Well constructions with inhibited microbial growth and methods of antimicrobial treatment in wells

Information

  • Patent Grant
  • 6810957
  • Patent Number
    6,810,957
  • Date Filed
    Wednesday, November 14, 2001
    23 years ago
  • Date Issued
    Tuesday, November 2, 2004
    20 years ago
Abstract
The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.
Description




TECHNICAL FIELD




The present invention pertains to well constructions and methods of inhibiting microbial growth in wells.




BACKGROUND OF THE INVENTION




The presence of microbial growth can cause bio-fouling and plugging of wells. Such plugging can occur both in vadose-zone wells and in saturated-zone wells. Vadose-zone wells are wells having a well bore that does not extend into the water table, and include, for example, vadose-zone monitoring wells, vapor extraction wells and injection wells. Saturated-zone wells have a well bore that extends into the water table such as, for example, ground water monitoring wells, production wells and irrigation wells. Plugging of a well may occur by plugging of structures within the well such as the filter pack, screening, piping, or pumps. Plugging may also occur by the plugging of the surrounding geological media Such plugging is caused by an accumulation of microbial growth, by an accumulation of microbial extracellular material, or both.




Once a well has become bio-fouled or plugged, treatment of the well to eliminate microbial growth and remove plugging is often difficult and ineffective. Remedial chemical treatments, such as an introduction of a highly concentrated chlorine solution into the well, often fail due to the difficulty in forcing the solution through an already plugged well. Once bio-fouling has occurred, replacement of the effected structure is often required. Severe bio-fouling and plugging may require replacement of the entire well at great expense.




Accordingly, it is desirable to provide well constructions and preventative treatment methods designed to minimize unwanted microbial growth in wells.




SUMMARY OF THE INVENTION




In one aspect, the invention encompasses a method of inhibiting microbial growth in a well. A well bore is provided. A first material is mixed with an antimicrobial agent to form a packing material. The packing material is used to fill at least a portion of the well bore.




In another aspect, the invention encompasses a material for packing within a well. The material for packing the well includes either sand or gravel, or both. The material for packing the well also includes an antimicrobial agent. The antimicrobial agent can be in powdered form, in granular form, in pellet form, in tablet form, in precipitate form, or can be a mixture of two or more of these forms.




In another aspect, the invention encompasses an additional method of inhibiting microbial growth in a well. A well bore is provided that has a depth extending from a ground surface. A casing is provided within the well bore and is at least partially surrounded by an annular space. One or more access tubes are provided within the annular space of the well bore, outside the casing. The access tubes have a first terminal opening located at or above the ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes.




In still another aspect, the invention encompasses a well construction having inhibited microbial growth. The well construction includes a well bore and a well casing within the well bore. The casing has a terminal end within the well bore and has a screened portion that extends from the terminal end to a first elevation within the well bore. Multiple access tubes encircle the casing within the well bore. The access tubes have a terminal end within the bore and have a perforated segment extending from the terminal end to a second elevation within the well bore. The well bore contains a layer of packing material comprising a first antimicrobial agent mixed with either sand or gravel, or mixed with both sand and gravel. The layer of packing material fills the well bore to a third elevation. The well construction includes a second antimicrobial agent which, when provided through an access tube, is able to pass from within an access tube into the packing material through the perforated segment of the access tube.











BRIEF DESCRIPTION OF THE DRAWINGS




Preferred embodiments of the invention are described below with reference to the following accompanying drawings.





FIG. 1

shows a diagram of a well construction formed in accordance with the methodology of the present invention.





FIG. 2

is an enlarged view of the encircled region in FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).




The present invention is described with reference to a well construction


10


in

FIGS. 1 and 2

. Referring to

FIG. 1

, well construction


10


comprises a well bore


12


. A packing material


16


at least partially fills well bore


12


. Packing material


16


comprises a first material


14


and an antimicrobial agent


15


, as shown in FIG.


2


. Prior to use in the well bore, packing material


16


can be formed by mixing first material


14


with antimicrobial agent


15


.




A variety of materials are available for use as first material


14


for purposes of the present invention. Exemplary materials include sand, gravel, or a mixture thereof.




Antimicrobial agent


15


can comprise a solid and can be mixed with first material


14


such that packing material


16


contains antimicrobial agent


15


from about 0.5% to about 30% (by volume). Exemplary solid forms for antimicrobial agent


15


for purposes of the present invention include precipitate form, powder form, tablet form, granular form or pellet form.




Mixing of antimicrobial agent


15


with first material


14


can comprise coating the first material with the antimicrobial agent. Coating of first material


14


can be performed by mixing a powdered antimicrobial agent with the first material. Coating can also be performed by dissolving any of the solid forms of antimicrobial agent, mixing the dissolved antimicrobial agent with the first material, and re-precipitating the antimicrobial agent. The solid antimicrobial agents can be dissolved in an organic or an inorganic solvent based upon the solubility properties of the specific agent. The resulting precipitate can form a coating on first material


14


. Alternatively, the mixing can comprise forming a composite mixture of the first material and one or more of, for example, antimicrobial powder, antimicrobial tablets, antimicrobial granules, and antimicrobial pellets.




At least some of the antimicrobial agent


15


utilized for purposes of the present invention can be delayed release. A delayed release antimicrobial agent can include, for instance, solid forms of an antimicrobial agent that dissolve slowly in water. For example, a tablet form, a granular form or a pellet form of antimicrobial compound can dissolve more slowly than the powder form of the same antimicrobial compound. In addition, encapsulation or coating of any of the solid forms listed can further decrease the rate of dissolving in water. Numerous encapsulating or coating material is available for utilization in the present invention, including coating material comprising, for instance; proteins, polysaccharide, starches, waxes, fats, natural and synthetic polymers, and resins.




Numerous compounds from a variety of classes of antimicrobial compounds of can be utilized for purposes of the present invention. Exemplary classes of such antimicrobial compounds include chlorine release type compounds, antimicrobial amines, and antimicrobial metals. Chlorine release type compounds include, for instance, compounds that can release chlorine when the compound reacts with water. Specific chlorine release compounds include, for example, calcium hypochlorites, trichloroisocyanurate, dichloroisocyanurate.




Specific types of compounds within the class of antimicrobial amines for purposes of the present invention include, quaternary ammonia compounds and N-halamines such as; poly-acrylonitrile-co-4(acryloxymethyl)4-ethyl-2-oxazolidinone latex, poly-vinyl chloride-co-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-styrene-co-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-vinyl acetate-co-4(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-acrylonitrile-g-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-vinyl chloride-g-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-styrene-g-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-vinyl acetate-g-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex, poly-vinyl alcohol-g-4-(acryloxymethyl)-4-ethyl-2-oxazolidinone latex and poly(1,3,5-trichloro-6-methyl-6-(4′-vinylphenyl)-1,3,5-triazine-2,4-dione.




Specific examples of agents within the class of antimicrobial metals which can be utilized for purposes of the present invention include, but are not limited to, silver, zinc and copper.




The present invention encompasses embodiments of packing material


16


wherein the packing material comprises a single solid form of antimicrobial agent and embodiments wherein packing material


16


comprises multiple solid forms of an antimicrobial agent. In addition, packing material


16


can comprise a single antimicrobial compound or can comprise multiple antimicrobial compounds from one or more of the classes of compounds listed. It can be beneficial to have multiple forms of solid antimicrobial present in packing material


16


to provide both short term and long term microbial growth inhibition. For example, if antimicrobial agent


15


comprises both a powder form and a tablet form, the powder form can dissolve quickly, thereby providing an immediate microbial growth inhibiting effect, while the tablet form can dissolve more slowly, providing a delayed or long term effect relative to the powder form. For similar reasons, it can be beneficial for antimicrobial agent


15


to comprise multiple compounds or classes of compounds which dissolve at different rates or vary in duration of microbial inhibiting effects.




The well construction


10


of the present invention can comprise a vadose-zone well or a saturated-zone well. Well bore


12


can, therefore, comprise a depth that extends from a ground surface


30


into the vadose-zone


28


(not shown), or, as shown in

FIG. 1.

, from ground surface


30


into the saturated-zone


26


. Where the well is a vadose-zone well, because the bore does not extend into the water table, water for reacting with or dissolving an antimicrobial agent is provided by for example, condensation, infiltration, or unsaturated flow. The rate of dissolving of any given form of an antimicrobial agent, therefore, will be less than the corresponding rate in a saturated-zone well. The form of solid to be utilized in a specific well construction can be determined accordingly.




In the shown embodiment, well construction


10


comprises a casing


18


within well bore


12


. It is to be understood that the present invention encompasses an open-bore well construction that lacks casing


18


(not shown). Casing


18


can be at least partially surrounded by an annular space


20


and can comprise a screened portion


22


that extends from a terminal end


48


, located within well bore


12


, to a first elevation within the well bore. Packing material


16


can fill at least part of annular space


20


around well casing


18


to a second elevation within the well bore. The second elevation can be greater than the first elevation such that packing material


16


at least covers screened portion


22


of casing


18


.




Additionally, well construction


10


can comprise a seal layer


23


which can seal pacing material


16


. Seal layer


23


can comprise, for example, bentonite, concrete, neat cement, or a mixture thereof Whether or not well construction


10


comprises seal layer


23


, well construction


10


can comprise a fill material


24


such as, for instance, concrete, bentonite (in dry form or comprised in a slurry), neat cement, or a mixture of cement and bentonite. Fill material


24


can at least partially fill any annular space


20


remaining in the well bore beyond the portion filled with packing material


16


.




In addition to the features described above, the invention encompasses a well construction


10


comprising at least one access tube


32


within well bore


12


. In embodiments comprising well casing


18


, the at least one access tube can be positioned outside casing


18


within annular space


20


. Access tubes


32


have a first terminal opening


34


that is preferably located above ground surface


30


. Access tubes


32


extend at least part of the depth of well bore


12


, from first terminal opening


34


, to a second terminal opening


36


within the well bore. Well construction


10


can comprise an antimicrobial agent


39


that is distinct from the antimicrobial agent


15


in packing material


16


, at least initially.




Access tubes


32


are not limited to a specific number of tubes, nor is placement of such tubes limited to a specific distribution within well bore


12


. The number of tubes can be, for instance, from about 2 to about 10 access tubes. Access tubes


32


can have a diameter from about 0.25 inches to about 1.5 inches. The access tubes can be distributed, for example, around the circumference of casing


18


and can be equally spaced around the circumference with respect to each other.




In addition to the above features, access tubes


32


of well construction


10


can comprise a perforated segment


40


extending from second terminal opening


36


to a third elevation within well bore


12


. The third elevation can be less than the second such that perforated segment


40


is entirely covered by packing material


16


. Access tubes


32


can comprise a cap


42


to close second terminal opening


36


, and a removable cap


44


that covers first terminal opening


34


.




Antimicrobial material


39


can be supplied into well


10


through the first terminal opening


34


of access tubes


32


. Once antimicrobial agent


39


is added through terminal opening


34


, antimicrobial agent


39


can be able to pass from within access tube


32


into packing material


16


through perforated segment


40


of access tube


32


.




Antimicrobial material


39


can be supplied at time intervals. Exemplary time intervals for purposes of the present invention can be from between about 2 months and about 12 months. During the time interval between supplying antimicrobial agent


39


, the first terminal opening


34


of access tubes


32


can be reversibly capped


44


.




Antimicrobial agent


39


is not limited to any specific material or form. Antimicrobial agent


39


can comprise, for example, one or more of the solid forms discussed above with respect to antimicrobial agent


15


. Antimicrobial agent


39


can also comprise one or both of a gas antimicrobial agent and a liquid antimicrobial agent, or can comprise a combination of one or more of a gas antimicrobial agent, a liquid antimicrobial agent and a solid antimicrobial agent. Exemplary gas antimicrobial agents for purposes of the present invention include chlorine and ozone. Exemplary liquid antimicrobial agents, for purposes of the present invention include one or more of iodine, bromine or a dissolved form of any of the chlorine release type compound discussed above.




Where antimicrobial agent


39


comprises a gas or a liquid, supplying of antimicrobial agent


39


through first terminal opening


34


can comprise pressure pumping the gas or liquid through first terminal opening


34


. Alternatively, the gas or liquid may be pushed through the access tube by utilizing a pressurized air stream that can be flowed through first terminal opening


34


of access tubes


32


, or by inserting a slotted tube through the first terminal opening to sift the antimicrobial agent through perforated segment


40


of the access tubes.




As shown in

FIG. 1

, well constructions


10


encompassed by the present invention include constructions comprising the described well packing material


16


containing antimicrobial agent


15


, and simultaneously comprising access tubes


32


and the described antimicrobial agent


39


, in a single well. Where a single well comprises both antimicrobial agent


15


and antimicrobial agent


39


, the two antimicrobial agents can be the same or can differ. As discussed above, it can be beneficial to provide a multiple forms of antimicrobial compounds and/or multiple compounds within a single well.




Well constructions encompassed by the present invention also include constructions comprising access tubes


32


and antimicrobial agent


39


in the absence of packing material


16


and antimicrobial


15


(not shown). The invention also contemplates well constructions comprising packing material


16


containing antimicrobial agent


15


, and comprising an absence of antimicrobial agent


39


, and well constructions comprising packing material


16


and an absence of access tubes


32


. The use of packing material


16


of the present invention is not intended to be limited to use within a well.




It is to be understood that the present invention contemplates adaptation of the above described methods and well constructs for bio-remedial and bio-venting wells. Bio-venting and bio-remedial wells utilize bacteria to perform functions in furtherance of the purposes of the well. However, growth of these microbes is preferentially constrained to the surrounding geological structures rather than within the well bore. Accumulation of such microbes or extracellular material within the well bore can detrimentally effect the functioning of the well, and lead to plugging.




The above described methods can be used to inhibit microbial growth within the well bore of a bio-venting or bio-remedial with limited adverse effects on the microbial population in the surrounding geological structures. For example, an antimicrobial with limited diffusion properties due to a low solubility, such as for instance a polymeric amine, can be utilized within the well bore to minimize diffusion into the surrounding geological structures. The antimicrobial effects can thereby be limited to, or localized within, the well bore.




In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.



Claims
  • 1. A method of inhibiting microbial growth in a well comprising:providing a well bore, the well bore having a depth extending from a ground surface only partially through the vadose-zone; providing at least one access tube within the well bore, the at least one access tube being disposed externally to a well casing; and supplying an antimicrobial material into the well through the first terminal opening of the at least one access tube.
  • 2. The method of claim 1 wherein the providing the at least one access tube comprises providing from about 2 to about 10 access tubes.
  • 3. The method of claim 1 wherein the casing is at least partially surrounded by an annular space, and wherein the at least one access tube is provided within the annular space.
  • 4. The method of claim 3 wherein the providing the at least one access tube comprises distributing from about 2 to about 10 access tubes around a circumference of the casing.
  • 5. The method of claim 4 wherein the distributing the access tubes comprises equally spacing the access tubes around the casing.
  • 6. The method of claim 1 wherein the providing the at least one access tube comprises providing access tubes having a perforated segment extending from a second terminal opening, the second terminal opening being within the well bore, and wherein the second terminal opening is capped.
  • 7. The method of claim 1 wherein the supplying the antimicrobial agent comprises supplying the antimicrobial agent at time intervals.
  • 8. The method of claim 7 wherein the time intervals are from between about 2 months and about 12 months.
  • 9. The method of claim 7 further comprising:reversibly capping the first terminal opening of the at least one access tube during the time interval between the supplying of the antimicrobial agent.
  • 10. The method of claim 1 wherein the supplying the antimicrobial agent comprises supplying one or more of a chlorine release compound, an antimicrobial amine, or a metal inhibitor.
  • 11. The method of claim 10 wherein the supplying the antimicrobial agent comprises supplying a chlorine release compound wherein chlorine is released when the compound reacts with water.
  • 12. The method of claim 1 wherein the supplying the antimicrobial agent comprises supplying one or more of a powder form, a tablet form, a granular form, or a pellet form.
  • 13. The method of claim 1 wherein the supplying the antimicrobial agent comprises supplying at least some of the antimicrobial agent in an encapsulated form.
  • 14. The method of claim 1 wherein the supplying the antimicrobial agent through the first terminal opening comprises pressure pumping one or both of a gas antimicrobial agent and a liquid antimicrobial agent though the first terminal opening.
  • 15. The method of claim 1 wherein the supplying the antimicrobial agent through the first terminal opening comprises pushing one or both of a gas antimicrobial agent and a liquid antimicrobial agent through the first terminal opening with a pressurized air stream.
  • 16. The method of claim 1 further comprising:providing a layer of packing material to an elevation within the well bore to at least partially fill the well bore, wherein the at least one access tube extends to below the elevation of the layer.
  • 17. The method of claim 16 wherein the providing the at least one access tube comprises providing access tubes having a perforated segment, and wherein the elevation of the layer of packing material is above the perforated segment of the access tubes.
  • 18. The method of claim 16 further comprising:formation of the packing material, the formation comprising mixing an antimicrobial agent with one or both of sand and gravel.
  • 19. A method of inhibiting microbial growth in a well comprising:providing a well bore having a depth extending from the ground into the saturated-zone; providing a casing within the well bore, the casing being at least partially surrounded by an annular space; providing at least one access tube within the well bore and external to the casing; and supplying an antimicrobial agent into the well through the at least one access tube, the antimicrobial agent comprising at least one of a powder form and a granular form.
  • 20. The method of claim 19 wherein the antimicrobial agent comprises an antimicrobial amine.
  • 21. The method of claim 19 wherein the antimicrobial agent is a first antimicrobial agent, and further comprising providing a second antimicrobial agent within the well, the second antimicrobial agent differing from the first antimicrobial agent.
  • 22. The method of claim 21 wherein the providing the second antimicrobial agent comprises supplying the second antimicrobial agent through the at least one access tube.
  • 23. The method of claim 21 wherein the providing the second antimicrobial agent comprises mixing the second microbial agent with a packing material to form a mixture and filling at least a portion of the annular space with the mixture.
  • 24. The method of claim 21 wherein the second antimicrobial agent is selected from the group consisting of a chlorine release compound, an antimicrobial amine and a metal inhibitor.
  • 25. The method of claim 21 wherein the second antimicrobial agent comprises a gas.
  • 26. The method of claim 21 herein the second antimicrobial agent comprises a liquid.
  • 27. The method of claim 19 wherein the first antimicrobial agent is encapsulated.
CONTRACTUAL ORIGIN OF THE INVENTION

This invention was made with United States Government support under Contract No. DE-AC07-99ID13727 awarded by the United States Department of Energy. The United States Government has certain rights in the invention.

US Referenced Citations (11)
Number Name Date Kind
3202213 Howard Aug 1965 A
3489218 Means Jan 1970 A
3547194 Morine Dec 1970 A
3566970 Crow et al. Mar 1971 A
3940430 Brenner et al. Feb 1976 A
4670166 McDougall et al. Jun 1987 A
5099917 Roser Mar 1992 A
5128051 Theis et al. Jul 1992 A
5481927 Hubbell et al. Jan 1996 A
5690173 Abdul et al. Nov 1997 A
6244346 Perriello Jun 2001 B1