Wells are drilled into subterranean formations to retrieve hydrocarbons such as oil and gas. A well and the profile of tools used in drilling and completing the wells are often circular. Because efforts are made to control the flow of fluids used in drilling wells and hydrocarbon fluids produced, it is often necessary to seal between tool components and/or between components and the well. In many instances, for example, it is desirable to divide a subterranean formation into zones and to isolate those zones from one another in order to prevent cross-flow of fluids from the rock formation and other areas into the annulus. It may also be desirable to control sand across multi-zone applications.
A packer is an example of a tool having one or more sealing elements that may be lowered into a well on a mandrel and expanded into sealing engagement with an open-hole wellbore or a well component such as casing. For example, a packer may be used to seal between a completion string and wellbore casing. The packer may include a wedge/slip system to help hold the completion string in place. A packer may be used for any of a variety of situations requiring a seal, such as to isolate zones to be gravel packed and produced separately. Without such devices, the zone may experience problems such as sand production, erosion, water breakthrough, or other detrimental problems. For example, a packer may be used to support a screen adjacent to a producing formation and to seal the annulus between the outside of the completion string and the inside of the wellbore casing. This blocks movement of fluids through the annulus past the packer.
The sealing element may have a degree of compliancy and may be expanded radially outwardly into engagement with the sealing surface by compressing it axially. One measure of compliancy is the acceptable squeeze ratio (alternately referred to as “percent squeeze” and variants thereof). Percentage squeeze is a measurement of ratio between the length of the element in its relaxed state, such as when run into the well, and the length of the element in the expanded state, such as when set into engagement with the casing or other wellbore feature.
Conventional sealing elements start becoming unstable at a certain squeeze ratio, above which the element may become unstable or fail, such as by deploying in an unpredictable/unreliable manner and possibly overlapping on top of itself. Other sealing systems, inflatable, swell, and cup packers are typically used in low pressure applications unless stacked or made longer to choke down the pressure. While capable of bridging an extrusion gap (i.e., an unsupported gap between an ID of the casing and OD of a mandrel), most of these have low pressure ratings and the amount of compression is very limited. Other sealing elements such as certain bridge plug have greater expansion, but this is in part because the inner diameter (ID) of the element is significantly less than other designs.
These drawings illustrate and support aspects of the present disclosure in the context of certain examples, but should not be used to limit or define the method to only those examples.
Sealing tools and methods are disclosed for use in a wellbore. Aspects of this disclosure are discussed in the context of packers, but may be applied to other wellbore sealing tools and applications. In one aspect, the sealing element is expanded outwardly into a controlled-volume gland opening defined between axially-spaced shrouds. The volume and length of the gland opening into which the element expands may remain constant during expansion. By expanding the sealing element into a controlled volume gland, any potential for buckling variations during element deployment should be reduced. As a result, a greater percentage squeeze may be achieved for a given element thickness. This may allow for a slimmer tool profile with greater flow area between the sealing tool and the wellbore, and/or greater expansion with less material.
In example configurations, the sealing element is captured at its ends between a mandrel and axially-spaced shrouds. A dual prop and piston arrangement is provided for expanding the element, to help achieve high element expansion and a high-pressure sealing with minimal hydraulic setting force. Axial engagement of the sealing element causes it to expand radially outwardly into the controlled-volume gland opening. Expansion may be facilitated by optionally wedging the props between the mandrel and sealing element to urge the sealing element toward the casing or other feature to be sealed. Deployment characteristics of the sealing element can be further enhanced by using multi durometer element material, under cuts in the element to aid in buckling, and garter springs, fillers, and/or or mesh materials embedded in the element material to manipulate the shape and timing of the deployment sequence.
The wellbore 106 may extend through the various earth strata including formation 106. The wellbore 106 may be drilled according to a wellbore plan to reach one or more target formations, to avoid non-desirable formation features, to minimize footprint of the well at the surface, and to achieve any other objectives for the well. The wellbore 106 may follow a chosen path (i.e., the wellbore path) from where the wellbore 106 is initiated at the surface 104 (i.e., the “heel”) to the end of the well (i.e., the “toe”). The initial portion of the wellbore 106 is typically vertically downward as the drill string would generally be suspended vertically from the rig 102. Thereafter the wellbore 106 may deviate in any direction as measured by azimuth or inclination, which may result in sections that are vertical, horizontal, angled up or down, and/or curved. The term uphole generally refers to a direction along the wellbore path toward the surface 104 and the term downhole generally refers to a direction toward the toe at the end 105 of the well, without regard to whether a feature is vertically upward or vertically downward with respect to a reference point. The wellbore path in
The wellbore 106 may be at least partially cased with a casing string 116 at selected locations within the wellbore 106, while other portions of the wellbore 106 may remain uncased. The casing string 116 may be secured within the wellbore 106 using cement. In other embodiments, the casing string 116 may be only partially cemented within the wellbore 106 or, alternatively, the casing string 116 may be entirely un-cemented. The casing 116 may be made from any material such as metals, plastics, composites, or the like, may be expanded or unexpanded as part of an installation procedure. Production tubing may be any suitable tubing string utilized in the production of hydrocarbons. In examples, production tubing may be permanently disposed within casing 116. The packers 120a, 120b may be disposed on or near production tubing.
The rig 102 may include a hoisting apparatus for raising and lowering equipment from the rig 110 on a conveyance 114. The conveyance 114 may serve various functions, such as to lower and retrieve tools, to convey fluids, and to support electrical communication, power, and fluid transmission during wellbore operations. Conveyance 114 may include any suitable equipment for mechanically conveying tools such as the packers 120a, 120b and any suitable packer setting assembly for setting the packers 120a, 120b. Such conveyance may include, for example, a tubular string made up of interconnected tubing segments, or wireline, slickline, coiled tubing, or any combination of any of the foregoing. In some examples, conveyance 114 may provide mechanical suspension, as well as electrical and fluidic connectivity, for downhole tools like the packers 120a, 120b. The conveyance 114 may be used to lower one or more tools into the wellbore 106, i.e. run/tripped into the hole. When a wellbore operation is complete, or when it becomes necessary to exchange or replace tools or components of the conveyance 114, the conveyance 114 may be raised or fully removed from the wellbore 106, i.e., tripped out of the hole. The packers 120a, 120b are examples of downhole tools that may be deployed on the conveyance 114. The packers 120a, 120b may be actuated at selected locations to seal off a portion of the wellbore 106.
One or more packers or other sealing tools according to this disclosure may be set for any of a variety of sealing purposes. As depicted in
A variety of packer types may be configured according to this disclosure, including but not limited to production packers and service packers. Suitable types of packers may include whether they are permanently set or retrievable, mechanically set, hydraulically set, and/or combinations thereof. As just one example, the packers 120a and/or 120b may be production packers that will remain in the well during well production. Alternatively, the packers 120a and/or 120b may be service packers used temporarily during well servicing, such as cementing, acidizing, or fracturing. When set, packer 120 may isolate zones of the annulus between wellbore 106 and a tubing string by providing a seal between production tubing and casing 116. In examples, a packer may be disposed on production tubing. Downhole setting tools may also be disposed on the conveyance 114 and run into wellbore 106 for actuating the packers 120a, 120b.
To achieve high element expansion and a high-pressure sealing system with minimal hydraulic setting force, the sealing element may be deployed outwardly by expanding it over a dual prop and piston arrangement. A pair of opposing props 136, 138 are radially disposed between an OD of the mandrel 122 and the shroud 124. The props 136, 138 are axially moveable toward one another to selectively engage the sealing element 140 in order to urge the sealing element 140 outwardly through the gland opening 130 into sealing engagement with an inner diameter (ID) of the casing 116.
In the run-in condition, the opposing props 136, 138 are axially spaced apart along the mandrel 116, such that they do not appreciably expand the sealing element 140. The props 136, 138 may contact the sealing element 140 as shown during run-in, which may help keep the sealing element 140 centered within the gland opening 130 even during a bumpy trip downhole, in addition to any retention provided by the shroud portions 126, 128 at the captured ends of the sealing element 140 between the shroud portions 126, 128 and the mandrel 122.
The shroud portions 126, 128 may be secured to the mandrel 122 at fixed axial locations along the mandrel 122 and sealed with the OD of the mandrel 122 via sealing elements 125. Alternatively, the shroud portions 126, 128 may be axially moveable along the mandrel 122, such as to facilitate installation or replacement of the sealing element 140 onto the mandrel 122, or to configure the packer 120 with a selected one of a plurality of different element sizes. If moveable, the shroud portions 126, 128 may at least be held at fixed positions during use, at least while setting, so that the gland opening 130 may have a fixed and knowable gland length “GL” in the axial direction of the mandrel 122, at least while setting the packer 120. Thus, a controlled volume is defined between the OD of the mandrel 122, the ID of the casing 116, and the gland length GL of the gland opening 130 during setting.
In one aspect, the controlled volume is controlled at least in that it may provide a fixed volumetric constraints for the sealing element 140 to expand into when the props 136, 138 are moved axially inwardly into engagement with the sealing element 140. The controlled volume may be optionally adjusted, by selecting the axial positioning of the shroud portions 126, 128 along the mandrel 122 prior to tripping downhole. The gland length GL may be determined, for example, at the time of assembly of the packer 120. The gland length GL is optionally adjustable in one or more embodiments by adjusting axial positions of the shroud portions 126, 128 along the mandrel, such as mechanically and/or hydraulically, at some point prior to deploying and/or setting the packer in the well. In the case of moveable shroud portions 126, 128, the sealing elements 125 may provide a dynamic seal between the shroud portions 126, 128 and the mandrel 122, and may optionally facilitate operating the shroud portions 126, 128 to control their positions prior to setting the packer 120.
The props 136, 138 are axially moveable along the mandrel 122, between the OD of the mandrel 122 and an ID of the respective shroud portions 126, 128. An inner seal 135 seals between the OD of the mandrel 122 and the props 136, 138. An outer seal 137 seals between each shroud portion 126, 128 and the respective prop 136, 138. A pressure port 139 is provided along the mandrel 122 at the outer end of each prop 136, 138. The pressure ports 139 are in fluid communication with a chamber defined at a radial gap between the mandrel 122 and the respective shroud 126, 128 in which the respective prop 136, 138 is slidably captured. Pressure may be selectively provided to these ports 139 when it is desired to set the packer 120, to urge the props 136, 138 axially into engagement.
The controlled volume of the expanded sealing element 140 is generally indicated in dashed linetype at 141. The volume of the expanded sealing element 140 may be further defined by the particular geometry of the packer components and surrounding structure in which it is captured and expanded, such as the geometry of the props 136, 138, a narrow portion of the mandrel 122 between the props 136, 138, backup shoes 142, and the ID of the casing 116. While the precise volume may be subject to that geometry, and other aspects like the amount of force applied by the props 136, 138 and their final axial position along the mandrel 122, the controlled volume is still largely determined and may be approximated by the constraints of the ID of the casing 116, the OD of the mandrel 122, and the gland length GL. (The gland length GL remains constant in this example.) The portion of the sealing element protruding through the gland opening 130 is generally limited by and approximately equal to the gland length GL, although this may differ slightly depending on a variety of parameters such as the element material, packer geometry, and the dynamics of expansion). These known parameters are useful for purposes of computing or approximating a percent squeeze (further discussed below with reference to
An advantage of a controlled-volume gland opening according to this disclosure is that the sealing element may be reliably deformed to a greater extent than with prior sealing tools. This allows the thickness of the sealing element to be reduced for a given set of packer and casing constraints, while still providing an acceptable amount of expansion. As a result, a thinner overall tool profile may also be achieved, and/or, a greater flow volume may be attained around the packer between an OD of the packer and an ID of the wellbore. In some embodiments, a radial thickness of the sealing element may be less than or equal to a radial spacing between an outer diameter of the sealing element and an inner diameter of the portion of the well to be sealed.
To illustrate the effect of changing the element thickness,
Different methods may be used to form the sealing element 140 with multiple durometers. Generally, the different zones 152 may be created by varying the elastomer along its length at some stage during its manufacture. For example, the sealing element 140 may be formed by arranging elastomers of different durometers in the zones 152a, 152b, 152c, and bonding, molding, or otherwise joining them. One method may involve arranging uncured material compounds at different locations, such as with ends of one durometer (e.g. a harder material) and a center portion of another durometer (e.g. a softer material). The materials may be arranged in an uncured and pre-formed condition to some degree, and then compression molded to form a unitary sealing element of varying durometer. The elements can be molded in a three-piece compression mold or a multiple-piece vertical-compression mold. Once the sealing element 140 is molded it may be post-cured within the mold. Curing the molded elastomer pieces in this manner allows the physical properties to get locked in in the confined state. Based upon the complexity of the design of the sealing element 140, a multiple piece vertical compression mold may allow for better volume displacement and minimize the appearance of any mold line.
Referring still to
Accordingly, each of the foregoing examples of the present disclosure may provide a sealing element that is expandable outwardly into a controlled-volume gland opening. A greater percentage squeeze may therefore be achieved for a given element thickness. This may allow for a more reliable expansion and a slimmer tool profile with greater flow area between the sealing tool and the wellbore, and/or greater expansion with less material. The systems and methods of the present disclosure may additionally include any of the various features disclosed herein, in any viable combination, including but not limited to any combination of the features discussed in the examples above and in any of the following statements.
Statement 1. A sealing tool, comprising: a mandrel for lowering into a well and supporting one or more sealing tool components thereon; a shroud disposed about the mandrel, the shroud including an upper portion and a lower portion axially spaced apart on the mandrel to define a gland opening there between; a sealing element spanning the gland opening and including a first end captured between the mandrel and the upper portion of the shroud and a second end captured between the mandrel and the lower portion of the shroud; and first and second props between the mandrel and the shroud, axially moveable to engage the sealing element and urge the sealing element radially outwardly into a controlled volume defined at the gland opening between the mandrel and a portion of the well to be sealed.
Statement 2. The sealing tool of Statement 1, wherein each prop has a wedge-shaped end angled radially outwardly to wedge between the mandrel and the sealing element as the props are axially moved toward one another.
Statement 3. The sealing tool of Statement 1 or 2, further comprising: one or more backup shoes disposed between the sealing element and ends of the upper and lower shroud portions.
Statement 4. The sealing tool of any of Statements 1 to 3, wherein a radial thickness of the sealing element is less than or equal to a radial spacing between an outer diameter of the sealing element and an inner diameter of the portion of the well to be sealed.
Statement 5. The sealing tool of any of Statements 1 to 4, wherein the sealing element has a percent squeeze in a range of 35% to 60% when sealingly engaged with the portion of the well to be sealed.
Statement 6. The sealing tool of any of Statements 1 to 5, wherein the sealing element has an outer diameter less than or equal to an outer diameter of the shroud in a run-in configuration prior to setting.
Statement 7. The sealing tool of any of Statements 1 to 6, further comprising: an axially varying sealing element durometer, one or more under cuts, a garter spring, a filler, a mesh material, or combinations thereof, to preferentially deform the sealing element at one or more desired locations in response to axial compression.
Statement 8. The sealing tool of any of Statement 1 to 7, wherein the sealing element is unitarily formed as a single elastomer comprising at least two zones of different durometer.
Statement 9. The sealing tool of any of Statements 1 to 8, wherein the sealing element comprises a central element having a first durometer and outer elements formed of at least a second durometer, wherein the central element and outer elements are separately formed.
Statement 10. The sealing tool of Statement 9, wherein the outer elements have a smaller OD than the central element.
Statement 11. A method, comprising: lowering a sealing tool into a well, including a sealing element captured between upper and lower portions of a shroud axially spaced apart on the mandrel to define a gland opening therebetween; and axially moving first and second props between the mandrel and the shroud to engage the sealing element and urge the sealing element radially outwardly at the gland opening into sealing engagement with a portion of the well to be sealed.
Statement 12. The method of Statement 11, further comprising: wedging wedge-shaped ends of the props between the mandrel and the sealing element to urge the sealing element radially outwardly.
Statement 13. The method of any of Statements 11 or 12, further comprising: protecting the sealing element with one or more backup shoes disposed between the sealing element and ends of the upper and lower shroud portions.
Statement 14. The method of any of Statements 11 to 13, wherein a radial thickness of the sealing element is less than or equal to a radial spacing between an outer diameter of the sealing element and an inner diameter of the portion of the well to be sealed.
Statement 15. The method of any of Statements 11 to 14, further comprising compressing the sealing element into sealing engagement with the portion of the well to be sealed with a percent squeeze in the range of 35% to 60%.
Statement 16. The method of any of Statements 11 to 15, wherein the sealing element has an outer diameter less than or equal to an outer diameter of the shroud in a run-in configuration prior to setting.
Statement 17. A method of forming a sealing tool, comprising: positioning a shroud about a mandrel, the shroud including an upper portion and a lower portion axially spaced apart on the mandrel to define a gland opening therebetween; positioning a sealing element on the mandrel spanning the gland opening, including capturing a first end between the mandrel and the upper portion of the shroud and a second end between the mandrel and the lower portion of the shroud; and axially engaging the sealing element to urge the sealing element radially outwardly into a controlled volume defined at the gland opening between the mandrel and a portion of the well to be sealed.
Statement 18. The method of Statement 17, further comprising: forming the sealing element with a variable durometer.
Statement 19. The method of any of Statements 17 or 18, further comprising unitarily forming the sealing element as a single elastomer comprising at least two zones of different durometer.
Statement 20. The method of any of Statements 17 to 19, further comprising: forming a central element having a first durometer; forming outer elements of at least a second durometer different than the first durometer; and bonding the outer elements at opposing ends of the central element.
Therefore, the present embodiments are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present embodiments may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Although individual embodiments are discussed, all combinations of each embodiment are contemplated and covered by the disclosure. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present disclosure.