
6479792 Beiermann Nov 2002 B1
6486439 Spear Nov 2002 B1
6515259 Hsu Feb 2003 B1
6583386 Ivkovich Jun 2003 B1
6596970 Blankenship Jul 2003 B2
6624388 Blankenship et al. Sep 2003 B1
6642482 Rappl Nov 2003 B2
6670579 Davidson Dec 2003 B2
6707001 Ulrich Mar 2004 B1
6710297 Artelsmair Mar 2004 B1
6720529 Davidson Apr 2004 B2
6744012 Ueda Jun 2004 B2
6747247 Holverson Jun 2004 B2
6849828 Aigner Feb 2005 B2
6906284 Kim Jun 2005 B2
6909067 Davidson Jun 2005 B2
6933466 Hutchison Aug 2005 B2
6958263 Bhattacharyya Oct 2005 B2
6974931 Holverson Dec 2005 B2
6974932 Holverson Dec 2005 B2
6984806 Huismann Jan 2006 B2
6995338 Hutchison Feb 2006 B2
7002103 Holverson Feb 2006 B2
7129443 Davidson Oct 2006 B2
7145101 Tong Dec 2006 B2
7244905 Das Jul 2007 B2
7265320 Ou Sep 2007 B2
7304269 Fulmer Dec 2007 B2
7307240 Holverson Dec 2007 B2
7351933 Huismann Apr 2008 B2
7683290 Daniel Mar 2010 B2
8203100 Ueda Jun 2012 B2
8288686 Kaufman Oct 2012 B2
8487215 Holverson Jul 2013 B2
9403231 Hutchison Aug 2016 B2
9539662 Hutchison Jan 2017 B2
20020008095 Norrish Jan 2002 A1
20020045970 Krause Apr 2002 A1
20020107825 Manicke Aug 2002 A1
20020117487 Corby Aug 2002 A1
20020117488 Arndt Aug 2002 A1
20030058149 Jayadeva Mar 2003 A1
20040010342 Thelen Jan 2004 A1
20040069759 Davidson Apr 2004 A1
20040182828 Schmidt Sep 2004 A1
20040222204 Hutchison Nov 2004 A1
20040238511 Matus Dec 2004 A1
20050184039 Stava Aug 2005 A1
20050269306 Fulmer Dec 2005 A1
20060163229 Hutchison Jul 2006 A1
20070051711 Kachline Mar 2007 A1
20070084840 Davidson Apr 2007 A1
20070102407 Uezono May 2007 A1
20070170163 Narayanan Jul 2007 A1
20070235434 Davidson Oct 2007 A1
20070267394 Beck Nov 2007 A1
20080264916 Nagano Oct 2008 A1
20080264917 White Oct 2008 A1
20080264923 White Oct 2008 A1
20090026188 Schorghuber Jan 2009 A1
20090173726 Davidson Jul 2009 A1
20100059493 McAninch Mar 2010 A1
20100096373 Hillen Apr 2010 A1
20100133250 Sardy Jun 2010 A1
20100176104 Peters Jul 2010 A1
20100308026 Vogel Dec 2010 A1
20100308027 Vogel Dec 2010 A1
20100314371 Davidson Dec 2010 A1
20110108527 Peters May 2011 A1
20110114612 Holverson May 2011 A1
20110163080 Beck Jul 2011 A1
20110204034 Schartner Aug 2011 A1
20110297658 Peters Aug 2011 A1
20110248007 Takeda Oct 2011 A1
20120024828 Oowaki Feb 2012 A1
20120061362 Davidson Mar 2012 A1
20120074112 Kotera Mar 2012 A1
20120097655 Daniel Apr 2012 A1
20120248080 Hutchison Oct 2012 A1
20120291172 Wills Nov 2012 A1
20120298642 Lambert Nov 2012 A1
20130112674 Mnich May 2013 A1
20130112676 Hutchison May 2013 A1
20130264323 Daniel Oct 2013 A1
20130270245 Holverson Oct 2013 A1
20140021183 Peters Jan 2014 A1
20140158669 Davidson Jun 2014 A1
20140183176 Hutchison Jul 2014 A1
20140217077 Davidson Aug 2014 A1
20140251971 Hearn Sep 2014 A1
20140263237 Daniel Sep 2014 A1
20140263241 Henry Sep 2014 A1
20140263243 Marschke Sep 2014 A1
20140367370 Hutchison Dec 2014 A1
20150001197 Marschke Jan 2015 A1
20150083702 Scott Mar 2015 A1
20150105898 Adams Apr 2015 A1
20160074954 Marschke Mar 2016 A1
20160144444 Davidson May 2016 A1
20160167151 Mehn Jun 2016 A1
20160288235 Davidson Oct 2016 A1
20160318112 Hutchison Nov 2016 A1
Foreign Referenced Citations (57)
Number Date Country
2072711 Dec 1992 CA
2181354 Nov 1994 CN
1298778 Jun 2001 CN
1496774 May 2004 CN
1600486 Mar 2005 CN
1640603 Jul 2005 CN
1712168 Dec 2005 CN
1714978 Jan 2006 CN
1836818 Sep 2006 CN
1871093 Nov 2006 CN
101062530 Oct 2007 CN
201098775 Aug 2008 CN
101376191 Mar 2009 CN
101804495 Aug 2010 CN
101862886 Oct 2010 CN
102470473 May 2012 CN
102554418 Jul 2012 CN
102596475 Jul 2012 CN
102770228 Nov 2012 CN
202824943 Mar 2013 CN
2501928 Jul 1976 DE
19808383 Sep 1999 DE
0194045 Sep 1986 EP
0387223 Sep 1990 EP
1232825 Aug 2002 EP
2218537 Aug 2010 EP
2286949 Feb 2011 EP
1443701 Jun 1966 FR
S5719166 Feb 1982 JP
S57109573 Jul 1982 JP
S583784 Jan 1983 JP
S58119466 Jul 1983 JP
S58119468 Jul 1983 JP
S60108175 Jun 1985 JP
S60108176 Jun 1985 JP
S629773 Jan 1987 JP
S6471575 Mar 1989 JP
H0313271 Jan 1991 JP
H03285768 Dec 1991 JP
H06277840 Oct 1994 JP
H07204848 Aug 1995 JP
H11156542 Jun 1999 JP
2001276971 Oct 2001 JP
2003205385 Jul 2003 JP
2003311409 Nov 2003 JP
2003320454 Nov 2003 JP
2005034853 Feb 2005 JP
2006205189 Aug 2006 JP
2009072814 Apr 2009 JP
4950819 Jun 2012 JP
20100120562 Nov 2010 KR
1020120027764 Mar 2012 KR
872102 Oct 1981 SU
9640465 Dec 1996 WO
0132347 May 2001 WO
0153030 Jul 2001 WO
2005030422 Apr 2005 WO
Non-Patent Literature Citations (17)
Entry
European Office Action Appln No. 14704270.9 dated Nov. 26, 2019 (5 pgs).
“ALT 304,” Miller—The Power of Blue, Jun. 2001.
“Maxstar 200 SD, DX, and LX,” Miller Electric Mfg. Co., Oct. 2003.
Bondy et al., “Graph Theory with Applications,” Department of Combinatorics and Optimization, University of Waterloo, 1976, p. 7-8.
International Search Report from PCT application No. PCT/US2014/017864, dated Aug. 22, 2014, 9 pgs.
International Search Report from PCT application No. PCT/US2014/041201, dated Nov. 4, 2014, 11 pg.
International Search Report from PCT application No. PCT/US2014/045872, dated Nov. 4, 2014, 10 pgs.
International Search Report from PCT Application No. PCT/US2014/055529, dated Mar. 6, 2015, 9 pgs.
International Search Report from PCT application No. PCT/US2015/045715, dated Jan. 7, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/055040, dated Feb. 3, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2015/056121, dated Apr. 4, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2016/017385, dated Jul. 19, 2016, 13 pgs.
International Search Report from PCT application No. PCT/US2013/073490 dated May 13, 2014, 10 pgs.
International Search Report from PCT application No. PCT/US2013/073863 dated May 2, 2014, 15 pgs.
International Search Report from PCT application No. PCT/US2013/077710 dated May 9, 2014, 12 pgs.
International Search Report from PCT application No. PCT/US2014/014241 dated May 9, 2014, 8 pgs.
PCT International Search Report & Written Opinion of PCT/US2012/063783 dated Mar. 1, 2013, 12 pages.
Related Publications (1)
Number Date Country
20180236585 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
61761007 Feb 2013 US
Continuations (1)
Number Date Country
Parent 14099513 Dec 2013 US
Child 15959847 US