In a well system, well screen assemblies are used to filter against passage of particulate from the wellbore into the production string. The wellbore around the screens is often packed with gravel to assist in stabilizing the formation and to pre-filter against particulate before the particulate reaches the screens. A uniform gravel packing can, however, be difficult to achieve due to formation of sand bridges and other complications experienced when pumping the gravel slurry into the region around the screens. Therefore, sometimes expandable screens that expand into contact with the wellbore are used in place of gravel packing.
Like reference symbols in the various drawings indicate like elements.
Referring first to
A tubing string 22, for example, a production and/or injection string, resides in the well bore 12 and extends from the terranean surface. The tubing string 22 can communicate fluids between the subterranean zone 20 and the surface. The screen assemblies 24 are distributed along the tubing string 22 proximate the subterranean zone 20. The screen assemblies 24 are sand control screen assemblies that can filter out particulate materials from well fluids, direct the well fluids to a center bore of the tubing string 22, and stabilize the formation. As is discussed in more detail below, the screen assemblies 24 are of a type that radially extend into contact with an interior wall of wellbore 12 and are shown in an operating or a radially extended configuration. Three screen assemblies 24 are shown. In other instances, fewer or more screen assemblies 24 can be used. The screen assemblies may be all of one type or some or all of the screen assemblies 24 can be of a different configuration. In certain instances the screen assemblies 24 are of a type that can be run into the well in a radially compact, unextended run-in state, and subsequently extended using pressure from a fluid supplied into the interior of the screen assembly 200. The fluid can be supplied from the surface via a tubing string of jointed and/or coiled tubing and/or through the wellbore 12 (apart from a tubing). The fluid can alternately or additionally be supplied from a downhole location (e.g., with a pump and/or other).
In well screen assembly 200, the screen 204 is corrugated, having been compressed from a fully extended state by providing partial folds in the screen material around the circumference of the base pipe 202. The well screen 204 is shown with folds extending axially.
In certain instances, the screen 204 has a degradable material embedded in its openings, the degradable material sealing against flow through the screen 204. The degradable material is a material that structurally degrades to allow flow through the screen 204 in response to a specified stimulus. The degradable material can be selected to degrade in response to certain fluids (e.g., the actuating fluid and/or another fluid) and/or when exposed to certain conditions, such as a specified temperature and/or pressure (e.g., high temperatures associated with steam injection). The degradable material can degrade by dissolving, corrosion, hydrolytic cleavage, galvanic reactions, melting and/or in another manner. In certain instances, the degradable material can be a plasticized acid coating such as polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), or similar. Other examples of degradable material exist. The degradable materials can be coated, injected, and/or pressed into the screen 204 before assembly or installation in the well, forming a filled non-porous surface. Therefore, with the screen assembly 200 in the wellbore 14 in location, the screen 204 is extended by supplying fluid through the interior center bore of the base pipe 202 at pressure. The screen 204, sealed by the degradable material, defines an inflatable (hydraulically, pneumatically and/or otherwise) fluid cavity between the screen 204 and the base pipe 202 that is filled by the fluid. The fluid acts on the screen 204 extending it into contact with the wall of the wellbore 14. In extending the screen 204, the pressure of the fluid at least partially straightens the corrugations of the screen 204, and may elastically and/or plastically deform the screen 204. In certain instances, as in
Alternatively, the openings of the screen 204 can be open (without a degradable material) when the well screen assembly 200 is run into the wellbore 14, and a degradable material pumped into the center bore of the base pipe 202. The degradable material lodges in the openings of the screen 204 sealing against flow through the screen 204 and enables (by defining an inflatable fluid cavity) the fluid pressure to act on and extend the screen 204. In certain instances, the degradable material can be pumped into the well screen assembly 200 concurrently with extending the screen 204 or prior to extending the screen 204, in connection with another operation or apart from another operation.
With the screen 204 extended, the degradable material can be removed. Thus, after the screen 204 has been extended to the wall of the wellbore 14, a fluid that creates the degrading conditions is pumped through the center of the base pipe 202 into the interior of the screen 204 and/or down the annulus between the screen assembly 200 and the wellbore 14 to contact the screen 204. The fluid structurally degrades the degradable material in the openings of the screen 204 and opens the screen to allow flow. After installation of the screen into the wellbore, the degrading fluid or fluid that creates the degrading conditions can be filled into the base pipe and/or into the wellbore around the screen to degrade the degradable material and open the screen assembly 200 to flow.
The degradable materials provide a multitude of functions. For example, the degradable material can eliminate the need to treat the drilling mud prior to running the screen assembly by completely protecting the screens from contamination and clogging. In addition, in instances where the degradable material is or contains an acid, it can also eliminate the need to pump an acid treatment to degrade the filtercake, because the acid of the degradable material can degrade the filtercake. Furthermore, the coating can eliminate the need to run a wash pipe by creating a low pressure barrier/conduit through the screen assembly, and enabling the screen assembly to be used as a wash pipe prior to degrading the degradable material.
Although
In yet another configuration
In certain instances, the apertures 210 can include a valve (e.g., a check valve) that retains the fluid in the bladder 218 and maintains the bladder 218 and screen 204′″ extended. In certain instances, the fluid used in extending the bladder 218 can be a solidifying material that is injected into the bladder 218 as a liquid and solidifies (entirely or substantially, e.g. thicken) and remains in the bladder 218, maintaining the bladder 218 extended. When solidified, it cannot pass back through the apertures 210 into the center bore of the base pipe 202′″. Some examples of solidifying materials include extending foam, resin, gravel slurry, cement, gels, hydrating materials, swellable materials, crosslinking materials and/or other material. The material can be selected to solidify after a specified time, in response to temperature, in response to an activating fluid and/or in another manner. In certain instances, the bladder 218 can be constructed of a material that, when extended, maintains its extended state after the pressure is removed and supports the screen 204′″ extended. For example, the bladder 218 can be metal, polymer, a metal reinforced polymer, a fiber reinforced polymer and/or another material. In certain instances, the material can plastically deform when expanded to maintain the screen 204′″ extended. In certain instances, the bladder 218 can be a memory material (e.g., memory metal) deformed from an initial state into a radially compact state (e.g., as in
In certain instances, the bladder 218 can be constructed of rubber and/or a degradable material. The degradable material is a material that degrades in response to a specified stimulus and may or may not be the same as or related to the degradable material discussed above. The degradable material can be selected to degrade in response to certain fluids (e.g., the actuating fluid and/or another fluid) and/or when exposed to certain conditions, such as a specified temperature and/or pressure (e.g., high temperatures associated with steam injection). For example, the bladder 218 can be degraded in response to an acid and/or other fluid. Using a bladder 218 made of a degradable material allows the bladder 218 to be degraded after the screen has been extended by fluid, so as not to obscure flow between the screen and the base pipe.
In each of these embodiments,
To this end,
The louvers 304 are supported relative to the base pipe 302 by a plurality of telescoping passageways formed by a tubular, upper telescoping piston piece 308 affixed to the louver 304 and in fluid communication with its interior longitudinal passageway and a lower cylinder piece 306 affixed to the base pipe 302 and in fluid communication with its center bore.
In certain instances, the screen of the louvers 304 has a degradable material, similar to that described above, embedded in its openings when the screen assembly 300 is run into the wellbore 14. Also, as above, the degradable material seals against flow through the screen and out of the louvers 304, but can later be degraded to regain flow. Alternatively, the openings of the screen can be open (without a degradable material) when the well screen assembly 300 is run into the wellbore 14, and then a degradable material is pumped into the center bore of the base pipe 302. The degradable material lodges in the openings of the screen sealing against flow through the screen of the louvers 304. In either instance, the louver 304 sealed by the degradable material defines an inflatable fluid cavity between the louver 304 and the base pipe 302 that allows fluid to act on and extend the louvers 304. Also, in lieu of the degradable material or in combination with the degradable material, a plug can be provided in the upper telescoping piece 308 to define an inflatable fluid cavity.
Thus, to extend the louvers 304 into contact with the wall of the wellbore 14, fluid pressure is supplied down the center bore of the base pipe 302 to push the louvers 304 radially outward (by filling the fluid cavity). Then, the louvers 304 are changed to allow flow therethrough by degrading the degradable material or by raising the pressure in the center bore of the base pipe 302 high enough to dislodge the plug.
In certain instances, one or more bladders 318 are provided between the base pipe 302 and the louvers 304. As above, the bladders 318 define an inflatable fluid cavity between the louver 304 and the base pipe 302 that fluid can be supplied into to extend the louvers 304. The bladder 318 can encircle the base pipe 302 between the telescoping passageways and/or can be one or more separate elongate bladders arranged axially on the exterior of the base pipe 302. The bladder 318 can be corrugated having undulations that extend axially, circumferentially or otherwise. In this instance, the base pipe 302 includes a plurality of apertures 316 radially beneath and in communication with the interior of the bladders 318. In certain instances, multiple apertures 316 are arranged circumferentially spaced apart around the circumference of the base pipe 302. The apertures 310 (communicating with the telescoping passageways) and the apertures 316 (communicating with the interior of the bladder 318) are initially sealed with plugs 312, 316. The plug 312 in the aperture 310 is configured to hold a higher pressure than the plugs 314 in the apertures 316. In certain instances, the plugs 312, 316 can be rupture disks selected to rupture at a specified pressure.
To extend the louvers 304 into contact with the wall of the wellbore 14, fluid pressure is supplied down the center bore of the base pipe 302 to rupture the plugs 314 to open flow to the interior of the bladders 318. In certain instances, the pressure is less than the rupture pressure of the plugs 312 sealing the telescoping passageway, so that the louvers 304 stay sealed and no fluid is lost to the annulus via the louvers 304. The fluid fills the bladder 318 and lifts the louvers 304 radially into contact with the wall of the wellbore 14.
In each of the embodiments,
In certain instances, the bladder 318 can be constructed of rubber and/or a degradable material. The degradable material can be selected to degrade in response to certain fluids (e.g., the actuating fluid and/or another fluid) and/or when exposed to certain conditions, such as a specified temperature and/or pressure (e.g., high temperatures associated with steam injection). For example, the bladder 318 can be degraded in response to an acid and/or other fluid. Using a bladder 318 made of a degradable material allows the bladder 318 to be degraded after the screen has been extended by fluid, so as not to obscure flow between the screen and the base pipe.
In certain instances, the fluid pressure can be applied to the well screen assembly 300 by pressurizing the center bore of the base pipe 302. In certain instances, shown in
The injection tool 322 can be run into the interior of the well screen assembly 300 and positioned with the seals 326 spanning and sealing the aperture 316 to aperture 324. Then, hydraulic fluid is supplied down the interior of the injection tool 322 into the bladder 318. In instances having more than one bladder 318, the injection tool 322 can be configured to supply fluid to a specific one or more or all of the bladders 318 concurrently. If multiple well screen assemblies 300 are provided in the well, the hydraulic injection tool 322 can be configured to supply fluid to one or more well screen assemblies 300 at a time. Thus, the injection tool 322 can enable actuation of specific well screen assemblies 300 and not others when multiple well screen assemblies 300 are provided. Notably, an injection tool 322 can be used with any of the configurations of well screen assembly described herein.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.
This Application is a Continuation of application Ser. No. 14/776,009 filed on Sep. 14, 2015, which is a U.S. National Phase Application under 35 U.S.C. § 371 and claims the benefit of priority to International Application Serial No. PCT/US2013/034843, filed on Apr. 1, 2013, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3028915 | Jennings | Apr 1962 | A |
4200150 | Saadeh et al. | Apr 1980 | A |
4722400 | Burns | Feb 1988 | A |
5868200 | Bryant et al. | Feb 1999 | A |
5980533 | Holman | Nov 1999 | A |
6263966 | Haut | Jul 2001 | B1 |
6415509 | Echols | Jul 2002 | B1 |
6732806 | Mauldin et al. | May 2004 | B2 |
6742598 | Whitelaw et al. | Jun 2004 | B2 |
6752207 | Danos et al. | Jun 2004 | B2 |
6799686 | Echols | Oct 2004 | B2 |
6994170 | Echols | Feb 2006 | B2 |
7048048 | Nguyen et al. | May 2006 | B2 |
7066271 | Chen et al. | Jun 2006 | B2 |
7134501 | Johnson et al. | Nov 2006 | B2 |
7204316 | Dusterhoft et al. | Apr 2007 | B2 |
7380595 | Wetzel et al. | Jun 2008 | B2 |
7407013 | Whitsitt | Aug 2008 | B2 |
7866383 | Dusterhoft et al. | Jan 2011 | B2 |
7926565 | Duan et al. | Apr 2011 | B2 |
7980302 | Ring et al. | Jul 2011 | B2 |
8006771 | Green et al. | Aug 2011 | B2 |
8201636 | Gandikota et al. | Jun 2012 | B2 |
8579025 | Holderman | Nov 2013 | B2 |
20020088744 | Echols | Jul 2002 | A1 |
20020189821 | Watson | Dec 2002 | A1 |
20030037932 | Guillory | Feb 2003 | A1 |
20040003927 | Rudd | Jan 2004 | A1 |
20050098324 | Gano | May 2005 | A1 |
20050139359 | Maurer et al. | Jun 2005 | A1 |
20050173109 | Cameron | Aug 2005 | A1 |
20100000742 | Bonner et al. | Jan 2010 | A1 |
20110036565 | Holderman | Feb 2011 | A1 |
20120211223 | Guest | Aug 2012 | A1 |
20140048279 | Holderman | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2354271 | Mar 2001 | GB |
2496957 | May 2013 | GB |
Number | Date | Country | |
---|---|---|---|
20190178063 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14776009 | US | |
Child | 16275843 | US |