The invention disclosed and taught herein relates generally to a system and method for use in floating offshore environments including drilling rigs. The embodiments described below relate generally to the design layout of equipment on an offshore well intervention monohull vessel specifically for the transport, deployment, and retrieval of well intervention subsea equipment.
A typical layout of an exploratory drilling rig is to place a pyramid type drilling derrick at or near the center of the upper deck with an “elevated drill floor.” This type of derrick is usually built of truss structures with the drilling equipment installed within its footprint boundary. A drilling riser would be installed through the rotary table on the drill floor and connected to the subsea well. It is essentially a conduit for running the drill string to the well bore below and allowing the return of mud flow through the riser annulus to the surface. At the bottom of the drilling riser, there is a safety device called the subsea BOP Stack (Blow Out Preventer) latched on the wellhead and the LMRP (Lower Marine Riser Package). The BOP stack is designed to have the mechanism to shear off the drill string and shut in the well for well control purpose. Whereas the LMRP provides the quick disconnect mechanism of the riser on the top of the BOP in the event the drilling vessel is required to move away from the well that is out of control. The typical size of a deep water drilling riser joint has about a 21 inch outer diameter, about 75 feet in length, and with over about 50 inch of diameter for the buoyancy material attached. For deep water application, the combined BOP stack and LMRP can reach over 60 feet tall and the combined weight over 300 metric tonnes depending on the number of rams being configured on the BOP. Accordingly, the equipment for assembling, handling, transporting, and positioning the massive BOP stack and the LMRP underneath the drill floor becomes the center issue in the drilling system design layout. In order to provide sufficient head room for this operation, an elevated drill floor is normally required in the layout. Such an elevated drill floor is supported by the “derrick substructures” installed on top of the main deck.
The design of a well intervention monohull vessel, however, is not intended for drilling of a new well to the reservoir formation. Instead, its primary function is to provide down hole work-over service of a well that has been produced for a period of time. A typical well intervention operation can be performed by means of different methods including slick line, electric line, and coiled tubing deployment through the riser. The corresponding well intervention riser has a smaller diameter in comparison with a drilling riser, usually in the range of 7 to about 8.5 inch outer diameter. Unlike the drilling of an exploratory or development well, the physical characteristics of the well and the composition of the well stream are usually known prior to the well intervention operation. The use of a full size drilling BOP stack and LMRP is considered as overkill for well intervention.
Riser based monohull operations traditionally involve a drilling rig with an elevated drill floor. This arrangement works well for drilling operations since the focus is on pipe handling efficiency. A preferred method for well intervention includes operating a flat flush deck 101 monohull without an elevated drill floor. This approach enables the user to handle pipes like a drilling rig but also to handle the subsea equipment and the surface well service equipment more efficiently than a drilling rig arrangement. One advantage of this approach is the ability to rig equipment up and rig equipment down quickly when intervening on a well. A drilling rig is on a well for months at a time so pipe handling efficiency is important whereas intervention operations take on average 10 to 15 days so equipment change out for different operations as well as pipe handling is the key to efficient operations due to the higher frequency of equipment change out.
The combination of flat deck, i.e., no elevated substructure, and a tower type open derrick structure 102 combined with heavy lift crane capability provides a unique operating aspect to normal monohull operations for subsea well intervention work. The user is able to accommodate the heavy equipment associated with subsea well intervention operations (subsea trees 103 and manifolds and surface coiled tubing reels 104 and intervention lift frames 105). The flat, flush and open deck design permits ease of movement of equipment, compared to traditional drill ships.
The equipment handling capabilities based around the use of the flat, flush and open deck design further enhances well intervention operations through elimination of the riser tensioners for use with the intervention riser system when operations allow. Eliminating the use of riser tensioners increases the efficiency with which equipment rig up, handling, deployment and rig down is accomplished. During operations with the intervention riser system attached to the well riser tension is accomplished via a single point land out 106 through maintaining the riser tension from the derrick structure 102. The combination of passive heave compensation to limit the vessel motion being imparted to the intervention riser system and the active heave compensation in line with the passive heave compensation provides the operational redundancy required during single point land out operations and eliminates the requirement for riser tensioners as an operating mode option.
An additional feature is the ability to rig up, handle, and deploy and rig down well service equipment covering pressure control equipment, coiled tubing equipment and electric line and slick line. A self-standing skidding intervention lift frame 105 of box construction enables access to the well service equipment once rigged up over the well.
The drawings described above and the written description of specific structures and functions below are presented for illustrative purposes and not to limit the scope of what has been invented or the scope of the appended claims. Nor are the drawings drawn to any particular scale or fabrication standards, or intended to serve as blueprints, manufacturing parts list, or the like. Rather, the drawings and written description are provided to teach any person skilled in the art to make and use the inventions for which patent protection is sought. Those skilled in the art will appreciate that not all features of a commercial embodiment of the inventions are described or shown for the sake of clarity and understanding.
Persons of skill in this art will also appreciate that the development of an actual, real-world commercial embodiment incorporating aspects of the inventions will require numerous implementation specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation specific decisions may include, and likely are not limited to, compliance with system related, business related, government related and other constraints, which may vary by specific implementation, location and from time to time. While a developer's efforts might be complex and time consuming in an absolute sense, such efforts would nevertheless be a routine undertaking for those of skill in this art having the benefit of this disclosure.
It should also be understood that the embodiments disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Thus, the use of a singular term, such as, but not limited to, “a” and the like, is not intended as limiting of the number of items. Similarly, any relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like, used in the written description are for clarity in specific reference to the drawings and are not intended to limit the scope of the invention or the appended claims.
In contrast, a monohull vessel 100 is designed to have a ship shape hull form. The functional requirements of the hull are to provide the proper buoyancy and structural integrity for supporting the whole unit, and to provide the space for the machinery such as thruster rooms, pump rooms, etc., and liquid storage for ballast water, fresh water, fuel, and oil field related liquids.
The draft, dimensions, and geometry of the hull determine the motion characteristics of the unit in waves. Moreover, the breadth, water plane area together with the vertical center of gravity of the unit determine the stability of the unit.
In general, a monohull vessel 100 for offshore oil and gas operation can be described in five different sub-categories based on their primary functional requirements, namely: to perform exploratory drilling and well construction; to perform well intervention operation; to perform subsea installation and construction operations; to produce oil and gas; and to provide accommodation living quarters.
The equipment layout of the design is determined by the mission and hence the functional requirements of the unit in question. An optimum design layout for a specific rig category may not be applicable to the other categories at all. For example, if a drilling ship in category one is used to perform well intervention operation, its operating efficiency may suffer due to its inherent equipment arrangement on the deck and the associated deployment procedure of subsea equipment to the sea floor. Conversion of a drill ship to a well intervention ship would lead to similar restrictions in operation.
The monohull vessel 100 is shown starting in
By using a tower type open derrick 102, the new concept allows the time to rig up the well intervention equipment such as slick line, electric line or surface coiled tubing reels 104 shown in
In a preferred embodiment, the layout of the upper deck with the use of an open derrick and a mechanized driven moon pool door 109. This moon pool door 109 preferably has dual functions: it features a power slip for running subsea equipment at the well center; and it can be used as a transporter for moving the IRS 107 from its assemble location to the deployed position at the well center, as shown in
The present invention eliminates the requirement for riser tensioners 13 and the correspondingly the riser telescopic joint by being able to have a single point land out 106 shown in
While the invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the description. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention.
This nonprovisional application for patent claims priority to, and hereby incorporates by reference, U.S. Provisional Application Ser. No. 62/095,758, entitled “Well Intervention Monohull Vessel,” filed Dec. 22, 2014.
Number | Date | Country | |
---|---|---|---|
62095758 | Dec 2014 | US |