None.
A refracturing treatment, which is sometimes also called a “refrac”, is the operation for stimulating a well which has a history of previous stimulation by fracturing. Often, a refrac is motivated by a level of production that has declined, usually to or below an economic limit. In some cases, a refrac may boost production to a higher level and make the well economic again.
Well re-stimulation treatments usually involve a well with pre-existing perforations as well as new perforations that may be added as a part of the re-stimulation treatment. There is usually no hydraulic isolation device inside the wellbore. Diversion techniques, such as, for example, BROADBAND SEQUENCE™ treatment and/or the diverters disclosed in U.S. Pat. No. 7,036,587, U.S. Pat. No. 7,267,170, and U.S. Pat. No. 8,905,133, enable multistage fracturing treatment without using isolation devices inside the wellbore. However, the stage design for refracs applying diversion techniques remains as a considerable challenge to the industry, which must meet at least two criteria. First, the cause(s) of subpar production must be identified and the treatment must be designed to address the cause(s). For examples, the subpar production may be due to premature damage of the producing fractures, which we may refer to as “old fractures”, and the treatment would be designed to restore conductivity in the old fractures, which may involve refracturing the old fractures, which we may refer to herein as “refractures”; or the subpar production may be due to insufficient contact with the rock and unexpectedly low reservoir drainage volume, in which case the refrac would focus on developing new fractures in rock that was not fractured in the previous treatment, which we may also refer to herein as “new rock”.
The second criterion is that the overall treatment cost must respect the economic constraints and be proportional to the production improvement, viz., it is not realistic to use sophisticated completion systems, excessive amounts of sand, fracturing fluid additives, or other stimulating material, and/or excessive horsepower, i.e., an unrealistic number of fracturing pumps.
Previous efforts have focused on refrac candidate recognition, i.e., the selection of wells suitable for refrac, such as in L. P. Moore et al., “Restimulation: Candidate Selection Methodologies and Treatment Optimization”, SPE 102681 (2006), and R. E. Barba, “A Novel Approach to Identifying Refracturing Candidates and Executing Refracture Treatments in Multiple Zone Reservoirs”, SPE 125008-MS (2009); or on refrac techniques using fracturing slurry stages and diverters, such as in M. Craig et al., “Barnett Shale Horizontal Restimulations: A Case Study of 13 Wells”, SPE 154669 (2012), and D. I. Potapenko, “Barnett Shale Refracture Stimulations Using a Novel Diversion Technique”, SPE 119636 (2009).
The industry has an ongoing need for the development or improvement of methods to design and execute refracturing treatments in accordance the above criteria.
In one aspect, embodiments of the present disclosure relate to a method to design and execute refracturing treatments, for a wide range of treatment types. In some embodiments, the refracturing strategy comprises pumping stages of fracturing fluid separated by diversion pills to isolate a region of the wellbore and direct the fracturing fluid to particular locations or regions along the wellbore. In some embodiments, a workflow is developed to place proppant in old fractures and/or fractures in new rock via a previously hydraulically fractured wellbore, according to the depletion status of the well and applicable economic constraints, if any. In some embodiments, the instantaneous shut in pressure values (ISIPs) of the old fractures, the refractures, the new fractures in new rock, or a combination thereof, are used to guide the stage design and the execution of the refrac treatment. In some embodiments, various realizations of the workflow are presented, depending on the availability of data, tools, and resources.
In some embodiments, pore pressure and cluster stresses are optionally determined at a start of the treatment, and goal ISIPs, corresponding to undepleted regions of the formation, and target ISIPs versus treatment progression or stage, beginning with the depleted regions, are developed. In some embodiments, the diversion and proppant pumping schedules are designed, based on different levels of available information and simulating tools, and the refracturing treatment is initiated accordingly. If the ISIP at the end of a stage varies appreciably from the design, then subsequent stages may be modified to more closely match the designed ISIP schedule.
In some embodiments, a method for re-stimulation treatment of a well penetrating a formation comprises designing a diversion schedule for a number of refrac treatment stages, wherein the schedule comprises the number of stages and a target ISIP value at an end of the respective stage; designing a proppant pumping schedule for a fracture design for the stages; initiating the refrac treatment including proppant and diversion pill placement according to the proppant pumping schedule and diversion schedule; measuring ISIP at the end of the stages; and if the measured ISIP differs unsatisfactorily from the target ISIP value, then adjusting the diversion schedule, the proppant pumping schedule, or a combination thereof, for subsequent stages.
Other aspects and advantages of the disclosure will be apparent from the following description and the appended claims.
“Above”, “upper”, “heel” and like terms in reference to a well, wellbore, tool, formation, refer to the relative direction or location near or going toward or on the surface side of the device, item, flow or other reference point, whereas “below”, “lower”, “toe” and like terms, refer to the relative direction or location near or going toward or on the bottom hole side of the device, item, flow or other reference point, regardless of the actual physical orientation of the well or wellbore, e.g., in vertical, horizontal, downwardly and/or upwardly sloped sections thereof.
Depth—includes horizontal/lateral distance/displacement.
Stimulation—treatment of a well to enhance production of oil or gas, e.g., fracturing, acidizing, and so on.
Re-stimulation—stimulation treatment of any portion of a well, including any lateral, which has previously been stimulated.
Hydraulic fracturing or “fracturing”—a stimulation treatment involving pumping a treatment fluid at high pressure into a well to cause a fracture to open.
Refracturing or refrac—fracturing a portion of a previously fractured well after an initial period of production. The fractures from the earlier treatment are called “pre-existing fractures”.
Shut-in pressure or SIP—the surface force per unit area exerted at the top of a wellbore when it is closed, e.g., at the Christmas tree or BOP stack.
Instantaneous shut-in pressure or ISIP—the shut-in pressure immediately following the cessation of the pumping of a fluid into a well.
Pore pressure or reservoir pressure—the pressure of fluids within the pores of a reservoir.
Reservoir—a subsurface body of rock having sufficient porosity and permeability to store and transmit fluids.
Depletion—the drop in reservoir pressure or hydrocarbon reserves resulting from production or other egress of reservoir fluids.
Depleted region or zone—an isolated section of reservoir in which the pressure has dropped below that of adjacent zones or the main body of the reservoir.
Undepleted region or zone—a section of reservoir in which the pressure has not dropped to that of adjacent depleted zones, or has not dropped substantially from the initial reservoir pressure.
Initial reservoir pressure—the pressure in a reservoir prior to any production.
Formation—a body of rock that is sufficiently distinctive and continuous that it can be mapped, or more generally, the rock around a borehole.
Well—a deep hole or shaft sunk into the earth, e.g., to obtain water, oil, gas, or brine.
Offset well—an existing wellbore close to a subject well that provides information for treatment of the subject well.
Borehole or wellbore—the portion of the well extending from the Earth's surface formed by or as if by drilling, i.e., the wellbore itself, including the cased and openhole or uncased portions of the well.
Lateral—a branch of a well radiating from the main borehole.
Interval—a space between two points in a well.
Casing/casing string—Large-diameter pipe lowered into an openhole and cemented in place.
Liner—A casing string that does not extend to the top of the wellbore, but instead is anchored or suspended from inside the bottom of the previous casing string.
Stage—a section of the lateral consisting of one or more perforation clusters with a pumping sequence comprising a proppant pumping schedule and a diversion pill pumping schedule, including pads, spacers, flushes and associated treatment fluids.
Proppant pumping schedule—a pumping sequence comprising the volume, rate, and composition and concentration of a proppant-laden fluid, and any associated treatment fluids such as an optional pad, optional spacers, and an optional flush.
Proppant—particles mixed with treatment fluid to hold fractures open after a hydraulic fracturing treatment.
Diversion pill pumping schedule or simply “diversion schedule”—a pumping sequence comprising the volume, rate, and composition and concentration of a diversion fluid and any preceding and/or following spacers.
Pill—any relatively small quantity of a special blend of drilling or treatment fluid to accomplish a specific task that the regular drilling or treatment fluid cannot perform.
Diversion material—a substance or agent used to achieve diversion during stimulation or similar injection treatment; a chemical diverter.
Divert—to cause something to turn or flow in a different direction.
Diversion—the act of causing something to turn or flow in a different direction.
Diversion pill—a relatively small quantity of a special treatment fluid blend used to direct or divert the flow of a treatment fluid.
Diverter—anything used in a well to cause something to turn or flow in a different direction, e.g., a diversion material or mechanical device; a solid or fluid that may plug or fill, either partially or fully, a portion of a subterranean formation.
Diversion target profile—a planned objective in the aggressiveness or conservativeness in the increase of ISIPs as the stages progress during a refrac treatment.
Fracture target—a planned objective in one or more fracture characteristics, e.g., conductivity and geometry, i.e., length, height, width, and degree of complexity.
Cluster—a collection of data points with similar characteristics.
Perforation—the communication tunnel created from the casing or liner into the reservoir formation, through which fluids may flow, e.g., for stimulation and/or oil or gas production.
Perforation cluster—a group of nearby perforations having similar characteristics.
Cluster stress—formation stress at a perforation cluster.
Fracture—a crack or surface of breakage within rock.
Establish—to cause to come into existence or begin operating; set up.
Determine—to establish or ascertain definitely, as after consideration, investigation, or calculation.
Design—to work out the structure or form of something, as by making a sketch, outline, pattern, or plans.
Initiate—to cause a process or action to begin.
Measure—to ascertain the value, number, quantity, extent, size, amount, degree, or other property of something by using an instrument or device.
Estimate—to roughly calculate or judge the value, number, quantity, extent, size, amount, degree, or other property of.
Adjust—to alter or move something slightly to achieve the desired fit, appearance, or result.
Model—to develop a description of a system or process using mathematical concepts or language; to develop a mathematical model.
Simulate—to create a representation or model of something, e.g., a physical system or particular situation.
Calculate—to determine the amount or number of something mathematically.
Compare—to estimate, measure, or note the similarity or dissimilarity between.
Verify—to make sure or demonstrate that something is true, accurate, or justified; confirm; substantiate.
Input—anything put in, taken in, or operated on by any process or system; data put into a calculation, simulation or computer.
Output—data or information produced, delivered or supplied by any process or system; the results from a simulation, calculation, computation, computer or other device
Modify—to make partial or minor changes to (something), typically so as to improve it or to make it less extreme.
Progression—a movement or development toward a destination or a more advanced state, especially gradually or in stages; a succession; a series.
Starting—relating to conditions at the beginning of or just prior to the beginning of a process or procedure, e.g., a re-stimulation treatment.
Initial—relating to conditions in a well, reservoir, formation, etc. at the beginning of or just prior to any production.
In some embodiments, refrac candidate wells with hydraulic fractures along a horizontal lateral exhibit depletion that is highly uneven along the lateral, e.g., in tight reservoirs. In some embodiments, it is desired that the refracturing treatment of the present disclosure create effective fractures in undepleted previously fractured regions and/or new rock, where the pore pressure is close to the initial reservoir pressure; create short and wide fractures in moderately depleted regions, where the initial fractures have lost most conductivity in the near wellbore area; and create little no fractures in the most depleted regions. Therefore, in some embodiments herein, the method aims to place most, e.g., >50%, of the proppant mass in the undepleted regions, in fractures.
The degree of depletion may be directly represented by the magnitude of reservoir pore pressure, which is reflected in the formation stress, e.g., there is a correlation between stress and pore pressure, as in the following Equation (1):
where σh is the formation stress, pr is reservoir pore pressure, Eh and Ev are the horizontal and vertical Young's moduli, νh and νv are the horizontal and vertical Poisson's ratios, and is the poroelastic constant. In hydraulic fracturing, the instantaneous shut-in pressure (ISIP) is closely related to the magnitude of the stress, and is thus used in some embodiments herein as a proxy for pore pressure. In some embodiments herein, the present disclosure uses ISIP as a key parameter in stage design, implementation and/or in real time diagnosis of effectiveness of refrac treatments.
In particular embodiments, the ISIPs of the initial fracture treatment are used to set the threshold or goal for ISIPs in the refracturing treatment of undepleted regions. With reference to
Because of the usual heterogeneity of rock properties along a horizontal wellbore and uneven depletions from the initial fractures, the stresses at the clusters are not uniform. When the pumping starts in a refrac treatment, the pressure inside the wellbore increases, and fractures are created in the first stage from the perf clusters that have the lowest stresses, following the principle of least resistance. In the subsequent stages, using a diversion technique in some embodiments, fractures are created from clusters of increasingly high stresses, and hence in less depleted regions. In some embodiments as shown in
The following description herein is based on the use of a diverter such as BROADBAND SEQUENCE™ treatment by way of example and illustration, but the method is not so limited and can also be used with other placement methods, such as, for example, ball sealers, sleeves, and so on.
With reference to
In task 120, pore pressure and cluster stresses along the well at a start of the re-stimulation treatment are determined. Various methods and models can be used, depending on the available information and tools, some embodiments of which are elaborated in more detail below in reference to
In operation 130, target ISIP values versus treatment progression, e.g., stage by stage, are established. The target ISIP values may range from a minimum target ISIP value equal to or greater than a lowest pore pressure in the formation corresponding to depleted regions (cf. 14 in
Next, a diversion strategy is designed in operation 140 and a proppant pumping schedule in operation 150. The designs in operations 140, 150, can be obtained separately in either order or simultaneously, or as part of a joint design. Operation 140 involves setting the proposed diversion target profile, e.g., the number of stages, the diversion squeeze rate, and the diversion pill volume of each stage in which a diverter is used. The diverter may or may not be used in the ultimate stage, but is usually used in at least the first through penultimate stages. Operation 150 involves setting the pumping schedule for the propped fracture treatment, e.g., the pump rate, the pad fluid volume, the proppant concentration ramp or loading schedule, and the total proppant placement for each stage. Proppant is normally pumped in each stage to hold the fracture open, however, stage steps in which no proppant is used are nevertheless deemed to be a part of the proppant pumping schedule. The diversion strategy and proppant pumping schedule can be developed using various methods and models, depending on the available data and tools, some embodiments of which are discussed below in reference to
Next, the refrac treatment initiation 160 uses the proppant pumping schedule from 150 and the diversion schedule from 140. In task 170, an ISIP value is obtained following diversion at the end of the stages where it is used, compared to the target ISIP for that stage, and if necessary or desired, e.g., if it differs from the target ISIP value determined in 130 by an unsatisfactory margin, e.g., a predetermined amount, subsequent stages are adjusted in real time and/or redesigned during the refrac treatment to better meet the target ISIP in the subsequent stages, e.g., in proportion to the difference between the measured and target ISIP values. Some embodiments of the refrac initiation 160 and redesign task 170 are described below in reference to
The embodiments shown in
In some embodiments, inputs to the refrac simulator in operation 202 may include one or more or all of the completion parameters, cluster design, estimated fracturing gradient per cluster, the amount of diverting material required to plug one perforation, the total amount of diversion pumped in the diverting pill, and so on. In some embodiments, the refrac simulation 202 functions in a 3-step sequence: (1) computation of the flow rate across each perforation cluster during a stage, and then before any diversion material is pumped at the rate at which the diverting pill is squeezed through the perforations, e.g., 20 bbl/min, along with the wellbore pressure required to flow fluid across the perforations; (2) computation of the perforation plugging progression (fraction of perforations plugged) to consume the material pumped in the diverting pill, which may be based on user input of the quantity of material required to plug a perforation, the size of the diverting pill, the squeeze rate, and so on; (3) with a fraction of the perforations plugged, computation of the flow rate across each perforation cluster at the squeezing rate (e.g., 20 bbl/min), and then at the fracturing rate of the subsequent fracturing stage. Steps 1, 2, 3 in some embodiments are employed for a single fracture simulation, or iterated for the number of fracturing stages to be pumped in the treatment.
In some embodiments, the refrac simulation 202 may ignore one or more or all of the fracture-initiation pressure, the fracture propagation and geometry, the changes in the net pressures of the fractures during diversion, and so on. While these limitations may affect a level of accuracy, they do not impair the ability to sensitize on inputs and draw valuable conclusions. In particular, the simulator can be used to understand one or more or all of the effect of stress variations along a wellbore interval on the value of the diversion pressure, the relative change in ISIP values, the number of clusters taking fluid, and so on.
The cluster design in some embodiments may be characterized by one or more or all of: number of perforations, perforations diameter, perforation coefficient, spacing from the next cluster, fracturing gradient of the zone adjacent to the cluster, and so on.
In the workflow 200, the goal ISIPs are established in task 210 and the cluster stresses determined in operation 220 as in
The calculated ISIP vs stage curve from 230 can be compared with the diversion target profile in decision operation 246. If the progression of ISIP for all the stages matches the target or within an acceptable deviation, the pill stage design is completed in output 248. If not, the pill volume of certain stages can be modified for input 241, and the refrac simulation 202 repeated until the target is met.
In the proppant schedule design operation 250, the stage ISIPs are divided into groups in task 251. In some embodiments, two or three or more groups may be used, e.g., low, middle, and high ISIP value groups. In some embodiments, a decision to split the stages into 2 or 3 groups depends on the gap in values of the stresses along the wellbore. For example, if there is a clear gap between the low stress (depleted region) ISIPs and high stress (undepleted region) ISIPs such as in the Example below (see
For each group, an average number of clusters per stage can be obtained from the results 242. From this and a total proppant mass input 252, which represents the main cost of a refracturing treatment, an initial proppant pump schedule for a single cluster can be designed for each group in task 253. Single fracture simulations 254 are conducted for each group, and representative fracture geometry and conductivity outputs 255 are obtained for each group. The fracture geometry and conductivity are compared with the target values in each group in decision operation 256. If the comparison is satisfactory, the proppant pump schedule design is completed in output 258. If not, the proppant pump schedules are modified in 254 and the fracture simulations 255 are repeated until the target is met. Then the refrac initiation 260 and real-time adjustments 270 are carried out as discussed in reference to
In the embodiments shown for workflow 300 in
As in
In the proppant schedule design operation 350, the stage ISIPs are divided into groups in task 351, and an average number of clusters per stage can be obtained from the results 342, in the identical manner as described in reference to
An optional single cluster fracture simulation 354 can, if desired, be conducted for each group to verify the created fracture geometry and conductivity are consistent with the design for each group. Since the average number of clusters is known for each group, the amount of proppant in a stage proppant schedule is the product of the proppant mass/cluster by the average number of clusters of a stage, and the stage pump schedule design for each group in output 358 is straightforward. Then the refrac initiation 360 and real-time adjustments 370 are carried out as discussed in reference to
With reference to the embodiments of the workflow 400 shown in
In these embodiments, an ISIP vs stage curve can be obtained in operation 430 based on data 432 from previous fracturing or refracturing in an offset wellbore, e.g., if there is a pump shutdown at the end of each stage of treatment in the offset well. The ISIP vs stage curve can be further modified toward the input 434 for the planned diversion target profile ISIP progression for all the stages. Next, in the diversion design operation 440, the stage ISIPs are divided into groups in task 436. In some embodiments, two or three or more groups may be used, e.g., low, middle, and high ISIP value groups. In some embodiments, a decision to split the stages into 2 or 3 groups depends on the gap in values of the stresses along the wellbore. For example, if there is a clear gap between the low stress (depleted region) ISIPs and high stress (undepleted region) ISIPs such as in the Example below (see
Using information of production data 438 and estimated percent of depletion along the lateral 442, as well as any data 444 from similar offset wells, the percent of number of clusters in each group is estimated in task 445. Since the total number of clusters of the lateral is known, and the number of stages in each group is determined, the average number of clusters per stage can be calculated for each group in task 446. Then the stage pill volume of each group can be calculated, using the average number of clusters to be plugged in each stage, to give the pill design for each group in output 448. As an optional calculation, the pill design from 448 for all the stages can be input to the refrac simulation 402 to verify the accuracy of the ISIP vs stage curve design.
In these embodiments, the proppant schedule design operation 450 is similar to
An optional single cluster fracture simulation 454 can, if desired, be conducted for each group to verify the created fracture geometry and conductivity are consistent with the design for each group. Since the average number of clusters is known for each group, the amount of proppant in a stage proppant schedule is the product of the proppant mass/cluster by the average number of clusters of a stage, and the stage pump schedule design for each group in output 458 is again straightforward. Then the refrac initiation 460 and real-time adjustments 470 are carried out as discussed in reference to
With reference to the embodiments shown in
There is an overlap of the operations 530, 540, 550 as shown in
The ISIP vs. stage output in the simulation 502 is compared with the target ISIP vs stage curve from operation 530. If the simulated ISIP matches the target value of the corresponding stage in decision operation 546, the pill design is completed in output 548. If not, the initial pill design is modified in operation 542 and another simulation is run. Also, in some embodiments simultaneously or concurrently, the fracture geometry and conductivity output 555 is compared with the target values of the fracture design in decision operation 556. If the comparison is satisfactory, the stage pump schedule design for this stage is completed in output 558. If not, the volumes of fluid and proppant of the initial pump schedule is modified in design task 552 and another simulation 502 is run. These iterations are repeated until the pill design 548 and the pump schedule design 558 are completed, i.e., so that fractures are created in the entire well for all stages according to the diversion target profile and the fracture target, which are based on the desired amount of proppant placed in depleted and undepleted regions. Then the refrac initiation 560 and real-time adjustments 570 are carried out as discussed in reference to
The workflow 620 shown in the embodiments of
Next, the initial stress distribution in the entire fracture domain can be obtained in fracture simulation 628, based on mechanical and geological models, which may, for example, be 1D or 3D. The fracture simulation 628 of the initial fracture treatment is conducted using the rock properties from 622, stress distribution 626, and treatment parameters. The pressure from the simulation is matched with the actual pressure measured from the initial treatment. The fracture geometry and conductivity calculated in the simulation 628, together with the reservoir properties, are then used in reservoir simulation 630 for the production period after the initial fracture up to the refrac. The production rate and pressure from the simulation 630 during that period used to match any actual production history data, and to calculate a reservoir pressure field at the start of the re-stimulation treatment. Next, geomechanics simulation 632, which may be 1D or 3D, is used to calculate the current stress field in output 634. Cluster stress are then determined from the stress field in task 636.
The workflow 720 shown in the embodiments of
Using the mechanical properties from 724, and the pore pressure from 726, 728, 730, the stress, σh, can be calculated in task 734 from Equation (1):
where pr is reservoir pore pressure, Eh and Ev are the horizontal and vertical Young's moduli, νh and νv are the horizontal and vertical Poisson's ratios, and is the poroelastic constant.
In some embodiments, two pore pressures are used in the calculations: one is the initial pore pressure 726, which is in the undepleted region, and the other is the current lowest pore pressure from task 732, which is in the most depleted region. Two distributions of stress are obtained from these two pore pressures, which can be assigned to two sets of clusters, based on the estimated percent of depletion along the lateral from task 732, to provide the cluster stresses 736.
The workflow 820 shown in the embodiments of
A representative ISIP vs. stage curve 900 according to some embodiments is shown in
Next, in task 1004, the first stage treatment including the pill is pumped, and the ISIP is measured at the end of the stage. In decision operation 1006, the measured ISIP is compared with the planned curve 900. If the measured value is within the uncertainty band 902, the pill volume is kept as designed in task 1008, and the process proceeds to task 1010 in which the next stage is pumped and ISIP measured. If the measured ISIP is above the band in operation 1006, the process proceeds to task 1012 and the pill volume reduced for the next stage in task 1010. If the measured ISIP is below the band in operation 1006, the process proceeds to task 1014 and the pill volume is increased for the next stage in task 1010. The decision operation 1006 and the adjustment to pill volume are repeated for the subsequent stages until all stages are pumped.
In some aspects, the disclosure herein relates generally to well re-stimulation methods and/or workflow processes according to the following Embodiments, among others:
A method for re-stimulation treatment of a well penetrating a formation, comprising: (a) establishing a goal range of instantaneous shut-in pressure (ISIP) values for refracturing treatment of a well having pre-existing fractures from a previous stimulation, wherein the goal range comprises minimum and maximum ISIP values corresponding to undepleted regions of the formation; (b) determining pore pressure and cluster stresses along the well at a start of the re-stimulation treatment; (c) establishing target ISIP values versus treatment progression, wherein the target ISIP values comprise a minimum target ISIP value equal to or greater than a lowest pore pressure in the formation at a start of the re-stimulation treatment corresponding to depleted regions of the formation, and a maximum target ISIP value within the goal range of ISIP values at an end of the re-stimulation treatment corresponding to the undepleted regions; (d) designing a diversion schedule for a number of stages, wherein the schedule comprises the number of stages, a diversion squeeze rate, a diversion pill volume, and the target ISIP value at an end of the respective stage; (e) designing a proppant pumping schedule for a fracture design for the stages, wherein the proppant pumping schedule comprises pump rate, pad volume, proppant loading, and total proppant placement for the respective stage; (f) initiating the refracturing treatment including proppant and diversion pill placement according to the proppant pumping schedule (e) and diversion schedule (d); (g) measuring ISIP at the end of the stages; and (h) if the measured ISIP in (g) differs from the target ISIP value in (c) by a predetermined amount, then adjusting the diversion schedule in (d), the proppant pumping schedule in (e), or a combination thereof, for subsequent treatment stages, optionally in proportion to the difference between the measured and target ISIP value.
the method of Embodiment 1, wherein (d) comprises simulating the refracturing treatment to determine a number of clusters for fracture initiation for the diversion pill in the respective stages, to determine a minimum cluster stress for the respective stages, and to calculate the ISIP for the respective stages as a function of the determined minimum cluster stress; comparing the calculated ISIP with the target ISIP value to obtain a difference; if the difference is greater than a predetermined amount, modifying the diversion schedule and repeating the refracturing treatment simulation; and repeating the comparison and the modification until the difference is less than the predetermined amount.
the method of Embodiment 2, wherein the refracturing treatment simulation comprises (i) computing flow rate across each unplugged perforation cluster during the stage, and a wellbore pressure required to flow fluid across the unplugged perforations, (ii) determining a fraction of perforations plugged based on the diversion squeeze rate (e.g., about 20 bbl/min), the diversion pill volume, and an amount of diverting material required to plug a perforation (preferably captured from user input), (iii) with the fraction of the perforations plugged in (ii), computing the flow rate across each perforation cluster at the squeeze rate, and (iv) repeating (i), (ii), and (iii) for subsequent stages.
the method of Embodiment 2 or Embodiment 3, wherein the refracturing treatment simulation ignores fracture initiation pressure, fracture propagation, fracture geometry, and changes in net pressure during the diversion, and wherein the refracturing treatment simulation provides an indication of effect, of stress variations along an interval of the wellbore, on a value of diversion pressure, on relative change in the ISIP values, and on number of the clusters taking fluid.
the method of any one of Embodiments 2-4, wherein the refracturing treatment simulation is based on cluster characterization from user inputs selected from one or more or all of: number of perforations, perforation diameter, perforation coefficient, spacing to adjacent clusters, and fracturing gradient of a zone adjacent to the cluster.
the method of any one of Embodiments 2-5, wherein the ISIP calculation comprises adding an estimated net pressure (e.g., about 200-1000 psi) to the minimum cluster stress.
the method of any one of Embodiments 2-6, wherein (e) comprises dividing the target ISIP values into a plurality of groups of stages comprising a low value group, a high value group, and optionally one or more intermediate value groups, e.g., intermediate value groups where the low value group and the high value group are separated by a gap between depleted and undepleted regions; calculating an average number of clusters per stage for each of the groups of stages; designing the proppant pumping schedule for one of the clusters in each of the groups of stages, based on a selected total proppant mass; simulating the designed proppant pumping schedule to calculate representative fracture geometry and conductivity for each of the groups of stages, comparing the calculated fracture geometry and conductivity with target geometry and conductivity, if the comparison is unsatisfactory, modifying the proppant pumping schedule and repeating the refracturing treatment simulation, and repeating the comparison and the proppant pumping schedule modification until the comparison is satisfactory.
the method of any one of Embodiments 2-6, wherein (e) comprises dividing the target ISIP values into a plurality of groups of stages comprising a low value group, a high value group, and optionally one or more intermediate value groups, preferably no intermediate value group where the low value group and the high value group are separated by a gap between depleted and undepleted regions; calculating an average number of clusters per stage for each of the groups of stages; calculating an amount of proppant placed in each cluster in each of each of the groups of stages, from a selected total proppant mass and an estimated fraction of the total proppant mass used for each of the groups of stages; simulating fracturing of one of the clusters in each of the groups of stages; and designing the proppant pumping schedule for the clusters in each group, based on the cluster fracture simulation.
the method of Embodiment 1, wherein (d) comprises preparing an ISIP versus stage curve using data from the previous stimulation, and optionally modifying the ISIP versus stage curve, for the establishment of the target ISIP values versus treatment progression in (c) by stage; dividing the target ISIP values into a plurality of groups of stages comprising a low value group, a high value group, and optionally one or more intermediate value groups, preferably intermediate value groups where the low value group and the high value group are separated by a gap between depleted and undepleted regions; estimating an average number of clusters in each of the groups of stages, optionally considering one or more or all of: production data for the well, estimated depletion along the well, production data for nearby offset wells, and estimated depletion along the nearby offset wells; from the estimated average number of clusters per group, estimating a number of clusters in each stage in each of the groups of stages; and calculating the diversion pill volume for the respective stages, based on the estimated number of clusters in each treatment stage in each of the groups of stages.
the method of Embodiment 9, further comprising simulating the refracturing treatment to verify the number of clusters for fracture initiation for the diversion pill in the respective stages, to determine a minimum cluster stress for the respective stages, and to calculate the ISIP for the respective stages as a function of the determined minimum cluster stress.
the method of Embodiment 10, further comprising comparing the calculated stage ISIPs with the target ISIP value to obtain a difference; if the difference is greater than a predetermined amount, modifying the diversion schedule and repeating the refracturing treatment simulation, and repeating the comparison and the diversion schedule modification until the difference is less than the predetermined amount.
the method of Embodiment 10 or Embodiment 11, wherein the refracturing treatment simulation comprises (i) computing flow rate across each unplugged perforation cluster during the stage, and a wellbore pressure required to flow fluid across the unplugged perforations, (ii) determining a fraction of perforations plugged based on the diversion squeeze rate (preferably about 20 bbl/min), the diversion pill volume, and an amount of diverting material required to plug a perforation, preferably captured from user input, (iii) with the fraction of the perforations plugged in (ii), computing the flow rate across each perforation cluster at the squeeze rate, and (iv) repeating (i), (ii), and (iii) for subsequent stages.
the method of any one of Embodiments 10-12, wherein the refracturing treatment simulation ignores fracture initiation pressure, fracture propagation, fracture geometry, and changes in net pressure during the diversion, and wherein the refracturing treatment simulation provides an indication of effect of stress variations along an interval of the wellbore, on a value of diversion pressure, on relative change in the ISIP values, and on number of the clusters taking fluid.
the method of any one of Embodiments 10-12, wherein the refracturing treatment simulation is based on cluster characterization from user inputs selected from one or more or all of: number of perforations, perforation diameter, perforation coefficient, spacing to adjacent clusters, and fracturing gradient of a zone adjacent to the cluster.
the method of any one of Embodiments 9-14, wherein (e) comprises calculating an amount of proppant placed in each cluster in each of the groups of stages, from a selected total proppant mass and an estimated fraction of the total proppant mass used for each of the groups of stages; simulating fracturing of one of the clusters in each of the groups of stages; and designing the proppant pumping schedule for the clusters in each of the groups of stages, based on the fracturing simulation.
the method of Embodiment 1, wherein (d), (e), or a combination thereof, comprise simulating the refracturing treatment for one or more or all of the following: determining a number and location of clusters, modeling propagation of the refracturing treatment fractures in (e) by stage, modeling injection of the diversion pill in (d) by stage, calculating the ISIP in (g) at the end of each stage, and combinations thereof.
The method of Embodiment 16, further comprising iteration process A, iteration process B, or a combination thereof, wherein iteration process A comprises: comparing the calculated ISIP in (g) with the target ISIP value in (d) to obtain a difference; if the difference is greater than a predetermined amount, modifying the diversion schedule in (d) and repeating the refracturing treatment simulation; and repeating the calculated-target ISIP comparison and the diversion schedule modification until the difference is less than the predetermined amount; and wherein iteration process B comprises: comparing the fracture propagation model with target values of the fracture design in (e); if the fracture propagation model-design comparison is unsatisfactory, modifying the proppant pumping schedule in (e) and repeating the refracturing treatment simulation; and repeating the fracture propagation model-design comparison and the proppant pumping schedule modification until the fracture propagation model-design comparison is satisfactory.
The method of any one of Embodiments 1-17, wherein (b) comprises one or more or all of the following: determining starting mechanical property values for the formation along a lateral of the well, wherein the values are selected from Poisson's ratio, Young's modulus in a vertical direction, Young's modulus in a horizontal direction, and combinations thereof, e.g., from sonic logs; determining an initial pre-production reservoir pressure of the formation, e.g., assuming uniform reservoir pressure prior to any production; calculating initial pre-production stress distribution along the lateral from the determined mechanical properties and reservoir pressure, which may be a 1D or 3D model; simulating a geometry of the pre-existing fractures to calculate the geometry and conductivity of the pre-existing fractures, wherein the simulation is based on one or more of the determined mechanical properties, the determined reservoir pressure, the calculated stress distribution, parameters of the previous stimulation, and combinations thereof; conducting reservoir simulation for any production period after the previous stimulation up to the start of the re-stimulation treatment, to match any actual production history data, and to calculate a reservoir pressure field at the start of the re-stimulation treatment, based on the calculated fracture geometry and conductivity; conducting a geomechanics simulation based on the reservoir pressure field to calculate a formation stress field at the start of the re-stimulation treatment; and combinations thereof.
The method of any one of Embodiments 1-17, wherein (b) comprises: determining mechanical property values for the formation along a lateral of the well or from offset wells in the reservoir, wherein the values are selected from vertical Poisson's ratio, horizontal Poisson's ratio, Young's modulus in a vertical direction, Young's modulus in a horizontal direction, and combinations thereof, e.g., from sonic logs; determining statistical distribution of the mechanical property values from measured values; calculating stresses, σh, from Equation (1):
where pr is reservoir pore pressure, Eh and Ev are the horizontal and vertical Young's moduli, νh and νv are the horizontal and vertical Poisson's ratios, and is the poroelastic constant; obtaining first and second distributions of the calculated stresses, where pr in the first distribution is the initial reservoir pore pressure, preferably obtained from the previous stimulation treatment, and where pr in the second distribution is the lowest current pore pressure, preferably estimated from production data; and assigning the first and second distributions to respective first and second groups of clusters corresponding to the undepleted and depleted regions of the formation, respectively.
The method of any one of Embodiments 1-17, wherein (b) comprises: calculating stresses, σh, from Equation (1):
where pr is reservoir pore pressure, Eh and Ev are the horizontal and vertical Young's moduli, νh and νv are the horizontal and vertical Poisson's ratios, and is the poroelastic constant; wherein the Poisson's ratios and Young's moduli are taken as average or representative values obtained from one or more of at least one nearby pilot well, at least one nearby offset well, or a combination thereof; obtaining a distribution of the calculated stresses, using pr as a statistical distribution of reservoir pore pressure along the well, wherein an initial reservoir pressure prior to the previous stimulation treatment is known, and lowest current pore pressure is estimated from production data; and assigning the stress distribution to respective clusters.
The method of any one of Embodiments 1-20, wherein the goal ISIP values in (a) comprise a range of ISIP values from the previous stimulation.
The method of any one of Embodiments 1-21, wherein establishing the minimum target ISIP value in (c) comprises injecting a test volume into the well, shutting in the well, and measuring ISIP, wherein the test volume is less than 20% of a volume of a first one of the stages.
A method for re-stimulation treatment of a well penetrating a formation, comprising: (a) establishing a goal range of instantaneous shut-in pressure (ISIP) values for refracturing treatment of a well having pre-existing fractures from a previous stimulation, wherein the goal range comprises minimum and maximum ISIP values corresponding to undepleted regions of the formation; (b) optionally determining pore pressure and cluster stresses along the well at a start of the re-stimulation treatment; (c) establishing target ISIP values versus treatment progression, wherein the target ISIP values comprise a minimum target ISIP value equal to or greater than a lowest pore pressure in the formation at a start of the re-stimulation treatment corresponding to depleted regions of the formation, and a maximum target ISIP value within the goal range of ISIP values at an end of the re-stimulation treatment corresponding to the undepleted regions; (d) designing a diversion schedule for a number of stages, wherein the schedule comprises the number of stages, a diversion squeeze rate, a diversion pill volume, and the target ISIP value at an end of the respective stage; (e) designing a proppant pumping schedule for a fracture design for the stages, wherein the proppant pumping schedule comprises pump rate, pad volume, proppant loading, and total proppant placement for the respective stage; (f) initiating the refracturing treatment including proppant and diversion pill placement according to the proppant pumping schedule (e) and diversion schedule (d); (g) measuring ISIP at the end of the stages; and (h) if the measured ISIP in (g) differs from the target ISIP value in (c) by a predetermined amount, then adjusting the diversion schedule in (d), the proppant pumping schedule in (e), or a combination thereof, for subsequent treatment stages, optionally in proportion to the difference between the measured and target ISIP value; wherein (d) comprises: preparing an ISIP versus stage curve using data from the previous stimulation, and optionally modifying the ISIP versus stage curve, for the establishment of the target ISIP values versus treatment progression in (c) by stage; dividing the target ISIP values into a plurality of groups of stages comprising a low value group, a high value group, and optionally one or more intermediate value groups, preferably intermediate value groups where the low value group and the high value group are separated by a gap between depleted and undepleted regions; estimating an average number of clusters in each of the groups of stages, optionally considering one or more or all of: production data for the well, estimated depletion along the well, production data for nearby offset wells, and estimated depletion along the nearby offset wells; from the estimated average number of clusters per group, estimating a number of clusters in each stage in each of the groups of stages; and calculating the diversion pill volume for the respective stages, based on the estimated number of clusters in each treatment stage in each of the groups of stages.
The method of any one of Embodiments 1-23, wherein the refracturing treatment in a first one of the stages and one or more subsequent stages creates fractures in the depleted regions of the formation, and wherein the refracturing treatment in an ultimate one of the stages or one or more earlier stages creates fractures in the undepleted regions of the formation.
The method of any one of Embodiments 1-24, wherein the refracturing treatment in (f) and (h) creates short fractures in the depleted regions of the formation relative to long fractures created in the undepleted regions of the formation.
The method of any one of Embodiments 1-25, wherein at least 50% of the proppant placed in the refracturing treatment in (f) and (h) is placed in the undepleted regions of the formation, by cumulative weight of the total proppant placed in each of the stages.
The method of any one of Embodiments 1-26, wherein, if the measured ISIP in (g) exceeds the maximum goal ISIP value, undertaking remedial measures for possible screenout.
The following nonlimiting example is provided to illustrate the principles of the present disclosure according to some embodiments.
The subject well treated in this example was a generally horizontal lateral. The instantaneous shut-in pressures (ISIPs) encountered during the original completion were recorded as a matter of course, as is typical. The lateral had eight fracturing stages with the ISIP values shown in
In addition, the design approach for completions such as in the subject well had changed since the initial stimulation, and the new design approach would have placed the clusters much closer together than the earlier version. In this case, two new perforation clusters were to be added for each existing cluster, to be placed between the original clusters for the most of the lateral, and it was assumed that the 72 new clusters would communicate with regions of the formation at or near the initial reservoir pore pressure. To estimate the condition of the lateral prior to the refrac, similar variation in the elastic properties of the rock, and the original pore pressure (70.3 MPa (10,200 psi)), from the original stimulation were assumed. Based on this refrac design, a total of 82 perforation clusters (10 existing and 72 new) with a pore pressure of 70.3 MPa (10,200 psi), and 30 clusters with a pressure of approximately 20.7 MPa (3,000 psi), which was the bottomhole flowing pressure (BHFP) at the time of the re-stimulation. The condition of the wellbore prior to the refrac is represented by the stress histogram seen in
Next an estimation of the stress condition of the wellbore was undertaken to provide a design basis for the diversion strategy with the appropriate pill volumes. In this example, the goal was to pump smaller reconnecting stages into the depleted rock, and larger re-stimulating stages into the higher pressure areas. With 30 low pressure clusters, experience has shown that approximately five clusters at a time will be stimulated, indicating six stages were needed to target these clusters of the lateral. With approximately five pounds of diversion material required for each perforation, and six perforations per cluster, the estimated mass of diversion material required for the low pressured section was calculated as 30 clusters×6 holes/cluster×2.27 kg (5 lb)/hole=409 kg (900 lb) of diversion material, for approximately 68.2 kg (150 lb) of diversion material in the diversion pill at the end of each of these stages.
For the 82 high-pressure clusters, based again on the assumption of approximately 5 clusters treated for each stage, an additional 17 stages were planned to target this higher pressure rock. With similar assumptions for the mass of diversion material required, these pills should also be about 68.2 kg (150 lb) of diversion material pumped after each stage.
With the staging strategy design in hand, the proppant pumping schedule for each stage was developed. In this example, the initial estimate from experience was that the low pressure clusters would be targeted with 9090 kg (20,000 lb) of proppant per cluster, and the high pressure clusters with 33,660 (74,200 lb) per cluster, or 45,500 kg (100,000 lb) sand for each of the first 6 stages, and 163,000 kg (358,000 lb) for the following 17 stages. Based on these fracturing parameters, two different pumping schedules were developed for stages 1-6 and 7-23 as shown in Table 1 and Table 2, respectively.
0.54 (4.5)
790 (208.7)
During the refrac real time adjustments were made during execution, based on the methodology described herein. With the diverter and proppant pumping schedule designed, the refrac was initiated and proceeded according to plan for the first three stages, as shown in
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. For example, any embodiments specifically described may be used in any combination or permutation with any other specific embodiments described herein. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.