This invention relates to a method and system for controlling production shut down of an underwater fluid production well, for example a subsea hydrocarbon extraction well.
A preferred current method available to a well operator for shutting down a single subsea well in a multiple well complex is via the surface platform. Data such as pressures and temperatures relating to the operation of the well are transmitted to the surface platform through the well communication system typically via an umbilical cable. Such data are typically monitored by the well operator. The need to shut down a well is usually automatically determined by an integrated control and safety system (ICSS) which is a safety integrity level (SIL) rated system located at the surface, though the operator may instigate this manually via the ICSS. Usually the ICSS is connected to vent valves on the subsea high pressure unit (HPU) which when opened cause the hydraulic supplies in the umbilical to depressurise, and as a result the well will eventually shut in, with the time taken to do so being dependent on the length of the umbilical. If it is determined that a well shut down is required in a controlled and timely manner, a command is transmitted through the same communication system to a subsea electronic module (SEM) of the the subsea well tree, the command typically resulting in the closing of a production wing valve, followed by operation of the vent valves at the HPU to ensure that the system vents and shuts in. The command signal from the surface platform is received by a subsea electronics module (SEM) located in a subsea control module (SCM), which may be located at the well head. The SEM electronics drives a directional control valve (DCV) in the SCM, which in turn controls the hydraulic supply to operate the production wing valve.
A known system is shown in
A problem with such a system is that it is lengthy and complex, involving a large number of components, and communication is required from well head sensors to the surface and back again, and this leads to lower than desired reliability. Indeed, such known systems have such a poor ‘probability of failure on demand’ that they are unlikely to achieve even the lowest safety integrity level (SIL) rating, which is SIL 1.
it is an aim of the present invention to overcome this problem and improve the reliability of the shut down system. This aim is achieved by providing a shut down processing function at the well.
Such an implementation of a production shut down (PSD) system that locally, i.e. subsea, detects a fault condition using sensors and a local processor, employing SIL rateable software, may effect a PSD without the need to communicate with the surface. The system ideally permits a PSD by command from the surface if required but does not rely on this communication in the event of the need for a PSD in an emergency. Furthermore, a failure of the black channel communication or electric power from the surface, ideally results in a locally operated PSD.
In this way, the safety integrity of the well production shut down system is assured by the local process as it can be SIL rated, whilst still allowing a traditional PSD by command from the topside control system.
In accordance with a first aspect of the present invention there is provided a method for controlling production shut down of an underwater fluid production well, comprising the steps of:
In accordance with a second aspect of the present invention there is provided a system for controlling production shut down of an underwater fluid production well, the well having a sensor for producing an output signal indicative of the state of the well and a valve which is actuable to shut down production activity of the well, the system comprising:
means for receiving the output signal; and
The invention will now be described with reference to the accompanying drawings, in which:
An embodiment of the invention is schematically shown in
In this embodiment there are many components in common with the known system of
Each processor 18 is adapted to receive output signals from pressure/temperature sensors 9, 10 and 11, and process these as set out below. Each processor 18 is operable to identify when a production shut down is required by appropriate processing of these input signals, and to effect this production shut down. To this end, each processor 18 is also operable to output shut down control signals to DCVs controlling appropriate valves 2, 3, 4 (described in more detail below with respect to
The logic of this local PSD process is illustrated in
As a further safety feature, each processor 18 is adapted to receive command signals 19 from ICSS 12 located at the surface, and to effect a PSD upon receipt of an appropriate command control signal from the ICSS 12.
The PSD processor 18 can be implemented in hardware. Alternatively, the processor 18 may comprise a software program, for example written in C, running in a relatively simple processor located within a SEM 7, which is therefore SIL rateable, to provide process flexibility. The processor may for example be housed in an electronics board within the SEM 7,
The above-described embodiments are exemplary only, and other possibilities and alternatives within the scope of the invention will be apparent to those skilled in the art. For example, in the above embodiment, shut down may be effected from the surface either by sending an appropriate control signal 19 to the processor, or by the absence of a black channel input 17, however in an alternative embodiment, command signals from ICSS 12 may bypass processor 18, and instead be passed directly to OR gate 16. Such an arrangement further increases the relatively simplicity of the system. Alternatively, control signals 19 from ICSS 12 may be dispensed with entirely, such that topside control is effected solely through black channel input 17.
While three pressure/temperature sensors 9-11 have been described, in fact the processor 18 may receive inputs from as many sensors as are provided at the well head.
While the embodiment described above compares the received sensor signals with preset limits 13, other methods for determing fault conditions may be used. For example, the processing system may track the change in sensor output over time, and act to effect shut down in the event that the rate of change of the sensor output exceeds a certain level. Alternatively, an intelligent system could be used in which outputs from various sensors can be monitored and compared to a model of expected behaviour.
Number | Date | Country | Kind |
---|---|---|---|
1007150.4 | Apr 2010 | GB | national |